The mechanism of antiproliferative activity of the oxaliplatin pyrophosphate derivative involves its binding to nuclear DNA in cancer cells

. 2023 Oct ; 28 (7) : 669-678. [epub] 20230825

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37624480
Odkazy

PubMed 37624480
DOI 10.1007/s00775-023-02017-x
PII: 10.1007/s00775-023-02017-x
Knihovny.cz E-zdroje

(1R,2R-diaminocyclohexane)(dihydropyrophosphato) platinum(II), also abbreviated as RRD2, belongs to a class of potent antitumor platinum cytostatics called phosphaplatins. Curiously, several published studies have suggested significant mechanistic differences between phosphaplatins and conventional platinum antitumor drugs. Controversial findings have been published regarding the role of RRD2 binding to DNA in the mechanism of its antiproliferative activity in cancer cells. This prompted us to perform detailed studies to confirm or rule out the role of RRD2 binding to DNA in its antiproliferative effect in cancer cells. Here, we show that RRD2 exhibits excellent antiproliferative activity in various cancer cell lines, with IC50 values in the low micromolar or submicromolar range. Moreover, the results of this study demonstrate that DNA lesions caused by RRD2 contribute to killing cancer cells treated with this phosphaplatin derivative. Additionally, our data indicate that RRD2 accumulates in cancer cells but to a lesser extent than cisplatin. On the other hand, the efficiency of cisplatin and RRD2, after they accumulate in cancer cells, in binding to nuclear DNA is similar. Our results also show that RRD2 in the medium, in which the cells were cultured before RRD2 accumulated inside the cells, remained intact. This result is consistent with the view that RRD2 is activated by releasing free pyrophosphate only in the environment of cancer cells, thereby allowing RRD2 to bind to nuclear DNA.

Zobrazit více v PubMed

Johnstone TC, Suntharalingam K, Lippard SJ (2016) The next generation of platinum drugs: targeted Pt(II) agents, nanoparticle delivery, and Pt(IV) prodrugs. Chem Rev 116:3436–3486 PubMed DOI PMC

Dilruba S, Kalayda GV (2016) Platinum-based drugs: past, present and future. Cancer Chemother Pharmacol 77:1103–1124 PubMed DOI

Brabec V, Hrabina O, Kasparkova J (2017) Cytotoxic platinum coordination compounds. DNA binding agents. Coord Chem Rev 351:2–31 DOI

Jung Y, Lippard SJ (2007) Direct cellular responses to platinum-induced DNA damage. Chem Rev 107:1387–1407 PubMed DOI

Babak MV, Zhi Y, Czarny B, Toh TB, Hooi L, Chow EK-H, Ang WH, Gibson D, Pastorin G (2019) Dual-targeting dual-action platinum(IV) platform for enhanced anticancer activity and reduced nephrotoxicity. Angew Chem Int Ed 58:8109–8114 DOI

Novohradsky V, Pracharova J, Kasparkova J, Imberti C, Bridgewater HE, Sadler PJ, Brabec V (2020) Induction of immunogenic cell death in cancer cells by a photoactivated platinum(IV) prodrug. Inorg Chem Front 7:4150–4159 PubMed DOI PMC

Imberti C, Zhang P, Huang H, Sadler PJ (2020) New designs for phototherapeutic transition metal complexes. Angew Chem Int Ed 59:61–73 DOI

Bose RN, Moghaddas S, Belkacemi L, Tripathi S, Adams NR, Majmudar P, McCall K, Dezvareh H, Nislow C (2015) Absence of activation of DNA repair genes and excellent efficacy of phosphaplatins against human ovarian cancers: implications to treat resistant cancers. J Med Chem 58:8387–8401 PubMed DOI

Bose RN, Maurmann L, Mishur RJ, Yasui L, Gupta S, Grayburn WS, Hofstetter H, Salley T (2008) Non-DNA-binding platinum anticancer agents: cytotoxic activities of platinum-phosphato complexes towards human ovarian cancer cells. Proc Natl Acad Sci USA 105:18314–18319 PubMed DOI PMC

Moghaddas S, Majmudar P, Marin R, Dezvareh H, Qi C, Soans E, Bose RN (2012) Phosphaplatins, next generation platinum antitumor agents: a paradigm shift in designing and defining molecular targets. Inorg Chim Acta 393:173–181 DOI

Belkacemi L, Atkins JL, Yang LU, Gadgil P, Sater AK, Chow DS, Bose RN, Zhang SX (2018) Phosphaplatin antitumor effect enhanced by liposomes partly via an up-regulation of PEDF in breast cancer. Anticancer Res 38:623–646 PubMed

Corte-Rodríguez M, Espina M, Sierra LM, Blanco E, Ames T, Montes-Bayón M, Sanz-Medel A (2015) Quantitative evaluation of cellular uptake, DNA incorporation and adduct formation in cisplatin sensitive and resistant cell lines: comparison of different Pt-containing drugs. Biochem Pharmacol 98:69–77 PubMed DOI

Curci A, Gandin V, Marzano C, Hoeschele JD, Natile G, Margiotta N (2017) Novel kiteplatin pyrophosphate derivatives with improved efficacy. Inorg Chem 56:7482–7493 PubMed DOI

Kasparkova J, Kostrhunova H, Novohradsky V, Pracharova J, Curci A, Margiotta N, Natile G, Brabec V (2017) Anticancer kiteplatin pyrophosphate derivatives show unexpected target selectivity for DNA. Dalton Trans 46:14139–14148 PubMed DOI

Pracharova J, Saltarella T, Radosova Muchova T, Scintilla S, Novohradsky V, Novakova O, Intini FP, Pacifico C, Natile G, Ilik P, Brabec V, Kasparkova J (2015) Novel antitumor cisplatin and transplatin derivatives containing 1-methyl-7-azaindole: synthesis, characterization, and cellular responses. J Med Chem 58:847–859 PubMed DOI

Mackay FS, Woods JA, Moseley H, Ferguson J, Dawson A, Parsons S, Sadler PJ (2006) A photoactivated trans diammine platinum complex as cytotoxic as cisplatin. Chem Eur J 12:3155–3161 PubMed DOI

Woods JA, Bilton RF, Young AJ (1999) b-Carotene enhances hydrogen peroxide-induced DNA damage in human hepatocellular HepG2 cells. FEBS Lett 449:255–258 PubMed DOI

Robichova S, Slamenova D, Gabelova A, Sedlak J, Jakubikova J (2004) An investigation of the genotoxic effects of N-nitrosomorpholine in mammalian cells. Chem Biol Interact 148:163–171 PubMed DOI

Johnson NP, Butour J-L, Villani G, Wimmer FL, Defais M, Pierson V, Brabec V (1989) Metal antitumor compounds: the mechanism of action of platinum complexes. Prog Clin Biochem Med 10:1–24 DOI

Spanswick VJ, Hartley JM, Hartley JA (2010) Measurement of DNA interstrand crosslinking in individual cells using the single cell gel electrophoresis (Comet) assay. Methods Mol Biol 613:267–282 PubMed DOI

Heringova P, Woods J, Mackay FS, Kasparkova J, Sadler PJ, Brabec V (2006) Transplatin is cytotoxic when photoactivated: enhanced formation of DNA cross-links. J Med Chem 49:7792–7798 PubMed DOI

Kaminski R, Darbinyan A, Merabova N, Deshmane SL, White MK, Khalili K (2008) Protective role of Pur alpha to cisplatin. Cancer Biol Ther 7:1926–1935 PubMed DOI

Kreja L, Seidel HJ (2002) Evaluation of the genotoxic potential of some microbial volatile organic compounds (MVOC) with the comet assay, the micronucleus assay and the HPRT gene mutation assay. Mutation Res 513:143–150 PubMed DOI

Silva MJ, Costa P, Dias A, Valente M, Louro H, Boavida MG (2005) Comparative analysis of the mutagenic activity of oxaliplatin and cisplatin in the Hprt gene of CHO cells. Environ Mol Mutagenesis 46:104–115 DOI

Halámiková A, Heringová P, Kašpárková J, Intini FP, Natile G, Nemirovski A, Gibson D, Brabec V (2008) Cytotoxicity, mutagenicity, cellular uptake, DNA and glutathione interactions of lipophilic trans-platinum complexes tethered to 1-adamantylamine. J Inorg Biochem 102:1077–1089 PubMed DOI

Ames T, Price M (2019). Phosplatin Therapeutics, Inc USA

Yang L, Moghaddas S, Dezvareh H, Belkacemi L, Bark SJ, Bose RN, Do LH (2016) Insights into the anti-angiogenic properties of phosphaplatins. J Inorg Biochem 164:5–16 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...