Carboxymethyl starch as a reducing and capping agent in the hydrothermal synthesis of selenium nanostructures for use with three-dimensional-printed hydrogel carriers
Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic-ecollection
Document type Journal Article
PubMed
37830030
PubMed Central
PMC10565383
DOI
10.1098/rsos.230829
PII: rsos230829
Knihovny.cz E-resources
- Keywords
- carboxymethyl starch, nanomaterials, nanostructures, tailored-made polymer, three-dimensional-printed selenium nanostructures composite,
- Publication type
- Journal Article MeSH
The hydrothermal method is a cost-effective and eco-friendly route for preparing various nanomaterials. It can use a capping agent, such as a polysaccharide, to govern and define the nanoparticle morphology. Elemental selenium nanostructures (spheres and rods) were synthesized and stabilized using a tailor-made carboxymethyl starch (CMS, degree of substitution = 0.3) under hydrothermal conditions. CMS is particularly convenient because it acts simultaneously as the capping and reducing agent, as verified by several analytical techniques, while the reaction relies entirely on green solvents. Furthermore, the effect of sodium selenite concentration, reaction time and temperature on the nanoparticle size, morphology, microstructure and chemical composition was investigated to identify the ideal synthesis conditions. A pilot experiment demonstrated the feasibility of implementing the synthesized nanoparticles into vat photopolymerization three-dimensional-printed hydrogel carriers based on 2-hydroxyethyl methacrylate (HEMA). When submersed into the water, the subsequent particle release was confirmed by dynamic light scattering (DLS), promising great potential for use in bio-three-dimensional printing and other biomedical applications.
See more in PubMed
Wang F, Zhang Q, Huang K, Li J, Wang K, Zhang K, Tang X. 2020. Preparation and characterization of carboxymethyl cellulose containing quaternized chitosan for potential drug carrier. Int. J. Biol. Macromol. 154, 1392-1399. (10.1016/j.ijbiomac.2019.11.019) PubMed DOI
Arafa EG, Sabaa MW, Mohamed RR, Elzanaty AM, Abdel-Gawad OF. 2022. Preparation of biodegradable sodium alginate/carboxymethylchitosan hydrogels for the slow-release of urea fertilizer and their antimicrobial activity. React. Funct. Polym. 174, 105243. (10.1016/j.reactfunctpolym.2022.105243) DOI
Deng L, Wang B, Li W, Han Z, Chen S, Wang H. 2022. Bacterial cellulose reinforced chitosan-based hydrogel with highly efficient self-healing and enhanced antibacterial activity for wound healing. Int. J. Biol. Macromol. 217, 77-87. (10.1016/j.ijbiomac.2022.07.017) PubMed DOI
Chandramohan S, Sundar K, Muthukumaran A. 2019. Reducing agents influence the shapes of selenium nanoparticles (SeNPs) and subsequently their antibacterial and antioxidant activity. Mat. Res. Express 6, 0850i2. (10.1088/2053-1591/ab29d6) DOI
Renault F, Morin-Crini N, Gimbert F, Badot PM, Crini G. 2008. Cationized starch-based material as a new ion-exchanger adsorbent for the removal of CI Acid Blue 25 from aqueous solutions. Bioresour. Technol. 99, 7573-7586. (10.1016/j.biortech.2008.02.011) PubMed DOI
Buleon A, Colonna P, Planchot V, Ball S. 1998. Starch granules: structure and biosynthesis. Int. J. Biol. Macromol. 23, 85-112. (10.1016/S0141-8130(98)00040-3) PubMed DOI
Wang X, Huang L, Zhang C, Deng Y, Xie P, Liu L, Cheng J. 2020. Research advances in chemical modifications of starch for hydrophobicity and its applications: a review. Carbohydr. Polym. 240, 116292. (10.1016/j.carbpol.2020.116292) PubMed DOI
Ojogbo E, Ogunsona E, Mekonnen T. 2020. Chemical and physical modifications of starch for renewable polymeric materials. Mat. Today Sustain. 7, 100028. (10.1016/j.mtsust.2019.100028) DOI
Heinze T, Koschella A. 2005. Carboxymethyl ethers of cellulose and starch: a review. In Macromolecular symposia. Wiley Online Library.
Masina N, Choonara YE, Kumar P, Du Toit LC, Govender M, Indermun S, Pillay V. 2017. A review of the chemical modification techniques of starch. Carbohydr. Polym. 157, 1226-1236. (10.1016/j.carbpol.2016.09.094) PubMed DOI
Bhattacharyya D, Singhal RS, Kulkarni PR. 1995. A comparative account of conditions for synthesis of sodium carboxymethyl starch from corn and amaranth starch. Carbohydr. Polym. 27, 247-253. (10.1016/0144-8617(95)00083-6) DOI
Li SF, Mujyambere JMV, Liu M. 2011. Synthesis of carboxymethyl starch with high degree of substitution by a modified dry process. Adv. Mater. Res. 233–235, 306-310. (10.4028/www.scientific.net/AMR.233-235.306) DOI
Fadzlina ZAN, Karim AA, Teng TT. 2005. Physicochemical properties of carboxy-methylated sago (metroxylon sagu) starch. J. Food Sci. 70, C560-C567. (10.1111/j.1365-2621.2005.tb08305.x) DOI
Heinze T, Liebert T, Heinze U, Schwikal K. 2004. Starch derivatives of high degree of functionalization 9: carboxymethyl starches. Cellulose 11, 239-245. (10.1023/B:CELL.0000025386.68486.a4) DOI
Vishakha V, Abdel-Mohsen A, Jancar J. 2020. Green synthesis and the stabilization of selenium nanoparticles using carboxymethyl starch. In Proc. 12th Int. Con. on Nanomaterials: Research & Application, pp. 433-439.
Barreca D, Gasparotto A, Maccato C, Maragno C, Tondello E. 2007. ZnO nanoplatelets obtained by chemical vapor deposition, studied by XPS. Surf. Sci. Spectra 14, 19-26. (10.1116/11.20071001) DOI
Ding JX, Zapien JA, Chen WW, Lifshitz Y, Lee ST, Meng XM. 2004. Lasing in ZnS nanowires grown on anodic aluminum oxide templates. Appl. Phys. Lett. 85, 2361-2363. (10.1063/1.1791326) DOI
Vantomme AÃ, Yuan Z-Y, Du G, Su B-L. 2005. Surfactant-assisted large-scale preparation of crystalline CeO2 nanorods. Langmuir 21, 1132-1135. (10.1021/la047751p) PubMed DOI
Chaudhary S, Umar A, Mehta S. 2016. Selenium nanomaterials: an overview of recent developments in synthesis, properties and potential applications. Prog. Mater. Sci. 83, 270-329. (10.1016/j.pmatsci.2016.07.001) DOI
Zambonino MC, Quizhpe EM, Jaramillo FE, Rahman A, Santiago Vispo N, Jeffryes C, Dahoumane SA. 2021. Green synthesis of selenium and tellurium nanoparticles: current trends, biological properties and biomedical applications. Int. J. Mol. Sci. 22, 989. (10.3390/ijms22030989) PubMed DOI PMC
Zhu M, Niu G, Tang J. 2019. Elemental Se: fundamentals and its optoelectronic applications. J. Mater. Chem. C 7, 2199-2206. (10.1039/C8TC05873C) DOI
Khanna PK, Bisht N, Phalswal P. 2022. Selenium nanoparticles: a review on synthesis and biomedical applications. Mater. Adv. 3, 1415-1431. (10.1039/D1MA00639H) DOI
Zhang G, Shen X, Yang Y. 2011. Facile synthesis of monodisperse porous ZnO spheres by a soluble starch-assisted method and their photocatalytic activity. J. Phys. Chem. C 115, 7145-7152. (10.1021/jp110256s) DOI
Chen Z, Shen Y, Xie A, Zhu J, Wu Z, Huang F. 2009. l-cysteine-assisted controlled synthesis of selenium nanospheres and nanorods. Cryst. Growth Des. 9, 1327-1333. (10.1021/cg800398b) DOI
Lu Q, Gao F, Komarneni S. 2006. Cellulose-directed growth of selenium nanobelts in solution. Chem. Mater. 18, 159-163. (10.1021/cm051082z) DOI
Xie Q, Dai Z, Huang W, Zhang W, Ma D, Hu X, Qian Y. 2006. Large-scale synthesis and growth mechanism of single-crystal Se nanobelts. Cryst. Growth Des. 6, 1514-1517. (10.1021/cg050493p) DOI
Korčušková M, Sevriugina V, Ondreáš F, Svatík J, Tomal W, Vishakha V, Ortyl J, Lepcio P. 2022. Photoactivity, conversion kinetics, nanoreinforcement, post-curing, and electric/dielectric properties of functional 3D printable photopolymer resin filled with bare and alumina-doped ZnO nanoparticles. Polym. Test. 116, 107 798. (10.1016/j.polymertesting.2022.107798) DOI
Aravind Shanmugasundaram S, Razmi J, Mian MJ, Ladani L. 2020. Mechanical anisotropy and surface roughness in additively manufactured parts fabricated by stereolithography (SLA) using statistical analysis. Materials 13, 2496. (10.3390/ma13112496) PubMed DOI PMC
Slapnik J, Pulko I. 2021. Tailoring properties of photopolymers for additive manufacturing with mixture design. Prog. Addit. Manuf. 6, 83-91. (10.1007/s40964-020-00147-1) DOI
Msallem B, Sharma N, Cao S, Halbeisen FS, Zeilhofer H-F, Thieringer FM. 2020. Evaluation of the dimensional accuracy of 3D-printed anatomical mandibular models using FFF, SLA, SLS, MJ, and BJ printing technology. J. Clin. Med. 9, 817. (10.3390/jcm9030817) PubMed DOI PMC
Vidakis N, Petousis M, Velidakis E, Mountakis N, Tsikritzis D, Gkagkanatsiou A, Kanellopoulou S. 2022. Investigation of the biocidal performance of multi-functional resin/copper nanocomposites with superior mechanical response in SLA 3D printing. Biomimetics 7, 8. (10.3390/biomimetics7010008) PubMed DOI PMC
Spychaj T, Wilpiszewska K, Zdanowicz M. 2013. Medium and high substituted carboxymethyl starch: synthesis, characterization and application. Starch-Stärke 65, 22-33. (10.1002/star.201200159) DOI
Li X, Gao W-, Huang L-, Wang Y-, Huang L-, Liu C-. 2010. Preparation and physicochemical properties of carboxymethyl Fritillaria ussuriensis Maxim. starches. Carbohydr. Polym. 80, 768-773. (10.1016/j.carbpol.2009.12.025) DOI
Hao J, Lu J, Xu N, Linhardt RJ, Zhang Z. 2016. Specific oxidation pattern of soluble starch with TEMPO-NaBr-NaClO system. Carbohydr. Polym. 146, 238-244. (10.1016/j.carbpol.2016.03.040) PubMed DOI
Ju B, Yan D, Zhang S. 2012. Micelles self-assembled from thermoresponsive 2-hydroxy-3-butoxypropyl starches for drug delivery. Carbohydr. Polym. 87, 1404-1409. (10.1016/j.carbpol.2011.09.028) DOI
Chen H, Yoo J-B, Liu Y, Zhao G. 2011. Green synthesis and characterization of se nanoparticles and nanorods. Electron. Mater. Lett. 7, 333-336. (10.1007/s13391-011-0420-4) DOI
Ediyilyam S, George B, Shankar SS, Dennis TT, Wacławek S, Černík M, Padil VV. 2021. Chitosan/gelatin/silver nanoparticles composites films for biodegradable food packaging applications. Polymers 13, 1680. (10.3390/polym13111680) PubMed DOI PMC
Liu W, Li X, Wong Y-S, Zheng W, Zhang Y, Cao W, Chen T. 2012. Selenium nanoparticles as a carrier of 5-fluorouracil to achieve anticancer synergism. ACS Nano 6, 6578-6591. (10.1021/nn202452c) PubMed DOI
Rahman AU, Wei Y, Ahmad A, Khan AU, Ali R, Ullah S, Ahmad W, Yuan Q. 2020. Selenium nanorods decorated gold nanostructures: synthesis, characterization and biological applications. J. Cluster Sci. 31, 727-737. (10.1007/s10876-019-01680-y) DOI
Lu K, Zhang HY, Zhong Y, Fecht HJ. 1997. Grain size dependence of mechanical properties in nanocrystalline selenium. J. Mater. Res. 12, 923-930. (10.1557/JMR.1997.0132) DOI
Wyckoff RWG, Wyckoff RW. 1963. Crystal structures, vol. 1. New York, NY: Interscience publishers.
Zarybnicka K, Ondreas F, Lepcio P, Kalina M, Zboncak M, Jancar J. 2020. Thermodynamic parameters controlling nanoparticle spatial packing in polymer solutions. Macromolecules 53, 8704-8713. (10.1021/acs.macromol.0c00698) DOI
Saeed M, et al. 2019. Assessment of antimicrobial features of selenium nanoparticles (SeNPs) using cyclic voltammetric strategy. J. Nanosci. Nanotechnol. 19, 7363-7368. (10.1166/jnn.2019.16627) PubMed DOI
Ruiz-Fresneda MA, Eswayah AS, Romero-González M, Gardiner PHE, Solari PL, Merroun ML. 2020. Chemical and structural characterization of SeIV biotransformations by Stenotrophomonas bentonitica into Se0 nanostructures and volatiles Se species. Environ. Sci.: Nano 7, 2140-2155. (10.1039/D0EN00507J) DOI
Moulder JF 1992. Handbook of X-ray photoelectron spectroscopy: a reference book of standard spectra for identification and interpretation of XPS data. Eden Prairie, MN: Perkin-Elmer Corporation, Physical Electronics Division.
Wagner C, et al. 2003. NIST X-ray photoelectron spectroscopy database, NIST standard reference database 20, version 3.4 (Web version). Gaithersburg, MD: The National Institute of Standards and Technology (NIST), US Department of Commerce.
Briggs D, Seah MP. 1983. Practical surface analysis: by auger and X-ray photoelectron spectroscopy. Chichester, UK: John Wiley and Sons.
Yuan X, Xue S, Liao J, Peng F, Shao L, Zhang J. 2018. A robust approach to fabricate CZTSSe absorber layer for solar cells via a self-selenizations process conducted by concentrated selenium solution. Mat. Res. Express 5, 016413. (10.1088/2053-1591/aaa6df) DOI
Greczynski G, Hultman L. 2020. X-ray photoelectron spectroscopy: towards reliable binding energy referencing. Prog. Mater. Sci. 107, 100591. (10.1016/j.pmatsci.2019.100591) DOI
Ahmed F, Dwivedi S, Shaalan NM, Kumar S, Arshi N, Alshoaibi A, Husain FM. 2020. Development of selenium nanoparticle based agriculture sensor for heavy metal toxicity detection. Agriculture 10, 610. (10.3390/agriculture10120610) DOI
Gonzã¡Lez AL, Noguez C, Berã¡Nek J, Barnard AS. 2014. Size, shape, stability, and color of plasmonic silver nanoparticles. J. Phys. Chem. C 118, 9128-9136. (10.1021/jp5018168) DOI
Vishakha V, Abdel-Mohsen AM, Michalicka J, White PB, Lepcio P, Tinoco Navarro LK, Jančář J. 2023. Data from: Carboxymethyl starch as a reducing and capping agent in the hydrothermal synthesis of selenium nanostructures for use with 3D-printed hydrogel carrier. Dryad Digital Repository. (10.5061/dryad.bnzs7h4gs) PubMed DOI PMC
Vishakha V, Abdel-Mohsen AM, Michalicka J, White PB, Lepcio P, Tinoco Navarro LK, Jančář J. 2023. Carboxymethyl starch as a reducing and capping agent in the hydrothermal synthesis of selenium nanostructures for use with three-dimensional-printed hydrogel carriers. Figshare. (10.6084/m9.figshare.c.6858108) PubMed DOI PMC