Prey-Specific Growth Responses of Freshwater Flagellate Communities Induced by Morphologically Distinct Bacteria from the Genus Limnohabitans
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
25979896
PubMed Central
PMC4495212
DOI
10.1128/aem.00396-15
PII: AEM.00396-15
Knihovny.cz E-zdroje
- MeSH
- Comamonadaceae cytologie růst a vývoj MeSH
- heterotrofní procesy MeSH
- jezera mikrobiologie parazitologie MeSH
- potravní řetězec MeSH
- roční období MeSH
- sladká voda mikrobiologie parazitologie MeSH
- zooplankton růst a vývoj MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
Because their large growth potential is counterbalanced with grazing by heterotrophic nanoflagellates (HNF), bacteria of the genus Limnohabitans, which are common in many freshwater habitats, represent a valuable model for examining bacterial carbon flow to the grazer food chain. We conducted experiments with natural HNF communities taken from two distinct habitats, the meso-eutrophic Římov Reservoir and the oligo-mesotrophic Lake Cep (South Bohemia). HNF communities from each habitat at distinct seasonal phases, a late April algal bloom and a late May clear water phase, were each fed 3 Limnohabitans strains of differing cell sizes. Water samples were prefiltered (5 μm) to release natural HNF communities from zooplankton control and then amended with the Limnohabitans strains L. planktonicus II-D5 (medium sized, rod shaped), Limnohabitans sp. strain T6-5 (thin, long, curved rod), and Limnohabitans sp. strain 2KL-3 (large solenoid). Using temporal sampling and prey treatment, we determined HNF growth parameters such as doubling time, growth efficiency, and length of lag phase prior starting to exponential growth. All three Limnohabitans strains supported HNF growth but in significant prey-, site-, and season-dependent fashions. For instance, addition of the moderately large T6-5 strain yielded very rapid HNF growth with a short lag phase. In contrast, the curved morphology and larger cell size of strain 2KL-3 made this prey somewhat protected against grazing by smaller HNF, resulting in slower HNF growth and longer lag phases. These trends were particularly pronounced during the late May clear-water phase, which was dominated by smaller HNF cells. This may indicate a longer "adaptation time" for the flagellate communities toward the large prey size offered.
Zobrazit více v PubMed
Azam F, Fenchel T, Field J, Gray J, Meyer-Reil L, Thingstad F. 1983. The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser 10:257–263.
Hahn MW, Höfle MG. 2001. Grazing of protozoa and its effect on populations of aquatic bacteria. FEMS Microbiol Ecol 35:113–121. doi:10.1111/j.1574-6941.2001.tb00794.x. PubMed DOI
Pace ML, McManus GB, Findlay SE. 1990. Planktonic community structure determines the fate of bacterial production in a temperate lake. Limnol Oceanogr 35:795–808.
Jürgens K. 1994. Impact of Daphnia on planktonic microbial food webs—a review. Mar Microb Food Webs 8:295–324.
Šimek K, Bobková J, Macek M, Nedoma J, Psenner R. 1995. Ciliate grazing on picoplankton in a eutrophic reservoir during the summer phytoplankton maximum: a study at the species and community level. Limnol Oceanogr 40:1077–1090.
Salcher MM. 2013. Same same but different: ecological niche partitioning of planktonic freshwater prokaryotes. J Limnol 73:74–87. doi:10.4081/jlimnol.2014.813. DOI
Zeder M, Peter S, Shabarova T, Pernthaler J. 2009. A small population of planktonic flavobacteria with disproportionally high growth during the spring phytoplankton bloom in a prealpine lake. Environ Microbiol 11:2676–2686. doi:10.1111/j.1462-2920.2009.01994.x. PubMed DOI
Salcher MM, Pernthaler J, Frater N, Posch T. 2011. Vertical and longitudinal distribution patterns of different bacterioplankton populations in a canyon-shaped, deep prealpine lake. Limnol Oceanogr 56:2027–2039. doi:10.4319/lo.2011.56.6.2027. DOI
Šimek K, Nedoma J, Znachor P, Kasalický V, Jezbera J, Horňák K, Sed'a J. 2014. A finely tuned symphony of factors modulates the microbial food web of a freshwater reservoir in spring. Limnol Oceanogr 59:1477–1492. doi:10.4319/lo.2014.59.5.1477. DOI
Neuenschwander SM, Pernthaler J, Posch T, Salcher MM. 2015. Seasonal growth potential of rare lake water bacteria suggest their disproportional contribution to carbon fluxes. Environ Microbiol 17:781–795. doi:10.1111/1462-2920.12520. PubMed DOI
Lindström ES, Kamst-Van Agterveld MP, Zwart G. 2005. Distribution of typical freshwater bacterial groups is associated with pH, temperature, and lake water retention time. Appl Environ Microbiol 71:8201–8206. doi:10.1128/AEM.71.12.8201-8206.2005. PubMed DOI PMC
Newton RJ, Jones SE, Eiler A, McMahon KD, Bertilsson S. 2011. A guide to the natural history of freshwater lake bacteria. Microbiol Mol Biol Rev 75:14–49. doi:10.1128/MMBR.00028-10. PubMed DOI PMC
Newton RJ, Jones SE, Helmus MR, McMahon KD. 2007. Phylogenetic ecology of the freshwater Actinobacteria acI lineage. Appl Environ Microbiol 73:7169–7176. doi:10.1128/AEM.00794-07. PubMed DOI PMC
Hahn MW, Lang E, Brandt U, Spröer C. 2011. Polynucleobacter acidiphobus sp. nov., a representative of an abundant group of planktonic freshwater bacteria. Int J Syst Evol Microbiol 61:788–794. doi:10.1099/ijs.0.023929-0. PubMed DOI PMC
Hahn MW, Minasyan A, Lang E, Koll U, Spröer C. 2012. Polynucleobacter difficilis sp. nov., a planktonic freshwater bacterium affiliated with subcluster B1 of the genus Polynucleobacter. Int J Syst Evol Microbiol 62:376–383. doi:10.1099/ijs.0.031393-0. PubMed DOI PMC
Šimek K, Kasalický V, Jezbera J, Jezberová J, Hejzlar J, Hahn MW. 2010. Broad habitat range of the phylogenetically narrow R-BT065 cluster, representing a core group of the betaproteobacterial genus Limnohabitans. Appl Environ Microbiol 76:631–639. doi:10.1128/AEM.02203-09. PubMed DOI PMC
Jezbera J, Jezberová J, Koll U, Horňák K, Šimek K, Hahn MW. 2012. Contrasting trends in distribution of four major planktonic betaproteobacterial groups along a pH gradient of epilimnia of 72 freshwater habitats. FEMS Microbiol Ecol 81:467–479. doi:10.1111/j.1574-6941.2012.01372.x. PubMed DOI PMC
Kasalický V, Jezbera J, Hahn MW, Šimek K. 2013. The diversity of the Limnohabitans genus, an important group of freshwater bacterioplankton, by characterization of 35 isolated strains. PLoS One 8:e58209. doi:10.1371/journal.pone.0058209. PubMed DOI PMC
Šimek K, Kasalický V, Zapomělová E, Horňák K. 2011. Alga-derived substrates select for distinct betaproteobacterial lineages and contribute to niche separation in Limnohabitans strains. Appl Environ Microbiol 77:7307–7315. doi:10.1128/AEM.00776-10. PubMed DOI PMC
Šimek K, Horňák K, Jezbera J, Nedoma J, Vrba J, Straškrábová V, Macek M, Dolan JR, Hahn MW. 2006. Maximum growth rates and possible life strategies of different bacterioplankton groups in relation to phosphorus availability in a freshwater reservoir. Environ Microbiol 8:1613–1624. doi:10.1111/j.1462-2920.2006.01053.x. PubMed DOI
Salcher MM, Hofer J, Horňák K, Jezbera J, Sonntag B, Vrba J, Šimek K, Posch T. 2007. Modulation of microbial predator-prey dynamics by phosphorus availability: growth patterns and survival strategies of bacterial phylogenetic clades. FEMS Microbiol Ecol 60:40–50. doi:10.1111/j.1574-6941.2006.00274.x. PubMed DOI
Freese HM, Schink B. 2011. Composition and stability of the microbial community inside the digestive tract of the aquatic crustacean Daphnia magna. Microb Ecol 62:882–894. doi:10.1007/s00248-011-9886-8. PubMed DOI
Eckert EM, Pernthaler J. 2014. Bacterial epibionts of Daphnia: a potential route for the transfer of dissolved organic carbon in freshwater food webs. ISME J 8:1808–1819. doi:10.1038/ismej.2014.39. PubMed DOI PMC
Pérez MT, Sommaruga R. 2006. Differential effect of algal- and soil-derived dissolved organic matter on alpine lake bacterial community composition and activity. Limnol Oceanogr 51:2527–2537. doi:10.4319/lo.2006.51.6.2527. DOI
Šimek K, Hornak K, Jezbera J, Nedoma J, Znachor P, Hejzlar J, Sed'a J. 2008. Spatio-temporal patterns of bacterioplankton production and community composition related to phytoplankton composition and protistan bacterivory in a dam reservoir. Aquat Microb Ecol 051:249. doi:10.3354/ame01193. DOI
Boenigk J, Arndt H. 2000. Particle handling during interception feeding by four species of heterotrophic nanoflagellates. J Eukaryot Microbiol 47:350–358. doi:10.1111/j.1550-7408.2000.tb00060.x. PubMed DOI
Pernthaler J. 2005. Predation on prokaryotes in the water column and its ecological implications. Nat Rev Microbiol 3:537–546. doi:10.1038/nrmicro1180. PubMed DOI
Jezbera J, Horňák K, Šimek K. 2006. Prey selectivity of bacterivorous protists in different size fractions of reservoir water amended with nutrients. Environ Microbiol 8:1330–1339. doi:10.1111/j.1462-2920.2006.01026.x. PubMed DOI
Sommer U, Adrian R, De Senerpont Domis L, Elser JJ, Gaedke U, Ibelings B, Jeppesen E, Lürling M, Molinero JC, Mooij WM. 2012. Beyond the Plankton Ecology Group (PEG) model: mechanisms driving plankton succession. Annu Rev Ecol Evol Syst 43:429–448. doi:10.1146/annurev-ecolsys-110411-160251. DOI
Boenigk J, Arndt H. 2002. Bacterivory by heterotrophic flagellates: community structure and feeding strategies. Antonie Van Leeuwenhoek 81:465–480. doi:10.1023/A:1020509305868. PubMed DOI
Šimek K, Kasalický V, Jezbera J, Horňák K, Nedoma J, Hahn MW, Bass D, Jost S, Boenigk J. 2013. Differential freshwater flagellate community response to bacterial food quality with a focus on Limnohabitans bacteria. ISME J 7:1519–1530. doi:10.1038/ismej.2013.57. PubMed DOI PMC
Kasalický V, Jezbera J, Šimek K, Hahn MW. 2010. Limnohabitans planktonicus sp. nov. and Limnohabitans parvus sp. nov., planktonic betaproteobacteria isolated from a freshwater reservoir, and emended description of the genus Limnohabitans. Int J Syst Evol Microbiol 60:2710–2714. doi:10.1099/ijs.0.018952-0. PubMed DOI PMC
Hahn MW, Stadler P, Wu QL, Pöckl M. 2004. The filtration-acclimatization method for isolation of an important fraction of the not readily cultivable bacteria. J Microbiol Methods 57:379–390. doi:10.1016/j.mimet.2004.02.004. PubMed DOI
Šimek K, Pernthaler J, Weinbauer MG, Hornák K, Dolan JR, Nedoma J, Mašı′n M, Amann R. 2001. Changes in bacterial community composition and dynamics and viral mortality rates associated with enhanced flagellate grazing in a mesoeutrophic reservoir. Appl Environ Microbiol 67:2723–2733. doi:10.1128/AEM.67.6.2723-2733.2001. PubMed DOI PMC
Murphy J, Riley J. 1962. A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36. doi:10.1016/S0003-2670(00)88444-5. DOI
Kopáček J, Hejzlar J. 1993. Semi-micro determination of total phosphorus in fresh waters with perchloric acid digestion. Int J Environ Anal Chem 53:173–183.
Lorenzen CJ. 1966. Determination of chlorophyll and phaeopigments: spectrophotometric equation. Limnol Oceanogr 12:343–346.
Pernthaler A, Pernthaler J, Amann R. 2002. Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Appl Environ Microbiol 68:3094–3101. doi:10.1128/AEM.68.6.3094-3101.2002. PubMed DOI PMC
Amann R, Fuchs BM. 2008. Single-cell identification in microbial communities by improved fluorescence in situ hybridization techniques. Nat Rev Microbiol 6:339–348. doi:10.1038/nrmicro1888. PubMed DOI
Jezbera J, Horňák K, Šimek K. 2005. Food selection by bacterivorous protists: insight from the analysis of the food vacuole content by means of fluorescence in situ hybridization. FEMS Microbiol Ecol 52:351–363. doi:10.1016/j.femsec.2004.12.001. PubMed DOI
Jezbera J, Jezberová J, Kasalický V, Šimek K, Hahn MW. 2013. Patterns of Limnohabitans microdiversity across a large set of freshwater habitats as revealed by reverse line blot hybridization. PLoS One 8:e58527. doi:10.1371/journal.pone.0058527. PubMed DOI PMC
Hansen B, Bjørnsen PK, Hansen PJ. 1994. The size ratio between planktonic predators and their prey. Limnol Oceanogr 39:395–403. doi:10.4319/lo.1994.39.2.0395. DOI
Fenchel T. 1986. The ecology of heterotrophic microflagellates. Adv Microb Ecol 9:57–97.
Gonzalez J, Suttle C. 1993. Grazing by marine nanoflagellates on viruses and virus-sized particles: ingestion and digestion. Mar Ecol Prog Ser 94:1–10. doi:10.3354/meps094001. DOI
Matz C, Boenigk J, Arndt H, Jürgens K. 2002. Role of bacterial phenotypic traits in selective feeding of the heterotrophic nanoflagellate Spumella sp. Aquat Microb Ecol 27:137–148. doi:10.3354/ame027137. DOI
Wirtz KW. 2011. Who is eating whom? Morphology and feeding type determine the size relation between planktonic predators and their ideal prey. Mar Ecol Prog Ser 445:1–12. doi:10.3354/meps09502. DOI
Boenigk J, Pfandl K, Stadler P, Chatzinotas A. 2005. High diversity of the ‘Spumella like’ flagellates: an investigation based on the SSU rRNA gene sequences of isolates from habitats located in six different geographic regions. Environ Microbiol 7:685–697. doi:10.1111/j.1462-2920.2005.00743.x. PubMed DOI
Boenigk J, Stadler P, Wiedlroither A, Hahn MW. 2004. Strain-specific differences in the grazing sensitivities of closely related ultramicrobacteria affiliated with the Polynucleobacter cluster. Appl Environ Microbiol 70:5787–5793. doi:10.1128/AEM.70.10.5787-5793.2004. PubMed DOI PMC
Jürgens K, Matz C. 2002. Predation as a shaping force for the phenotypic and genotypic composition of planktonic bacteria. Antonie Van Leeuwenhoek 81:413–434. doi:10.1023/A:1020505204959. PubMed DOI
Tarao M, Jezbera J, Hahn MW. 2009. Involvement of cell surface structures in size-independent grazing resistance of freshwater Actinobacteria. Appl Environ Microbiol 75:4720–4726. doi:10.1128/AEM.00251-09. PubMed DOI PMC
Montagnes DJ, Barbosa AB, Boenigk J, Davidson K, Jurgens K, Macek M, Parry JD, Roberts EC, Šimek K. 2008. Selective feeding behaviour of key free-living protists: avenues for continued study. Aquatic Microb Ecol 53:83–98. doi:10.3354/ame01229. DOI
Matz C, Kjelleberg S. 2005. Off the hook—how bacteria survive protozoan grazing. Trends Microbiol 13:302–307. doi:10.1016/j.tim.2005.05.009. PubMed DOI
Pfandl K, Posch T, Boenigk J. 2004. Unexpected effects of prey dimensions and morphologies on the size selective feeding by two bacterivorous flagellates (Ochromonas sp. and Spumella sp.). J Eukaryot Microbiol 51:626–633. doi:10.1111/j.1550-7408.2004.tb00596.x. PubMed DOI
Eccleston-Parry JD, Leadbeater B. 1995. Regeneration of phosphorus and nitrogen by four species of heterotrophic nanoflagellates feeding on three nutritional states of a single bacterial strain. Appl Environ Microbiol 61:1033–1038. PubMed PMC
CARD-FISH in the Sequencing Era: Opening a New Universe of Protistan Ecology
Cryptophyta as major bacterivores in freshwater summer plankton