Prey-Specific Growth Responses of Freshwater Flagellate Communities Induced by Morphologically Distinct Bacteria from the Genus Limnohabitans

. 2015 Aug ; 81 (15) : 4993-5002. [epub] 20150515

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid25979896

Because their large growth potential is counterbalanced with grazing by heterotrophic nanoflagellates (HNF), bacteria of the genus Limnohabitans, which are common in many freshwater habitats, represent a valuable model for examining bacterial carbon flow to the grazer food chain. We conducted experiments with natural HNF communities taken from two distinct habitats, the meso-eutrophic Římov Reservoir and the oligo-mesotrophic Lake Cep (South Bohemia). HNF communities from each habitat at distinct seasonal phases, a late April algal bloom and a late May clear water phase, were each fed 3 Limnohabitans strains of differing cell sizes. Water samples were prefiltered (5 μm) to release natural HNF communities from zooplankton control and then amended with the Limnohabitans strains L. planktonicus II-D5 (medium sized, rod shaped), Limnohabitans sp. strain T6-5 (thin, long, curved rod), and Limnohabitans sp. strain 2KL-3 (large solenoid). Using temporal sampling and prey treatment, we determined HNF growth parameters such as doubling time, growth efficiency, and length of lag phase prior starting to exponential growth. All three Limnohabitans strains supported HNF growth but in significant prey-, site-, and season-dependent fashions. For instance, addition of the moderately large T6-5 strain yielded very rapid HNF growth with a short lag phase. In contrast, the curved morphology and larger cell size of strain 2KL-3 made this prey somewhat protected against grazing by smaller HNF, resulting in slower HNF growth and longer lag phases. These trends were particularly pronounced during the late May clear-water phase, which was dominated by smaller HNF cells. This may indicate a longer "adaptation time" for the flagellate communities toward the large prey size offered.

Zobrazit více v PubMed

Azam F, Fenchel T, Field J, Gray J, Meyer-Reil L, Thingstad F. 1983. The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser 10:257–263.

Hahn MW, Höfle MG. 2001. Grazing of protozoa and its effect on populations of aquatic bacteria. FEMS Microbiol Ecol 35:113–121. doi:10.1111/j.1574-6941.2001.tb00794.x. PubMed DOI

Pace ML, McManus GB, Findlay SE. 1990. Planktonic community structure determines the fate of bacterial production in a temperate lake. Limnol Oceanogr 35:795–808.

Jürgens K. 1994. Impact of Daphnia on planktonic microbial food webs—a review. Mar Microb Food Webs 8:295–324.

Šimek K, Bobková J, Macek M, Nedoma J, Psenner R. 1995. Ciliate grazing on picoplankton in a eutrophic reservoir during the summer phytoplankton maximum: a study at the species and community level. Limnol Oceanogr 40:1077–1090.

Salcher MM. 2013. Same same but different: ecological niche partitioning of planktonic freshwater prokaryotes. J Limnol 73:74–87. doi:10.4081/jlimnol.2014.813. DOI

Zeder M, Peter S, Shabarova T, Pernthaler J. 2009. A small population of planktonic flavobacteria with disproportionally high growth during the spring phytoplankton bloom in a prealpine lake. Environ Microbiol 11:2676–2686. doi:10.1111/j.1462-2920.2009.01994.x. PubMed DOI

Salcher MM, Pernthaler J, Frater N, Posch T. 2011. Vertical and longitudinal distribution patterns of different bacterioplankton populations in a canyon-shaped, deep prealpine lake. Limnol Oceanogr 56:2027–2039. doi:10.4319/lo.2011.56.6.2027. DOI

Šimek K, Nedoma J, Znachor P, Kasalický V, Jezbera J, Horňák K, Sed'a J. 2014. A finely tuned symphony of factors modulates the microbial food web of a freshwater reservoir in spring. Limnol Oceanogr 59:1477–1492. doi:10.4319/lo.2014.59.5.1477. DOI

Neuenschwander SM, Pernthaler J, Posch T, Salcher MM. 2015. Seasonal growth potential of rare lake water bacteria suggest their disproportional contribution to carbon fluxes. Environ Microbiol 17:781–795. doi:10.1111/1462-2920.12520. PubMed DOI

Lindström ES, Kamst-Van Agterveld MP, Zwart G. 2005. Distribution of typical freshwater bacterial groups is associated with pH, temperature, and lake water retention time. Appl Environ Microbiol 71:8201–8206. doi:10.1128/AEM.71.12.8201-8206.2005. PubMed DOI PMC

Newton RJ, Jones SE, Eiler A, McMahon KD, Bertilsson S. 2011. A guide to the natural history of freshwater lake bacteria. Microbiol Mol Biol Rev 75:14–49. doi:10.1128/MMBR.00028-10. PubMed DOI PMC

Newton RJ, Jones SE, Helmus MR, McMahon KD. 2007. Phylogenetic ecology of the freshwater Actinobacteria acI lineage. Appl Environ Microbiol 73:7169–7176. doi:10.1128/AEM.00794-07. PubMed DOI PMC

Hahn MW, Lang E, Brandt U, Spröer C. 2011. Polynucleobacter acidiphobus sp. nov., a representative of an abundant group of planktonic freshwater bacteria. Int J Syst Evol Microbiol 61:788–794. doi:10.1099/ijs.0.023929-0. PubMed DOI PMC

Hahn MW, Minasyan A, Lang E, Koll U, Spröer C. 2012. Polynucleobacter difficilis sp. nov., a planktonic freshwater bacterium affiliated with subcluster B1 of the genus Polynucleobacter. Int J Syst Evol Microbiol 62:376–383. doi:10.1099/ijs.0.031393-0. PubMed DOI PMC

Šimek K, Kasalický V, Jezbera J, Jezberová J, Hejzlar J, Hahn MW. 2010. Broad habitat range of the phylogenetically narrow R-BT065 cluster, representing a core group of the betaproteobacterial genus Limnohabitans. Appl Environ Microbiol 76:631–639. doi:10.1128/AEM.02203-09. PubMed DOI PMC

Jezbera J, Jezberová J, Koll U, Horňák K, Šimek K, Hahn MW. 2012. Contrasting trends in distribution of four major planktonic betaproteobacterial groups along a pH gradient of epilimnia of 72 freshwater habitats. FEMS Microbiol Ecol 81:467–479. doi:10.1111/j.1574-6941.2012.01372.x. PubMed DOI PMC

Kasalický V, Jezbera J, Hahn MW, Šimek K. 2013. The diversity of the Limnohabitans genus, an important group of freshwater bacterioplankton, by characterization of 35 isolated strains. PLoS One 8:e58209. doi:10.1371/journal.pone.0058209. PubMed DOI PMC

Šimek K, Kasalický V, Zapomělová E, Horňák K. 2011. Alga-derived substrates select for distinct betaproteobacterial lineages and contribute to niche separation in Limnohabitans strains. Appl Environ Microbiol 77:7307–7315. doi:10.1128/AEM.00776-10. PubMed DOI PMC

Šimek K, Horňák K, Jezbera J, Nedoma J, Vrba J, Straškrábová V, Macek M, Dolan JR, Hahn MW. 2006. Maximum growth rates and possible life strategies of different bacterioplankton groups in relation to phosphorus availability in a freshwater reservoir. Environ Microbiol 8:1613–1624. doi:10.1111/j.1462-2920.2006.01053.x. PubMed DOI

Salcher MM, Hofer J, Horňák K, Jezbera J, Sonntag B, Vrba J, Šimek K, Posch T. 2007. Modulation of microbial predator-prey dynamics by phosphorus availability: growth patterns and survival strategies of bacterial phylogenetic clades. FEMS Microbiol Ecol 60:40–50. doi:10.1111/j.1574-6941.2006.00274.x. PubMed DOI

Freese HM, Schink B. 2011. Composition and stability of the microbial community inside the digestive tract of the aquatic crustacean Daphnia magna. Microb Ecol 62:882–894. doi:10.1007/s00248-011-9886-8. PubMed DOI

Eckert EM, Pernthaler J. 2014. Bacterial epibionts of Daphnia: a potential route for the transfer of dissolved organic carbon in freshwater food webs. ISME J 8:1808–1819. doi:10.1038/ismej.2014.39. PubMed DOI PMC

Pérez MT, Sommaruga R. 2006. Differential effect of algal- and soil-derived dissolved organic matter on alpine lake bacterial community composition and activity. Limnol Oceanogr 51:2527–2537. doi:10.4319/lo.2006.51.6.2527. DOI

Šimek K, Hornak K, Jezbera J, Nedoma J, Znachor P, Hejzlar J, Sed'a J. 2008. Spatio-temporal patterns of bacterioplankton production and community composition related to phytoplankton composition and protistan bacterivory in a dam reservoir. Aquat Microb Ecol 051:249. doi:10.3354/ame01193. DOI

Boenigk J, Arndt H. 2000. Particle handling during interception feeding by four species of heterotrophic nanoflagellates. J Eukaryot Microbiol 47:350–358. doi:10.1111/j.1550-7408.2000.tb00060.x. PubMed DOI

Pernthaler J. 2005. Predation on prokaryotes in the water column and its ecological implications. Nat Rev Microbiol 3:537–546. doi:10.1038/nrmicro1180. PubMed DOI

Jezbera J, Horňák K, Šimek K. 2006. Prey selectivity of bacterivorous protists in different size fractions of reservoir water amended with nutrients. Environ Microbiol 8:1330–1339. doi:10.1111/j.1462-2920.2006.01026.x. PubMed DOI

Sommer U, Adrian R, De Senerpont Domis L, Elser JJ, Gaedke U, Ibelings B, Jeppesen E, Lürling M, Molinero JC, Mooij WM. 2012. Beyond the Plankton Ecology Group (PEG) model: mechanisms driving plankton succession. Annu Rev Ecol Evol Syst 43:429–448. doi:10.1146/annurev-ecolsys-110411-160251. DOI

Boenigk J, Arndt H. 2002. Bacterivory by heterotrophic flagellates: community structure and feeding strategies. Antonie Van Leeuwenhoek 81:465–480. doi:10.1023/A:1020509305868. PubMed DOI

Šimek K, Kasalický V, Jezbera J, Horňák K, Nedoma J, Hahn MW, Bass D, Jost S, Boenigk J. 2013. Differential freshwater flagellate community response to bacterial food quality with a focus on Limnohabitans bacteria. ISME J 7:1519–1530. doi:10.1038/ismej.2013.57. PubMed DOI PMC

Kasalický V, Jezbera J, Šimek K, Hahn MW. 2010. Limnohabitans planktonicus sp. nov. and Limnohabitans parvus sp. nov., planktonic betaproteobacteria isolated from a freshwater reservoir, and emended description of the genus Limnohabitans. Int J Syst Evol Microbiol 60:2710–2714. doi:10.1099/ijs.0.018952-0. PubMed DOI PMC

Hahn MW, Stadler P, Wu QL, Pöckl M. 2004. The filtration-acclimatization method for isolation of an important fraction of the not readily cultivable bacteria. J Microbiol Methods 57:379–390. doi:10.1016/j.mimet.2004.02.004. PubMed DOI

Šimek K, Pernthaler J, Weinbauer MG, Hornák K, Dolan JR, Nedoma J, Mašı′n M, Amann R. 2001. Changes in bacterial community composition and dynamics and viral mortality rates associated with enhanced flagellate grazing in a mesoeutrophic reservoir. Appl Environ Microbiol 67:2723–2733. doi:10.1128/AEM.67.6.2723-2733.2001. PubMed DOI PMC

Murphy J, Riley J. 1962. A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36. doi:10.1016/S0003-2670(00)88444-5. DOI

Kopáček J, Hejzlar J. 1993. Semi-micro determination of total phosphorus in fresh waters with perchloric acid digestion. Int J Environ Anal Chem 53:173–183.

Lorenzen CJ. 1966. Determination of chlorophyll and phaeopigments: spectrophotometric equation. Limnol Oceanogr 12:343–346.

Pernthaler A, Pernthaler J, Amann R. 2002. Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Appl Environ Microbiol 68:3094–3101. doi:10.1128/AEM.68.6.3094-3101.2002. PubMed DOI PMC

Amann R, Fuchs BM. 2008. Single-cell identification in microbial communities by improved fluorescence in situ hybridization techniques. Nat Rev Microbiol 6:339–348. doi:10.1038/nrmicro1888. PubMed DOI

Jezbera J, Horňák K, Šimek K. 2005. Food selection by bacterivorous protists: insight from the analysis of the food vacuole content by means of fluorescence in situ hybridization. FEMS Microbiol Ecol 52:351–363. doi:10.1016/j.femsec.2004.12.001. PubMed DOI

Jezbera J, Jezberová J, Kasalický V, Šimek K, Hahn MW. 2013. Patterns of Limnohabitans microdiversity across a large set of freshwater habitats as revealed by reverse line blot hybridization. PLoS One 8:e58527. doi:10.1371/journal.pone.0058527. PubMed DOI PMC

Hansen B, Bjørnsen PK, Hansen PJ. 1994. The size ratio between planktonic predators and their prey. Limnol Oceanogr 39:395–403. doi:10.4319/lo.1994.39.2.0395. DOI

Fenchel T. 1986. The ecology of heterotrophic microflagellates. Adv Microb Ecol 9:57–97.

Gonzalez J, Suttle C. 1993. Grazing by marine nanoflagellates on viruses and virus-sized particles: ingestion and digestion. Mar Ecol Prog Ser 94:1–10. doi:10.3354/meps094001. DOI

Matz C, Boenigk J, Arndt H, Jürgens K. 2002. Role of bacterial phenotypic traits in selective feeding of the heterotrophic nanoflagellate Spumella sp. Aquat Microb Ecol 27:137–148. doi:10.3354/ame027137. DOI

Wirtz KW. 2011. Who is eating whom? Morphology and feeding type determine the size relation between planktonic predators and their ideal prey. Mar Ecol Prog Ser 445:1–12. doi:10.3354/meps09502. DOI

Boenigk J, Pfandl K, Stadler P, Chatzinotas A. 2005. High diversity of the ‘Spumella like’ flagellates: an investigation based on the SSU rRNA gene sequences of isolates from habitats located in six different geographic regions. Environ Microbiol 7:685–697. doi:10.1111/j.1462-2920.2005.00743.x. PubMed DOI

Boenigk J, Stadler P, Wiedlroither A, Hahn MW. 2004. Strain-specific differences in the grazing sensitivities of closely related ultramicrobacteria affiliated with the Polynucleobacter cluster. Appl Environ Microbiol 70:5787–5793. doi:10.1128/AEM.70.10.5787-5793.2004. PubMed DOI PMC

Jürgens K, Matz C. 2002. Predation as a shaping force for the phenotypic and genotypic composition of planktonic bacteria. Antonie Van Leeuwenhoek 81:413–434. doi:10.1023/A:1020505204959. PubMed DOI

Tarao M, Jezbera J, Hahn MW. 2009. Involvement of cell surface structures in size-independent grazing resistance of freshwater Actinobacteria. Appl Environ Microbiol 75:4720–4726. doi:10.1128/AEM.00251-09. PubMed DOI PMC

Montagnes DJ, Barbosa AB, Boenigk J, Davidson K, Jurgens K, Macek M, Parry JD, Roberts EC, Šimek K. 2008. Selective feeding behaviour of key free-living protists: avenues for continued study. Aquatic Microb Ecol 53:83–98. doi:10.3354/ame01229. DOI

Matz C, Kjelleberg S. 2005. Off the hook—how bacteria survive protozoan grazing. Trends Microbiol 13:302–307. doi:10.1016/j.tim.2005.05.009. PubMed DOI

Pfandl K, Posch T, Boenigk J. 2004. Unexpected effects of prey dimensions and morphologies on the size selective feeding by two bacterivorous flagellates (Ochromonas sp. and Spumella sp.). J Eukaryot Microbiol 51:626–633. doi:10.1111/j.1550-7408.2004.tb00596.x. PubMed DOI

Eccleston-Parry JD, Leadbeater B. 1995. Regeneration of phosphorus and nitrogen by four species of heterotrophic nanoflagellates feeding on three nutritional states of a single bacterial strain. Appl Environ Microbiol 61:1033–1038. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...