Cryptophyta as major bacterivores in freshwater summer plankton
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29463895
PubMed Central
PMC6018765
DOI
10.1038/s41396-018-0057-5
PII: 10.1038/s41396-018-0057-5
Knihovny.cz E-zdroje
- MeSH
- Bacteria klasifikace genetika izolace a purifikace metabolismus MeSH
- Cryptophyta mikrobiologie MeSH
- fylogeneze MeSH
- heterotrofní procesy MeSH
- hybridizace in situ fluorescenční MeSH
- plankton mikrobiologie MeSH
- potravní řetězec MeSH
- roční období MeSH
- sladká voda mikrobiologie parazitologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Small bacterivorous eukaryotes play a cardinal role in aquatic food webs and their taxonomic classification is currently a hot topic in aquatic microbial ecology. Despite increasing interest in their diversity, core questions regarding predator-prey specificity remain largely unanswered, e.g., which heterotrophic nanoflagellates (HNFs) are the main bacterivores in freshwaters and which prokaryotes support the growth of small HNFs. To answer these questions, we fed natural communities of HNFs from Římov reservoir (Czech Republic) with five different bacterial strains of the ubiquitous betaproteobacterial genera Polynucleobacter and Limnohabitans. We combined amplicon sequencing and catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH) targeting eukaryotic 18 S rRNA genes to track specific responses of the natural HNF community to prey amendments. While amplicon sequencing provided valuable qualitative data and a basis for designing specific probes, the number of reads was insufficient to accurately quantify certain eukaryotic groups. We also applied a double-hybridization technique that allows simultaneous phylogenetic identification of both predator and prey. Our results show that community composition of HNFs is strongly dependent upon prey type. Surprisingly, Cryptophyta were the most abundant bacterivores, although this phylum has been so far assumed to be mainly autotrophic. Moreover, the growth of a small lineage of Cryptophyta (CRY1 clade) was strongly stimulated by one Limnohabitans strain in our experiment. Thus, our study is the first report that colorless Cryptophyta are major bacterivores in summer plankton samples and can play a key role in the carbon transfer from prokaryotes to higher trophic levels.
Biodiversity University Duisburg Essen 45117 Essen Germany
Faculty of Science University of South Bohemia 37005 České Budějovice Czech Republic
Limnological Station University of Zurich 8802 Kilchberg Switzerland
Zobrazit více v PubMed
Massana R, Gobet A, Audic S, Bass D, Bittner L, Boutte C, et al. Marine protist diversity in European coastal waters and sediments as revealed by high-throughput sequencing. Environ Microbiol. 2015;17:4035–49. doi: 10.1111/1462-2920.12955. PubMed DOI
Arndt H, Dietrich D, Auer B, Cleven EJ, Gräfenhan T, Weitere M, et al. Functional diversity of heterotrophic flagellates in aquatic ecosystems. In: Barry S.C. Leadbeater and J.C. Green (eds). Flagellates: unity, diversity and evolution, pp 240–68. Taylor & Francis Group, London; (2000).
Pernice MC, Forn I, Gomes A, Lara E, Alonso-Sáez L, Arrieta JM, et al. Global abundance of planktonic heterotrophic protists in the deep ocean. ISME J. 2014;9:782–92. doi: 10.1038/ismej.2014.168. PubMed DOI PMC
Simon M, López-García P, Deschamps P, Restoux G, Bertolino P, Moreira D, et al. Resilience of freshwater communities of small microbial eukaryotes undergoing severe drought events. Front Microbiol. 2016;7:1–11. doi: 10.3389/fmicb.2016.00812. PubMed DOI PMC
Caron DA, Alexander H, Allen AE, Archibald JM, Armbrust EV, Bachy C, et al. Probing the evolution, ecology and physiology of marine protists using transcriptomics. Nat Rev Microbiol. 2016;15:6–20. doi: 10.1038/nrmicro.2016.160. PubMed DOI
Caron DA, Connell PE, Schaffner RA, Schnetzer A, Fuhrman JA, Countway PD, et al. Planktonic food web structure at a coastal time-series site: I. Partitioning of microbial abundances and carbon biomass. Deep Sea Res Part I Oceanogr Res Pap. 2017;121:210–23. doi: 10.1016/j.dsr.2016.12.013. DOI
Weisse T. The significance of inter- and intraspecific variation in bacterivorous and herbivorous protists. Antonie Van Leeuwenhoek. 2002;81:327–41. doi: 10.1023/A:1020547517255. PubMed DOI
Boenigk J, Arndt H. Bacterivory by heterotrophic flagellates: community structure and feeding strategies. Antonie Van Leeuwenhoek. 2002;81:465–80. doi: 10.1023/A:1020509305868. PubMed DOI
Worden AZ, Follows MJ, Giovannoni SJ, Wilken S, Zimmerman AE, Keeling PJ. Rethinking the marine carbon cycle: factoring in the multifarious lifestyles of microbes. Science. 2015;347:1257594. PubMed
Matz C, Boenigk J, Arndt H, Jürgens K. Role of bacterial phenotypic traits in selective feeding of the heterotrophic nanoflagellate Spumella sp. Aquat Microb Ecol. 2002;27:137–48. doi: 10.3354/ame027137. DOI
Azam F, Malfatti F. Microbial structuring of marine ecosystems. Nat Rev Microbiol. 2007;5:782–91. doi: 10.1038/nrmicro1747. PubMed DOI
Pernthaler J. Predation on prokaryotes in the water column and its ecological implications. Nat Rev Microbiol. 2005;3:537–46. doi: 10.1038/nrmicro1180. PubMed DOI
Debroas D, Hugoni M, Domaizon I. Evidence for an active rare biosphere within freshwater protists community. Mol Ecol. 2015;24:1236–47. doi: 10.1111/mec.13116. PubMed DOI
Simon M, López-García P, Deschamps P, Moreira D, Restoux G, Bertolino P, et al. Marked seasonality and high spatial variability of protist communities in shallow freshwater systems. ISME J. 2015;9:1–13. doi: 10.1038/ismej.2015.6. PubMed DOI PMC
Debroas D, Domaizon I, Humbert J, Jardillier L, Oudart A, Taïb N. Overview of freshwater microbial eukaryotes diversity: a first analysis of publicly available metabarcoding data. FEMS Microb Ecol. 2017;93:1–14. doi: 10.1093/femsec/fix023. PubMed DOI
Nolte V, Pandey RV, Jost S, Medinger R, Ottenwälder B, Boenigk J, et al. Contrasting seasonal niche separation between rare and abundant taxa conceals the extent of protist diversity. Mol Ecol. 2010;19:2908–15. doi: 10.1111/j.1365-294X.2010.04669.x. PubMed DOI PMC
del Campo J, Mallo D, Massana R, de Vargas C, Richards TA, Ruiz-Trillo I. Diversity and distribution of unicellular opisthokonts along the European coast analyzed using high-throughput sequencing. Environ Microbiol. 2015;17:3195–207. doi: 10.1111/1462-2920.12759. PubMed DOI PMC
Logares R, Audic S, Bass D, Bittner L, Boutte C, Christen R, et al. Patterns of rare and abundant marine microbial eukaryotes. Curr Biol. 2014;24:813–21. doi: 10.1016/j.cub.2014.02.050. PubMed DOI
Jezbera J, Horňák K, Šimek K. Food selection by bacterivorous protists: Insight from the analysis of the food vacuole content by means of fluorescence in situ hybridization. FEMS Microbiol Ecol. 2005;52:351–63. doi: 10.1016/j.femsec.2004.12.001. PubMed DOI
Šimek K, Kasalický V, Jezbera J, Horňák K, Nedoma J, Hahn MW, et al. Differential freshwater flagellate community response to bacterial food quality with a focus on Limnohabitans bacteria. ISME J. 2013;7:1519–30. doi: 10.1038/ismej.2013.57. PubMed DOI PMC
Boenigk J, Pfandl K, Stadler P, Chatzinotas A. High diversity of the ‘Spumella-like’ flagellates: an investigation based on the SSU rRNA gene sequences of isolates from habitats located in six different geographic regions. Environ Microbiol. 2005;7:685–97. doi: 10.1111/j.1462-2920.2005.00743.x. PubMed DOI
Boenigk J, Pfandl K, Hansen PJ. Exploring strategies for nanoflagellates living in a ‘wet desert’. Aquat Microb Ecol. 2006;44:71–83. doi: 10.3354/ame044071. DOI
Grossmann L, Bock C, Schweikert M, Boenigk J. Small but manifold – hidden diversity in ‘Spumella-like Flagellates’. J Eukaryot Microbiol. 2016;63:419–39. doi: 10.1111/jeu.12287. PubMed DOI PMC
de Vargas C, Audic S, Henry N, Decelle J, Mahé F, Logares R, et al. Eukaryotic plankton diversity in the sunlit ocean. Science. 2015;348:1–12. doi: 10.1126/science.1261605. PubMed DOI
Giner CR, Forn I, Romac S, Logares R, de Vargas C, Massana R. Environmental sequencing provides reasonable estimates of the relative abundance of specific picoeukaryotes. Appl Environ Microbiol. 2016;82:4757–66. doi: 10.1128/AEM.00560-16. PubMed DOI PMC
Hong S, Bunge J, Leslin C, Jeon S, Epstein SS. Polymerase chain reaction primers miss half of rRNA microbial diversity. ISME J. 2009;3:1365–73. doi: 10.1038/ismej.2009.89. PubMed DOI
Wintzingerode F, Göbel UB, Stackebrandt E. Determination if microbial diversity in environmental samples: pitfalls of PCR-based analysis. FEMS Microbiol Rev. 1997;21:213–29. doi: 10.1111/j.1574-6976.1997.tb00351.x. PubMed DOI
Lepère C, Domaizon I, Debroas D. Community composition of lacustrine small eukaryotes in hyper-eutrophic conditions in relation to top-down and bottom-up factors. FEMS Microbiol Ecol. 2007;61:483–95. doi: 10.1111/j.1574-6941.2007.00359.x. PubMed DOI
Mangot JF, Domaizon I, Taib N, Marouni N, Duffaud E, Bronner G, et al. Short-term dynamics of diversity patterns: evidence of continual reassembly within lacustrine small eukaryotes. Environ Microbiol. 2013;15:1745–58. doi: 10.1111/1462-2920.12065. PubMed DOI
Taib N, Mangot J-F, Isabelle D, Bronner G, Debroas D. Phylogenetic affiliation of SSU rRNA genes generated by massively parallel sequencing: new insights into the freshwater protist diversity. PloS ONE. 2013;8:e58950. PubMed PMC
Lefèvre E, Carrias JF, Bardot C, Sime-Ngando T, Amblard C. A preliminary study of heterotrophic picoflagellates using oligonucleotidic probes in Lake Pavin. Hydrobiologia. 2005;551:61–67. doi: 10.1007/s10750-005-4450-5. DOI
Mukherjee I, Hodoki Y, Nakano S. Kinetoplastid flagellates overlooked by universal primers dominate in the oxygenated hypolimnion of Lake Biwa, Japan. FEMS Microbiol Ecol. 2015;91:1–11. doi: 10.1093/femsec/fiv083. PubMed DOI
Not F, Massana R, Latasa M, Marie D, Colson C, Eikrem W, et al. Late summer community composition and abundance of photosynthetic picoeukaryotes in Norwegian and Barents seas. Limnol Oceanogr. 2005;50:1677–86. doi: 10.4319/lo.2005.50.5.1677. DOI
Not F, Simon N, Biegala IC, Vaulot D. Application of fluorescent in situ hybridization coupled with tyramide signal amplification (FISH-TSA) to assess eukaryotic picoplankton composition. Aquat Microb Ecol. 2002;28:157–66. doi: 10.3354/ame028157. DOI
Piwosz K, Kownacka J, Ameryk A, Zalewski M, Pernthaler J. Phenology of cryptomonads and the CRY1 lineage in a coastal brackish lagoon (Vistula Lagoon, Baltic Sea) J Phycol. 2016;53:1689–99. PubMed
Piwosz K, Spich K, Całkiewicz J, Weydmann A, Kubiszyn AM, Wiktor JM. Distribution of small phytoflagellates along an Arctic fjord transect. Environ Microbiol. 2015;17:2393–406. doi: 10.1111/1462-2920.12705. PubMed DOI
Piwosz K, Wiktor JM, Niemi A, Tatarek A, Michel C. Mesoscale distribution and functional diversity of picoeukaryotes in the first-year sea ice of the Canadian Arctic. ISME J. 2013;7:1461–71. doi: 10.1038/ismej.2013.39. PubMed DOI PMC
Newton RJ, Jones SE, Eiler A, McMahon KD, Bertilsson S. A guide to the natural history of freshwater lake bacteria. Microbiol Mol Biol Rev. 2011;75:14–49. doi: 10.1128/MMBR.00028-10. PubMed DOI PMC
Kasalický V, Jezbera J, Hahn MW, Šimek K. The diversity of the limnohabitans genus, an important group of freshwater bacterioplankton, by characterization of 35 isolated strains. PLoS ONE. 2013;8:e58209. 10.1371/journal.pone.0058209. PubMed PMC
Hahn MW, Lang E, Brandt U, Wu QL, Scheuerl T. Emended description of the genus Polynucleobacter and the species Polynucleobacter necessarius and proposal of two subspecies, P. necessarius subsp. necessarius subsp. nov. and P. necessarius subsp. asymbioticus subsp. nov. Int J Syst Evol Microbiol. 2009;59:2002–9. doi: 10.1099/ijs.0.005801-0. PubMed DOI PMC
Grujčić V, Kasalický V, Šimek K. Prey-specific growth responses of freshwater flagellate communities induced by morphologically distinct bacteria from the genus Limnohabitans. Appl Environ Microbiol. 2015;81:4993–5002. doi: 10.1128/AEM.00396-15. PubMed DOI PMC
Jezbera J, Jezberová J, Koll U, Horňák K, Šimek K, Hahn MW. Contrasting trends in distribution of four major planktonic betaproteobacterial groups along a pH gradient of epilimnia of 72 freshwater habitats. FEMS Microbiol Ecol. 2012;81:467–79. doi: 10.1111/j.1574-6941.2012.01372.x. PubMed DOI PMC
Šimek K, Horňák K, Jezbera J, Nedoma J, Vrba J, Straškrabová V, et al. Maximum growth rates and possible life strategies of different bacterioplankton groups in relation to phosphorus availability in a freshwater reservoir. Environ Microbiol. 2006;8:1613–24. doi: 10.1111/j.1462-2920.2006.01053.x. PubMed DOI
Šimek K, Pernthaler J, Weinbauer MG, Dolan JR, Nedoma J, Masi M, et al. Changes in bacterial community composition and dynamics and viral mortality rates associated with enhanced flagellate grazing in a mesoeutrophic reservoir changes in bacterial community composition and dynamics and viral mortality rates. Appl Environ Microbiol. 2001;67:2723–33. doi: 10.1128/AEM.67.6.2723-2733.2001. PubMed DOI PMC
Salcher MM, Pernthaler J, Zeder M, Psenner R, Posch T. Spatio-temporal niche separation of planktonic Betaproteobacteria in an oligo-mesotrophic lake. Environ Microbiol. 2008;10:2074–86. doi: 10.1111/j.1462-2920.2008.01628.x. PubMed DOI
Kasalický V, Zeng Y, Piwosz K, Šimek K, Kratochvilová H, Koblížek M. Common presence of aerobic anoxygenic photosynthesis within the genus Limnohabitans. Appl Environ Microbiol. 2017. 10.1128/AEM.02116-17 PubMed PMC
Zeng Y. Genome sequences of two freshwater betaproteobacterial isolates, limnohabitans species strains Rim28 and Rim47, indicate their capabilities as both photoautotrophs and ammonia oxidizers. Appl Environ Microbiol. 2012;194:6302–3. PubMed PMC
Shabarova T, Kasalický V, Nedoma J, Znachor P, Posch T, Pernthaler J, et al. Distribution and ecological preferences of the freshwater lineage LimA (genus Limnohabitans) revealed by a new double hybridization approach. Environ Microbiol. 2017;19:1296–309. doi: 10.1111/1462-2920.13663. PubMed DOI
Šimek K, Nedoma J, Znachor P, Kasalický V, Jezbera J, Hornák K, et al. A finely tuned symphony of factors modulates the microbial food web of a freshwater reservoir in spring. Limnol Oceanogr. 2014;59:1477–92. doi: 10.4319/lo.2014.59.5.1477. DOI
Hoetzinger M, Schmidt J, Jezberová J, Koll U, Hahn MW. Microdiversification of a pelagic Polynucleobacter species is mainly driven by acquisition of genomic islands from a partially interspecific gene pool. Appl Environ Microbiol. 2016;83:e02266–16. 10.1128/AEM.02266-16. PubMed PMC
Hahn MW, Huymann LR, Koll U, Schmidt J, Lang E, Hoetzinger M. Polynucleobacter wuianus sp. nov., a free-living freshwater bacterium affiliated with the cryptic species complex PnecC. Int J Syst Evol Microbiol. 2017;67:379–85. doi: 10.1099/ijsem.0.001637. PubMed DOI PMC
Hahn MW, Scheuerl T, Jezberová J, Koll U, Jezbera J, Šimek K, et al. The passive yet successful way of planktonic life: Genomic and experimental analysis of the ecology of a free-living polynucleobacter population. PLoS ONE. 2012;7:e32772. 10.1371/journal.pone.0032772. PubMed PMC
Sherr EB, Sherr BF, Albright L. Bacteria: link or sink? Science. 1987;235:88. doi: 10.1126/science.235.4784.88a. PubMed DOI
Šimek, K, Grujčić, V, Hahn, MW, Horňák, K, Jezberová, J, Kasalický, V, Nedoma, J, Salcher, MM, Shabarova T. Bacterial prey food characteristics modulate community growth response of freshwater bacterivorous flagellates. Limnol. Oceanogr. (2018). 10.1002/lno.10759.
Massana R, Unrein F, Rodríguez-Martínez R, Forn I, Lefort T, Pinhassi J, et al. Grazing rates and functional diversity of uncultured heterotrophic flagellates. ISME J. 2009;3:588–96. doi: 10.1038/ismej.2008.130. PubMed DOI
Šimek K, Horňák K, Jezbera J, Nedoma J, Znachor P, Hejzlar J. Spatio-temporal patterns of bacterioplankton production and community composition related to phytoplankton composition and protistan bacterivory in a dam reservoir. Aquat Microb Ecol. 2008;51:249–2. doi: 10.3354/ame01193. DOI
Hahn MW, Stadler P, Wu QL, Pöckl M. The filtration-acclimatization method for isolation of an important fraction of the not readily cultivable bacteria. J Microbiol Methods. 2004;57:379–90. doi: 10.1016/j.mimet.2004.02.004. PubMed DOI
Lange A, Jost S, Heider D, Bock C, Budeus B. AmpliconDuo: a split-sample filtering protocol for high-throughput amplicon sequencing of microbial communities. PLoS ONE. 2015;10:e0141590. 10.1371/journal.pone.0141590. PubMed PMC
White TJ, Bruns T, Lee S, and Taylor JW. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, and White TJ, editors. PCR protocols: a guide to methods and applications. New York: Academic Press, Inc..; 1990. p. 315–22.
Masella AP, Bartram AK, Truszkowski JM, Brown DG, Neufeld JD. PANDAseq: PAired-eND Assembler for Illumina sequences. BMC Bioinformatics. 2012;13:1471–2105. doi: 10.1186/1471-2105-13-31. PubMed DOI PMC
Mahé F, Rognes T, Quince C, de Vargas C, Dunthorn M. Swarm: robust and fast clustering method for amplicon-based studies. PeerJ. 2014;2:e593. doi: 10.7717/peerj.593. PubMed DOI PMC
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10. PubMed
Boenigk J, Wodniok S, Glucksman E. Biodiversity and earth history. Berlin: Springer; 2015. .
Pruesse E, Peplies J, Glöckner FO. SINA: Accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics. 2012;28:1823–9. doi: 10.1093/bioinformatics/bts252. PubMed DOI PMC
Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar A, et al. ARB: a software environment for sequence data. Nucleic Acids Res. 2007;32:1363–71. doi: 10.1093/nar/gkh293. PubMed DOI PMC
Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, et al. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 2007;35:7188–96. doi: 10.1093/nar/gkm864. PubMed DOI PMC
Stamatakis A, Ludwig T, Meier H. RAxML-II: A program for sequential, parallel and distributed inference of large phylogenetic trees. Concurr Comput Pract Exp. 2005;17:1705–23. doi: 10.1002/cpe.954. DOI
Yilmaz LS, Parnerkar S, Noguera DR. MathFISH, a web tool that uses thermodynamics-based mathematical models for in silico evaluation of oligonucleotide probes for fluorescence in situ hybridization. Appl Environ Microbiol. 2011;77:1118–22. doi: 10.1128/AEM.01733-10. PubMed DOI PMC
Pernthaler A, Pernthaler J, Amann R. Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Appl Environ Microbiol. 2002;68:3094–101. doi: 10.1128/AEM.68.6.3094-3101.2002. PubMed DOI PMC
Amann R, Fuchs BM. Single-cell identification in microbial communities by improved fluorescence in situ hybridization techniques. Nat Rev Micro. 2008;6:339–48. doi: 10.1038/nrmicro1888. PubMed DOI
Hahn MW, Pöckl M. Ecotypes of planktonic actinobacteria with identical 16S rRNA genes adapted to thermal niches in temperate, subtropical, and tropical freshwater habitats. Appl Environ Microbiol. 2005;71:766–73. doi: 10.1128/AEM.71.2.766-773.2005. PubMed DOI PMC
Piwosz K, Pernthaler J. Seasonal population dynamics and trophic role of planktonic nanoflagellates in coastal surface waters of the Southern Baltic Sea. Environ Microbiol. 2010;12:364–77. doi: 10.1111/j.1462-2920.2009.02074.x. PubMed DOI
Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA. Oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol. 1990;56:1919–25. PubMed PMC
Beardsley C, Knittel K, Amann R, Pernthaler J. Quantification and distinction of aplastidic and plastidic marine nanoplankton by fluorescence in situ hybridization. Aquat Microb Ecol. 2005;41:163–9. doi: 10.3354/ame041163. DOI
Metfies K, Medlin LK. Refining cryptophyte identification with DNA-microarrays. J Plankton Res. 2007;29:1071–5. doi: 10.1093/plankt/fbm080. DOI
Daims H, Bruhl A, Amann R, Schleifer K, Wagner M. The domain-specific probe EUB338 is insufficient for the detection of all Bacteria: development and evaluation of a more comprehensive probe set. Syst Appl Microbiol. 1999;22:434–44. doi: 10.1016/S0723-2020(99)80053-8. PubMed DOI
Šimek K, Chrzanowski TH. Direct and indirect evidence of size-selective grazing on pelagic bacteria by freshwater nanoflagellates. Appl Environ Microbiol. 1992;58:3715–20. PubMed PMC
Pfandl K, Posch T, Boenigk J. Unexpected effects of prey dimensions and morphologies on the size selective feeding by two bacterivorous flagellates (Ochromonas sp. and Spumella sp.) J Eukaryot Microbiol. 2004;51:626–33. doi: 10.1111/j.1550-7408.2004.tb00596.x. PubMed DOI
Hahn MW, Höfle MG. Flagellate predation on a bacterial model community: interplay of size-selective grazing, specific bacterial cell size, and bacterial community composition. Appl Env Microbiol. 1999;65:4863–72. PubMed PMC
Grossmann L, Jensen M, Heider D, Jost S, Glücksman E, Hartikainen H, et al. Protistan community analysis: key findings of a large-scale molecular sampling. ISME J. 2016;10:2269–79. PubMed PMC
Amaral-Zettler LA, McCliment EA, Ducklow HW, Huse SM. A method for studying protistan diversity using massively parallel sequencing of V9 hypervariable regions of small-subunit ribosomal RNA genes. PLoS ONE. 2009;4:e6372. 10.1371/journal.pone.0006372. PubMed PMC
Medinger R, Nolte V, Pandey RV, Jost S, Ottenwälder B, Schlötterer C, et al. Diversity in a hidden world: Potential and limitation of next-generation sequencing for surveys of molecular diversity of eukaryotic microorganisms. Mol Ecol. 2010;19:32–40. doi: 10.1111/j.1365-294X.2009.04478.x. PubMed DOI PMC
Bachy C, Dolan JR, López-García P, Deschamps P, Moreira D. Accuracy of protist diversity assessments: morphology compared with cloning and direct pyrosequencing of 18S rRNA genes and ITS regions using the conspicuous tintinnid ciliates as a case study. ISME J. 2012;7:244–55. doi: 10.1038/ismej.2012.106. PubMed DOI PMC
Quince C, Lanzén A, Curtis TP, Davenport RJ, Hall N, Head IM, et al. Accurate determination of microbial diversity from 454 pyrosequencing data. Nat Methods. 2009;6:639–41. doi: 10.1038/nmeth.1361. PubMed DOI
Kahn P, Herfort L, Peterson TD, Zuber P. Discovery of a Katablepharis sp. in the Columbia River estuary that is abundant during the spring and bears a unique large ribosomal subunit sequence element. Microbiol Open. 2014;3:764–76. doi: 10.1002/mbo3.206. PubMed DOI PMC
Prokopowich CD, Gregory TR, Crease TJ. The correlation between rDNA copy number and genome size in eukaryotes. Genome. 2003;46:48–50. doi: 10.1139/g02-103. PubMed DOI
Reeb VC, Peglar MT, Yoon HS, Bai JR, Wu M, Shiu P, et al. Interrelationships of chromalveolates within a broadly sampled tree of photosynthetic protists. Mol Phylogenet Evol. 2009;53:202–11. doi: 10.1016/j.ympev.2009.04.012. PubMed DOI
Okamoto N, Chantangsi C, Horák A, Leander BS, Keeling PJ. Molecular phylogeny and description of the novel Katablepharid Roombia truncata gen. et sp. nov., and establishment of the Hacrobia taxon nov. PLoS One. 2009;4:1–11. doi: 10.1371/journal.pone.0007080. PubMed DOI PMC
Okamoto N, Inouye I. The katablepharids are a distant sister group of the Cryptophyta: A proposal for Katablepharidophyta divisio nova/Kathablepharida phylum novum based on SSU rDNA and beta-tubulin phylogeny. Protist. 2005;156:163–79. doi: 10.1016/j.protis.2004.12.003. PubMed DOI
Grossmann L, Bock C, Schweikert M, Boenigk J. Small but Manifold – Hidden Diversity in ‘Spumellalike Flagellates’. J Eukaryot Microbiol. 2016;63:419–39. doi: 10.1111/jeu.12287. PubMed DOI PMC
Montagnes DJS, Barbosa AB, Boenigk J, Davidson K, Jürgens K, Macek M, et al. Selective feeding behaviour of key free-living protists: Avenues for continued study. Aquat Microb Ecol. 2008;53:83–98. doi: 10.3354/ame01229. DOI
Shalchian-Tabrizi K, Bråte J, Logares R, Klaveness D, Berney C, Jakobsen KS. Diversification of unicellular eukaryotes: Cryptomonad colonizations of marine and fresh waters inferred from revised 18S rRNA phylogeny. Environ Microbiol. 2008;10:2635–44. doi: 10.1111/j.1462-2920.2008.01685.x. PubMed DOI
Clay B, Kugrens P. Systematics of the enigmatic kathablepharids, including EM characterization of the type species, Kathablepharis phoenikoston, and new observations on K. remigera comb.nov. Protist. 1999;150:43–59. doi: 10.1016/S1434-4610(99)70008-8. PubMed DOI
Global freshwater distribution of Telonemia protists
High-resolution metagenomic reconstruction of the freshwater spring bloom
Cryptic and ubiquitous aplastidic cryptophytes are key freshwater flagellated bacterivores
CARD-FISH in the Sequencing Era: Opening a New Universe of Protistan Ecology