Chitosan/Gelatin/Silver Nanoparticles Composites Films for Biodegradable Food Packaging Applications

. 2021 May 21 ; 13 (11) : . [epub] 20210521

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34064040

Grantová podpora
HyHi, Reg. No. CZ.02.1.01/0.0/0.0/16_019/0000843 Ministry of Education, Youth and Sports in the Czech Republic

The food packaging industry explores economically viable, environmentally benign, and non-toxic packaging materials. Biopolymers, including chitosan (CH) and gelatin (GE), are considered a leading replacement for plastic packaging materials, with preferred packaging functionality and biodegradability. CH, GE, and different proportions of silver nanoparticles (AgNPs) are used to prepare novel packaging materials using a simple solution casting method. The functional and morphological characterization of the prepared films was carried out by using Fourier transform infrared spectroscopy (FTIR), UV-Visible spectroscopy, and scanning electron microscopy (SEM). The mechanical strength, solubility, water vapor transmission rate, swelling behavior, moisture retention capability, and biodegradability of composite films were evaluated. The addition of AgNPs to the polymer blend matrix improves the physicochemical and biological functioning of the matrix. Due to the cross-linking motion of AgNPs, it is found that the swelling degree, moisture retention capability, and water vapor transmission rate slightly decrease. The tensile strength of pure CH-GE films was 24.4 ± 0.03, and it increased to 25.8 ± 0.05 MPa upon the addition of 0.0075% of AgNPs. The real-time application of the films was tested by evaluating the shelf-life existence of carrot pieces covered with the composite films. The composite film containing AgNPs becomes effective in lowering bacterial contamination while comparing the plastic polyethylene films. In principle, the synthesized composite films possessed all the ideal characteristics of packaging material and were considered biodegradable and biocompatible food packaging material and an alternate option for petroleum-based plastics.

Zobrazit více v PubMed

Siracusa V. Food packaging permeability behaviour: A report. Int. J. Polym. Sci. 2012;2012:302029. doi: 10.1155/2012/302029. DOI

Benabid F.Z., Zouai F. Natural polymers: Cellulose, chitin, chitosan, gelatin, starch, carrageenan, xylan and dextran. Alger. J. Nat. Prod. 2016;4:348–357.

Ramakrishnan R.K., Wacławek S., Černík M., Padil V.V.T. Biomacromolecule assembly based on gum kondagogu-sodium alginate composites and their expediency in flexible packaging films. Int. J. Biol. Macromol. 2021;177:526–534. doi: 10.1016/j.ijbiomac.2021.02.156. PubMed DOI

Ramos M., Valdes A., Beltran A., Garrigós M.C. Gelatin-based films and coatings for food packaging applications. Coatings. 2016;6:41. doi: 10.3390/coatings6040041. DOI

Sancakli A., Basaran B., Arican F., Polat O. Effects of bovine gelatin viscosity on gelatin-based edible film mechanical, physical and morphological properties. SN Appl. Sci. 2021;3:8. doi: 10.1007/s42452-020-04076-0. DOI

Nuvoli L., Conte P., Fadda C., Ruiz J.A.R., García J.M., Baldino S., Mannu A. Structural, thermal, and mechanical properties of gelatin-based films integrated with tara gum. Polymer. 2021;214:123244. doi: 10.1016/j.polymer.2020.123244. DOI

Yadav S., Mehrotra G.K., Bhartiya P., Singh A., Dutta P.K. Preparation, physicochemical and biological evaluation of quercetin based chitosan-gelatin film for food packaging. Carbohydr. Polym. 2020;227:115348. doi: 10.1016/j.carbpol.2019.115348. PubMed DOI

Tongdeesoontorn W., Mauer L.J., Wongruong S., Sriburi P., Reungsang A., Rachtanapun P. Antioxidant Films from Cassava Starch/Gelatin Biocomposite Fortified with Quercetin and TBHQ and Their Applications in Food Models. Polymers. 2021;13:1117. doi: 10.3390/polym13071117. PubMed DOI PMC

Jridi M., Abdelhedi O., Salem A., Kechaou H., Nasri M., Menchari Y. Physicochemical, antioxidant and antibacterial properties of fish gelatin-based edible films enriched with orange peel pectin: Wrapping application. Food Hydrocoll. 2020;103:105688. doi: 10.1016/j.foodhyd.2020.105688. DOI

Badawy M.E.I., Rabea E.I. A biopolymer chitosan and its derivatives as promising antimicrobial agents against plant pathogens and their applications in crop protection. Int. J. Carbohydr. Chem. 2011;2011:460381. doi: 10.1155/2011/460381. DOI

Wang L., Liu F., Jiang Y., Chai Z., Li P., Cheng Y., Jing H., Leng X. Synergistic antimicrobial activities of natural essential oils with chitosan films. J. Agric. Food Chem. 2011;59:12411–12419. doi: 10.1021/jf203165k. PubMed DOI

Van den Broek L.A.M., Knoop R.J.I., Kappen F.H.J., Boeriu C.G. Chitosan films and blends for packaging material. Carbohydr. Polym. 2015;116:237–242. doi: 10.1016/j.carbpol.2014.07.039. PubMed DOI

Souza V.G.L., Pires J.R.A., Rodrigues C., Coelhoso I.M., Fernando A.L. Chitosan Composites in Packaging Industry—Current Trends and Future Challenges. Polymers. 2020;12:417. doi: 10.3390/polym12020417. PubMed DOI PMC

Kumar S., Ye F., Dobretsov S., Dutta J. Chitosan nanocomposite coatings for food, paints, and water treatment applications. Appl. Sci. 2019;9:2409. doi: 10.3390/app9122409. DOI

Yanwong S., Threepopnatkul P. Effect of peppermint and citronella essential oils on properties of fish skin gelatin edible films; Proceedings of the IOP Conference Series: Materials Science and Engineering; Beijing, China. 16–18 May 2015; Bristol, UK: IOP Publishing; 2015. p. 12064.

Sreelekha E., George B., Shyam A., Sajina N., Mathew B. A Comparative Study on the Synthesis, Characterization, and Antioxidant Activity of Green and Chemically Synthesized Silver Nanoparticles. Bionanoscience. 2021:1–8. doi: 10.1007/s12668-021-00824-7. PubMed DOI

Venkateshaiah A., Havlíček K., Timmins R.L., Röhrl M., Wacławek S., Nguyen N.H.A., Černík M., Padil V.V.T., Agarwal S. Alkenyl succinic anhydride modified tree-gum kondagogu: A bio-based material with potential for food packaging. Carbohydr. Polym. 2021;266:118126. doi: 10.1016/j.carbpol.2021.118126. PubMed DOI

Franci G., Falanga A., Galdiero S., Palomba L., Rai M., Morelli G., Galdiero M. Silver nanoparticles as potential antibacterial agents. Molecules. 2015;20:8856–8874. doi: 10.3390/molecules20058856. PubMed DOI PMC

Cakmak H., Sogut E. Reactive and Functional Polymers Volume One. Springer; Berlin, Germany: 2020. Functional Biobased Composite Polymers for Food Packaging Applications; pp. 95–136.

Jayappa M.D., Ramaiah C.K., Kumar M.A.P., Suresh D., Prabhu A., Devasya R.P., Sheikh S. Green synthesis of zinc oxide nanoparticles from the leaf, stem and in vitro grown callus of Mussaenda frondosa L.: Characterization and their applications. Appl. Nanosci. 2020;10:3057–3074. doi: 10.1007/s13204-020-01382-2. PubMed DOI PMC

Siju E.N., Rajalakshmi G.R., Kavitha V.P., Anju J. In vitro antioxidant activity of Mussaenda Frondosa. Int. J. Pharmtech Res. 2010;2:1236–1240.

Kumar S., Shukla A., Baul P.P., Mitra A., Halder D. Biodegradable hybrid nanocomposites of chitosan/gelatin and silver nanoparticles for active food packaging applications. Food Packag. Shelf Life. 2018;16:178–184. doi: 10.1016/j.fpsl.2018.03.008. DOI

Ahmed S., Ikram S. Chitosan and gelatin based biodegradable packaging films with UV-light protection. J. Photochem. Photobiol. B Biol. 2016;163:115–124. doi: 10.1016/j.jphotobiol.2016.08.023. PubMed DOI

Padil V.V.T., Wacławek S., Černík M., Varma R.S. Tree gum-based renewable materials: Sustainable applications in nanotechnology, biomedical and environmental fields. Biotech. Adv. 2018;36:1984–2016. doi: 10.1016/j.biotechadv.2018.08.008. PubMed DOI PMC

Bhimba J. Antibacterial and antifungal activity of silver nanoparticles synthesized using Hypnea muciformis. Biosci. Biotechnol. Res. Asia. 2014;11:235–238.

Lozano-Navarro J.I., Díaz-Zavala N.P., Velasco-Santos C., Melo-Banda J.A., Páramo-García U., Paraguay-Delgado F., García-Alamilla R., Martínez-Hernández A.L., Zapién-Castillo S. Chitosan-starch films with natural extracts: Physical, chemical, morphological and thermal properties. Materials. 2018;11:120. doi: 10.3390/ma11010120. PubMed DOI PMC

Silva H.D., Cerqueira M.A., Donsì F., Pinheiro A.C., Ferrari G., Vicente A.A. Development and Characterization of Lipid-Based Nanosystems: Effect of Interfacial Composition on Nanoemulsion Behavior. Food Bioprocess Technol. 2020. 13:67–87. doi: 10.1007/s11947-019-02372-1. DOI

Hassan A., Niazi M.B.K., Hussain A., Farrukh S., Ahmad T. Development of Anti-bacterial PVA/Starch Based Hydrogel Membrane for Wound Dressing. J. Polym. Environ. 2018;26:235–243. doi: 10.1007/s10924-017-0944-2. DOI

Sarwar M.S., Niazi M.B.K., Jahan Z., Ahmad T., Hussain A. Preparation and characterization of PVA/nanocellulose/Ag nanocomposite films for antimicrobial food packaging. Carbohydr. Polym. 2018;184:453–464. doi: 10.1016/j.carbpol.2017.12.068. PubMed DOI

K. S.S., Indumathi M.P., Rajarajeswari G.R. Mahua oil-based polyurethane/chitosan/nano ZnO composite films for biodegradable food packaging applications. Int. J. Biol. Macromol. 2019;124:163–174. doi: 10.1016/j.ijbiomac.2018.11.195. PubMed DOI

Chu Z., Zhao T., Li L., Fan J., Qin Y. Characterization of antimicrobial poly (lactic acid)/nano-composite films with silver and zinc oxide nanoparticles. Materials. 2017;10:659. doi: 10.3390/ma10060659. PubMed DOI PMC

Philip D. Biosynthesis of Au, Ag and Au–Ag nanoparticles using edible mushroom extract. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2009;73:374–381. doi: 10.1016/j.saa.2009.02.037. PubMed DOI

Khalil M.M.H., Ismail E.H., El-Baghdady K.Z., Mohamed D. Green synthesis of silver nanoparticles using olive leaf extract and its antibacterial activity. Arab. J. Chem. 2014;7:1131–1139. doi: 10.1016/j.arabjc.2013.04.007. DOI

Keat C.L., Aziz A., Eid A.M., Elmarzugi N.A. Biosynthesis of nanoparticles and silver nanoparticles. Bioresour. Bioprocess. 2015;2:47. doi: 10.1186/s40643-015-0076-2. DOI

Ahmad N., Sharma S., Singh V.N., Shamsi S.F., Fatma A., Mehta B.R. Biosynthesis of silver nanoparticles from Desmodium triflorum: A novel approach towards weed utilization. Biotechnol. Res. Int. 2011;2011 doi: 10.4061/2011/454090. PubMed DOI PMC

Shruthi G., Prasad K.S., Vinod T.P., Balamurugan V., Shivamallu C. Green synthesis of biologically active silver nanoparticles through a phyto-mediated approach using Areca catechu leaf extract. ChemistrySelect. 2017;2:10354–10359. doi: 10.1002/slct.201702257. DOI

Khan F.U., Chen Y., Khan N.U., Khan Z.U.H., Khan A.U., Ahmad A., Tahir K., Wang L., Khan M.R., Wan P. Antioxidant and catalytic applications of silver nanoparticles using Dimocarpus longan seed extract as a reducing and stabilizing agent. J. Photochem. Photobiol. B Biol. 2016;164:344–351. doi: 10.1016/j.jphotobiol.2016.09.042. PubMed DOI

Pourmorad F., Hosseinimehr S.J., Shahabimajd N. Antioxidant activity, phenol and flavonoid contents of some selected Iranian medicinal plants. Afr. J. Biotechnol. 2006;5:454090.

Rajeshkumar S., Malarkodi C. In vitro antibacterial activity and mechanism of silver nanoparticles against foodborne pathogens. Bioinorg. Chem. Appl. 2014:581890. doi: 10.1155/2014/581890. PubMed DOI PMC

Yun’an Qing L.C., Li R., Liu G., Zhang Y., Tang X., Wang J., Liu H., Qin Y. Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies. Int. J. Nanomed. 2018;13:3311. doi: 10.2147/IJN.S165125. PubMed DOI PMC

Panáček A., Kolář M., Večeřová R., Prucek R., Soukupova J., Kryštof V., Hamal P., Zbořil R., Kvítek L. Antifungal activity of silver nanoparticles against Candida spp. Biomaterials. 2009;30:6333–6340. doi: 10.1016/j.biomaterials.2009.07.065. PubMed DOI

Kim K.-J., Sung W.S., Suh B.K., Moon S.-K., Choi J.-S., Kim J.G., Lee D.G. Antifungal activity and mode of action of silver nano-particles on Candida albicans. Biometals. 2009;22:235–242. doi: 10.1007/s10534-008-9159-2. PubMed DOI

Paluszkiewicz C., Stodolak E., Hasik M., Blazewicz M. FT-IR study of montmorillonite–chitosan nanocomposite materials. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2011;79:784–788. doi: 10.1016/j.saa.2010.08.053. PubMed DOI

Ziani K., Oses J., Coma V., Maté J.I. Effect of the presence of glycerol and Tween 20 on the chemical and physical properties of films based on chitosan with different degree of deacetylation. LWT-Food Sci. Technol. 2008;41:2159–2165. doi: 10.1016/j.lwt.2007.11.023. DOI

Martins J.T., Cerqueira M.A., Vicente A.A. Influence of α-tocopherol on physicochemical properties of chitosan-based films. Food Hydrocoll. 2012;27:220–227. doi: 10.1016/j.foodhyd.2011.06.011. DOI

Sanuja S., Agalya A., Umapathy M.J. Synthesis and characterization of zinc oxide–neem oil–chitosan bionanocomposite for food packaging application. Int. J. Biol. Macromol. 2015;74:76–84. doi: 10.1016/j.ijbiomac.2014.11.036. PubMed DOI

Rubilar J.F., Cruz R.M.S., Silva H.D., Vicente A.A., Khmelinskii I., Vieira M.C. Physico-mechanical properties of chitosan films with carvacrol and grape seed extract. J. Food Eng. 2013;115:466–474. doi: 10.1016/j.jfoodeng.2012.07.009. DOI

Reicha F.M., Sarhan A., Abdel-Hamid M.I., El-Sherbiny I.M. Preparation of silver nanoparticles in the presence of chitosan by electrochemical method. Carbohydr. Polym. 2012;89:236–244. doi: 10.1016/j.carbpol.2012.03.002. PubMed DOI

Cano A., Cháfer M., Chiralt A., González-Martínez C. Development and characterization of active films based on starch-PVA, containing silver nanoparticles. Food Packag. Shelf Life. 2016;10:16–24. doi: 10.1016/j.fpsl.2016.07.002. DOI

Agnihotri S., Mukherji S., Mukherji S. Antimicrobial chitosan–PVA hydrogel as a nanoreactor and immobilizing matrix for silver nanoparticles. Appl. Nanosci. 2012;2:179–188. doi: 10.1007/s13204-012-0080-1. DOI

Cao N., Yang X., Fu Y. Effects of various plasticizers on mechanical and water vapor barrier properties of gelatin films. Food Hydrocoll. 2009;23:729–735. doi: 10.1016/j.foodhyd.2008.07.017. DOI

Shankar S., Rhim J.-W. Amino acid mediated synthesis of silver nanoparticles and preparation of antimicrobial agar/silver nanoparticles composite films. Carbohydr. Polym. 2015;130:353–363. doi: 10.1016/j.carbpol.2015.05.018. PubMed DOI

Saha N.R., Sarkar G., Roy I., Bhattacharyya A., Rana D., Dhanarajan G., Banerjee R., Sen R., Mishra R., Chattopadhyay D. Nanocomposite films based on cellulose acetate/polyethylene glycol/modified montmorillonite as nontoxic active packaging material. RSC Adv. 2016;6:92569–92578. doi: 10.1039/C6RA17300D. DOI

Pereda M., Ponce A.G., Marcovich N.E., Ruseckaite R.A., Martucci J.F. Chitosan-gelatin composites and bi-layer films with potential antimicrobial activity. Food Hydrocoll. 2011;25:1372–1381. doi: 10.1016/j.foodhyd.2011.01.001. DOI

Soliman H., Elsayed A., Dyaa A. Antimicrobial activity of silver nanoparticles biosynthesised by Rhodotorula sp. strain ATL72. Egypt. J. Basic Appl. Sci. 2018;5:228–233. doi: 10.1016/j.ejbas.2018.05.005. DOI

Goy R.C., Morais S.T.B., Assis O.B.G. Evaluation of the antimicrobial activity of chitosan and its quaternized derivative on E. coli and S. aureus growth. Rev. Bras. Farmacogn. 2016;26:122–127. doi: 10.1016/j.bjp.2015.09.010. DOI

Yin I.X., Zhang J., Zhao I.S., Mei M.L., Li Q., Chu C.H. The antibacterial mechanism of silver nanoparticles and its application in dentistry. Int. J. Nanomed. 2020;15:2555. doi: 10.2147/IJN.S246764. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...