Biogenic Silver Nanoparticles: What We Know and What Do We Need to Know?
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
2016/23/N/NZ9/00247
National Science Center
PubMed
34835665
PubMed Central
PMC8624974
DOI
10.3390/nano11112901
PII: nano11112901
Knihovny.cz E-zdroje
- Klíčová slova
- application, biodistribution, biosynthesis, silver nanoparticles, toxicity,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Nanobiotechnology is considered to be one of the fastest emerging fields. It is still a relatively new and exciting area of research with considerable potential for development. Among the inorganic nanomaterials, biogenically synthesized silver nanoparticles (bio-AgNPs) have been frequently used due to their unique physicochemical properties that result not only from their shape and size but also from surface coatings of natural origin. These properties determine antibacterial, antifungal, antiprotozoal, anticancer, anti-inflammatory, and many more activities of bio-AgNPs. This review provides the current state of knowledge on the methods and mechanisms of biogenic synthesis of silver nanoparticles as well as their potential applications in different fields such as medicine, food, agriculture, and industries.
Zobrazit více v PubMed
Bayda S., Adeel M., Tuccinardi T., Cordani M., Rizzolio F. The History of Nanoscience and Nanotechnology: From Chemical–Physical Applications to Nanomedicine. Molecules. 2020;25:112. doi: 10.3390/molecules25010112. PubMed DOI PMC
Wu Q., Miao W., Zhang Y., Gao H., Hui D. Mechanical properties of nanomaterials: A review. Nanotechnol. Rev. 2020;9:259–273. doi: 10.1515/ntrev-2020-0021. DOI
Bawskar M., Deshmukh S., Bansod S., Gade A., Rai M. Comparative analysis of biosynthesised and chemosynthesised silver nanoparticles with special reference to their antibacterial activity against pathogens. IET Nanobiotechnol. 2015;9:107–113. doi: 10.1049/iet-nbt.2014.0032. PubMed DOI
Paosen S., Jindapol S., Soontarach R., Voravuthikunchai S.P. Eucalyptus citriodora leaf extract-mediated biosynthesis of silver nanoparticles: Broad antimicrobial spectrum and mechanisms of action against hospital-acquired pathogens. APMIS. 2019;127:764–778. doi: 10.1111/apm.12993. PubMed DOI
Loiseau A., Asila V., Boitel-Aullen G., Lam M., Salmain M., Boujday S. Silver-based plasmonic nanoparticles for and their use in biosensing. Biosensors. 2019;9:78. doi: 10.3390/bios9020078. PubMed DOI PMC
Rai M., Bonde S., Golinska P., Trzcińska-Wencel J., Gade A., Abd-Elsalam K.A., Shende S., Gaikwad S., Ingle A.P. Fusarium as a novel fungus for the synthesis of nanoparticles: Mechanism and applications. J. Fungi. 2021;7:139. doi: 10.3390/jof7020139. PubMed DOI PMC
Ahmad S., Munir S., Zeb N., Ullah A., Khan B., Ali J., Bilal M., Omer M., Alamzeb M., Salman S.M., et al. Green nanotechnology: A review on green synthesis of silver nanoparticles—An ecofriendly approach. Int. J. Nanomed. 2019;14:5087–5107. doi: 10.2147/IJN.S200254. PubMed DOI PMC
Castillo-Henríquez L., Alfaro-Aguilar K., Ugalde-Álvarez J., Vega-Fernández L., Montes de Oca-Vásquez G., Vega-Baudrit J.R. Green synthesis of gold and silver nanoparticles from plant extracts and their possible applications as antimicrobial agents in the agricultural area. Nanomaterials. 2020;10:1763. doi: 10.3390/nano10091763. PubMed DOI PMC
Wypij M., Jędrzejewski T., Trzcińska-Wencel J., Ostrowski M., Rai M., Golińska P. Green synthesized silver nanoparticles: Antibacterial and anticancer activities, biocompatibility, and analyses of surface-attached proteins. Front. Microbiol. 2021;12:632505. doi: 10.3389/fmicb.2021.632505. PubMed DOI PMC
Rai M., Yadav A., Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 2009;27:76–83. doi: 10.1016/j.biotechadv.2008.09.002. PubMed DOI
Klaus A., Petrovic P., Vunduk J., Pavlovic V., Van Griensven L.J.L.D. The antimicrobial activities of silver nanoparticles synthesized from medicinal mushrooms. Int. J. Med. Mushrooms. 2020;22:869–883. doi: 10.1615/IntJMedMushrooms.2020035988. PubMed DOI
Kuppusamy P., Yusoff M.M., Maniam G.P., Govindan N. Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications- an updated report. Saudi Pharm. J. 2016;24:473–483. doi: 10.1016/j.jsps.2014.11.013. PubMed DOI PMC
Saravanan A., Kumar P.S., Karishma S., Vo D.N., Jeevanantham S., Yaashikaa P.R., George C.S. A review on biosynthesis of metal nanoparticles and its environmental applications. Chemosphere. 2021;264:128580. doi: 10.1016/j.chemosphere.2020.128580. PubMed DOI
Singh J., Datta T., Kim K.H., Rawat M., Samddar P., Kumar P. Green synthesis of metals and their oxide nanoparticles: Applications for environmental remediation. J. Nanobiotechnol. 2018;16:84. doi: 10.1186/s12951-018-0408-4. PubMed DOI PMC
Iravani S., Korbekandi H., Mirmohammadi S.V., Zolfaghari B. Synthesis of silver nanoparticles: Chemical, physical and biological methods. Res. Pharm. Sci. 2014;9:385–406. PubMed PMC
Bilal M., Rasheed T., Iqbal H.M.N., Hu H., Zhang X. Silver nanoparticles: Biosynthesis and antimicrobial potentialities. Int. J. Pharmacol. 2017;13:832–845. doi: 10.3923/ijp.2017.832.845. DOI
Ibrahim E., Fouad H., Zhang M., Zhang Y., Qiu W., Yan C., Li B., Mo J., Chen J. Biosynthesis of silver nanoparticles using endophytic bacteria and their role in inhibition of rice pathogenic bacteria and plant growth promotion. RSC Adv. 2019;9:29293. doi: 10.1039/C9RA04246F. PubMed DOI PMC
Mondol A.H., Yadav D., Mitra S., Mukhopadhyay K. Biosynthesis of silver nanoparticles using culture supernatant of Shewanella sp. ARY1 and their antibacterial activity. Int. J. Nanomed. 2020;15:8295–8310. doi: 10.2147/IJN.S274535. PubMed DOI PMC
Shakhatreh M.A.K., Al-Rawi O.F., Swedan S.F., Alzoubi K.H., Khabour O.F., Al-Fand M. Biosynthesis of silver nanoparticles from Citrobacter freundii as antibiofilm agents with their cytotoxic effects on human cells. Curr. Pharm. Biotechnol. 2021;22:1254–1263. doi: 10.2174/1389201021666201020162158. PubMed DOI
Singh Y., Kaushal S., Sodhi R.S. Biogenic synthesis of silver nanoparticles using cynaobacterium Leptolyngbya sp. WUC 59 cell-free extract and their effects on bacterial growth and seed germination. Nanoscale Adv. 2020;2:3972–3982. doi: 10.1039/D0NA00357C. PubMed DOI PMC
Sulaiman G.M., Hussein T.H., Saleem M.M. Biosynthesis of silver nanoparticles synthesized by Aspergillus flavus and their anti-oxidant, antimicrobial and cytotoxicity properties. Bull. Mater. Sci. 2015;38:639–644. doi: 10.1007/s12034-015-0905-0. DOI
Guilger-Casagrande M., Germano-Costa T., Pasquoto-Stigliani T., Fraceto L.F., De Lima R. Biosynthesis of silver nanoparticles employing Trichoderma harzianum with enzymatic stimulation for the control of Scleotinia sclerotiorum. Sci. Rep. 2019;9:14351. doi: 10.1038/s41598-019-50871-0. PubMed DOI PMC
Bhatnagar S., Kobori T., Ganesh D., Ogawa K., Aoyagi H. Biosynthesis of Silver Nanoparticles Mediated by Extracellular Pigment from Talaromyces purpurogenus and Their Biomedical Applications. Nanomaterials. 2019;9:1042. doi: 10.3390/nano9071042. PubMed DOI PMC
Rodriguez-Serrano C., Guzman-Moreno J., Angelez-Chavez C., Rodriguez-Gonzalez V., Ortega-Sigala J.J., Ramírez-Santoyo R.M., Vidales-Rodríguez L.E. Biosynthesis of silver nanoparticles by Fusarium scirpi and its potential as an antimicrobial agent against uropathogenic Escherchia coli biofilms. PLoS ONE. 2020;15:e0230275. doi: 10.1371/journal.pone.0230275. PubMed DOI PMC
Mohanta Y.K., Panda S.K., Bastia A.K., Mohanta T.K. Biosynthesis of silver nanoparticles from Protium serratum and investigation of their potential impacts on food safety and control. Front. Microbiol. 2017;8:626. doi: 10.3389/fmicb.2017.00626. PubMed DOI PMC
Khan M., Khan A.U., Alam M.J., Park S., Alam M. Biosynthesis of silver nanoparticles and its application against phytopathogenic bacterium and fungus. Int. J. Environ. Anal. Chem. 2019;100:1390–1401. doi: 10.1080/03067319.2019.1654465. DOI
Sila M.J., Nyambura M.I., Abongo D.A., Mwaura F.B., Iwuoha E. Biosynthesis of silver nanoparticles from Eucalyptus corymbia leaf extract at optimized conditions. Nanohybrids Compos. 2019;25:32–45. doi: 10.4028/www.scientific.net/NHC.25.32. DOI
Garibo D., Borbon-Nunez H.A., Diaz Le Leon J.N., Mendoza E.G., Estrada I., Toledano-Magaña Y., Tiznado H., Ovalle-Marroquin M., Soto-Ramos A.G., Blanco A., et al. Green synthesis of silver nanoparticles using Lysiloma acapulsensis exhibits high antimicrobial activity. Sci. Rep. 2020;10:12805. doi: 10.1038/s41598-020-69606-7. PubMed DOI PMC
Kratošová G., Holišová V., Konvičková Z., Ingle P.I., Gaikwad S., Škrlová K., Prokop A., Rai M., Plachá D. From biotechnology principles to functional and low-cost metallic bionanocatalysts. Biotechnol. Adv. 2019;37:154–176. doi: 10.1016/j.biotechadv.2018.11.012. PubMed DOI
Suriya J., Bharathi Raja S., Sekar V., Rajasekaran R. Biosynthesis of silver nanoparticles and its antibacterial activity using seaweed Urospora sp. Afr. J. Biotechnol. 2012;11:12192–12198. doi: 10.5897/AJB12.452. DOI
Benakashani F., Allafchian A.R., Jalali S.A.H. Biosnthesis of silver nanoparticles using Capparis spinosa L. extract and their antibacterial activity. Karbala Int. J. Mod. Sci. 2016;2:251–258. doi: 10.1016/j.kijoms.2016.08.004. DOI
Elamawi R.M., Al-Harbi R.E., Hendi A.A. Biosynthesis and characterization of silver nanoparticles using Trichoderma longibrachiatum and their effect on phytopathogenic fungi. Egypt. J. Biol. Pest Control. 2018;28:28. doi: 10.1186/s41938-018-0028-1. DOI
Soares M.R.P., Correa R.O., Stroppa P.F.H., Marques F.C., Andrade G.F.S., Correa C.C., Brandao M.A.F., Raposo N.R.B. Biosynthesis of silver nanoparticles using Caesalpinia ferrera (Tul.) Martius extract: Physicochemical characterization, antifungal activity and cytotoxicity. PeerJ. 2018;6:e4361. doi: 10.7717/peerj.4361. PubMed DOI PMC
Duraisamy K., Han J.H., Park W.S., Lee S.M., Wahab R., Lee Y.S. Green biosynthesis of silver nanoparticles using Torreya nucifera and their antibacterial activity. Arab. J. Chem. 2019;12:1722–1732. doi: 10.1016/j.arabjc.2014.08.016. DOI
Othman A.M., Elsayed M.A., Al-Balakocy N.G., Hassan M.M., Elshafei A.M. Biosynthesis and characterization of silver nanoparticles induced by fungal proteins and its application in different biological activities. J. Genet. Eng. Biotechnol. 2019;17:8. doi: 10.1186/s43141-019-0008-1. PubMed DOI PMC
Sedaghat S., Omidi S. Batch process biosynthesis of silver nanoparticles using Equisetum arvense leaf extract. Bioinspired Biomim. Nanobiomater. 2019;8:190–197. doi: 10.1680/jbibn.18.00045. DOI
Hemlata, Meena P.R., Singh A.P., Tejavath K.K. Biosynthesis of silver nanoparticles using Cucumis prophetarum aqueous leaf extract and their antibacterial and antiproliferative activity against cancer cell lines. ACS Omega. 2020;5:5520–5528. doi: 10.1021/acsomega.0c00155. PubMed DOI PMC
Fathy W., Elsayed K., Essawy E., Tawfik E., Zaki A., Abdelhameed M.S., Hammouda O. Biosynthesis of silver nanoparticles from Synechocystis sp. to be used as a flocculant agent with different microalgae strains. Curr. Nanomater. 2020;5:175–187. doi: 10.2174/2468187310999200605161200. DOI
Wang D., Xue B., Wang L., Zhang Y., Liu L., Zhou Y. Fungus-mediated green synthesis of nano-silver using Aspergillus sydowii and its antifungal/antiproliferative activities. Sci. Rep. 2021;11:10356. doi: 10.1038/s41598-021-89854-5. PubMed DOI PMC
Yadav A., Kon K., Kratosova G., Duran N., Ingle A.P., Rai M. Fungi as an efficient mycosystem for the synthesis of metal nanoparticles: Progress and key aspects of research. Biotechnol. Lett. 2015;37:2099–2120. doi: 10.1007/s10529-015-1901-6. PubMed DOI
Guilger-Casagrande M., de Lima R. Synthesis of silver nanoparticles mediated by Fungi: A Review. Front. Bioeng. Biotechnol. 2019;7:287. doi: 10.3389/fbioe.2019.00287. PubMed DOI PMC
Zimmerman W.B.J. In: Microfluidics: History, Theory and Applications. Zimmerman W.B.J., editor. CISM International Centre for Mechanical Sciences; Udine, Italy: Springer Science & Business Media; Berlin/Heidelberg, Germany: 2006.
Dallinger D., Kappe C.O. Why flow means green—Evaluating the merits of continuous processing in the context of sustainability. Curr. Opin. Green Sustain. Chem. 2017;7:6–12. doi: 10.1016/j.cogsc.2017.06.003. DOI
Song Y., Hormes J., Kumar C.S.S.R. Microfluidic synthesis of nanomaterials. Small. 2008;4:698–711. doi: 10.1002/smll.200701029. PubMed DOI
Xu L., Peng J., Yan M., Zhang D., Shen A.Q. Droplet synthesis of silver nanoparticles by a microfluidic device. Chem. Eng. Process. 2016;102:186–193. doi: 10.1016/j.cep.2016.01.017. DOI
Liu H., Huang J., Sun D., Lin L., Lin W., Li J., Jiang X., Wu W., Li Q. Microfluidic biosynthesis of silver nanoparticles: Effect of process parameters on size distribution. Chem. Eng. J. 2012;209:568–576. doi: 10.1016/j.cej.2012.08.049. DOI
Liu H., Huang J., Sun D., Odoom-Wubah T., Li J., Li Q. Continuous-flow biosynthesis of Au–Ag bimetallic nanoparticles in a microreactor. J. Nanopart. Res. 2014;16:2698. doi: 10.1007/s11051-014-2698-2. DOI
Hamouda R.A., Hussein M.H., Abo-elmagd R.A., Bawazir S.S. Synthesis and biological characterization of silver nanoparticles derived from the cyanobacterium Oscillatoria limnetica. Sci. Rep. 2019;9:13071. doi: 10.1038/s41598-019-49444-y. PubMed DOI PMC
Vanlalveni C., Lallianrawna S., Biswas A., Selvaraj M., Changmai B., Rokhum S.L. Green synthesis of silver nanoparticles using plant extracts and their antimicrobial activities: A review of recent literature. RSC Adv. 2021;11:2804–2837. doi: 10.1039/D0RA09941D. PubMed DOI PMC
Song J.Y., Kim B.S. Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess Biosyst. Eng. 2009;32:79–84. doi: 10.1007/s00449-008-0224-6. PubMed DOI
Ahmed S., Ahmad M., Swami B.L., Ikram S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. J. Adv. Res. 2016;7:17–28. doi: 10.1016/j.jare.2015.02.007. PubMed DOI PMC
Velusamy P., Kumar G.V., Jeyanthi V., Das J., Pachaiappan R. Bio-inspired green nanoparticles: Synthesis, mechanism, and antibacterial application. Toxicol. Res. 2016;32:95–102. doi: 10.5487/TR.2016.32.2.095. PubMed DOI PMC
Hietzschold S., Walter A., Davis C., Taylor A.A., Sepunaru L. Does nitrate reductase play a role in silver nanoparticle synthesis? Evidence for NADPH as the sole reducing agent. ACS Sustain. Chem. Eng. 2019;7:8070–8076. doi: 10.1021/acssuschemeng.9b00506. DOI
Garg D., Sarkar A., Chand P., Bansal P., Gola D., Sharma S., Khantwal S., Mehrotra S.A., Chauhan N., Bharti R.K. Synthesis of silver nanoparticles utilizing various biological systems: Mechanisms and applications: A review. Prog. Biomater. 2020;9:81–95. doi: 10.1007/s40204-020-00135-2. PubMed DOI PMC
Mikhailova E.O. Silver Nanoparticles: Mechanism of Action and Probable Bio-Application. J. Funct. Biomater. 2020;11:84. doi: 10.3390/jfb11040084. PubMed DOI PMC
Mokhtari N., Daneshpajouh S., Seyedbagheri S., Atashdehghan R., Abdi K., Sarkar S., Minaian S., Shahverdi H.R., Shahverdi A.R. Biological synthesis of very small silver nanoparticles by culture supernatant of Klebsiella pneumonia: The effects of visible-light irradiation and the liquid mixing process. Mater. Res. Bull. 2009;44:1415–1421. doi: 10.1016/j.materresbull.2008.11.021. DOI
Natarajan K., Selvaraj S., Murty V.R. Microbial production of silver nanoparticles. Dig. J. Nanomater. Biostructures. 2010;5:135–140.
Otari S., Patil R., Nadaf N., Ghosh S., Pawar S. Green biosynthesis of silver nanoparticles from an actinobacteria Rhodococcus sp. Mater. Lett. 2012;72:92–94. doi: 10.1016/j.matlet.2011.12.109. DOI
Chauhan R., Kumar A., Abraham J. A biological approach to synthesis of silver nanoparticles with Streptomyces sp. JAR1 and its antimicrobial activity. Sci. Pharm. 2013;81:607–621. doi: 10.3797/scipharm.1302-02. PubMed DOI PMC
Singh R., Wagh P., Wadhwani S., Gaidhani S., Kumbhar A., Bellare J., Chopade B.A. Synthesis, optimization, and characterization of silver nanoparticles from Acinetobacter calcoaceticus and their enhanced antibacterial activity when combined with antibiotics. Int. J. Nanomed. 2013;8:4277–4290. doi: 10.2147/IJN.S48913. PubMed DOI PMC
Rajeshkumar S., Malarkodi C. In vitro antibacterial activity and mechanism of silver nanoparticles against foodborne pathogens. Bioinorg. Chem. Appl. 2014;4:581890. doi: 10.1155/2014/581890. PubMed DOI PMC
Elbeshehy E.K., Elazzazy A.M., Aggelis G. Silver nanoparticles synthesis mediated by new isolates of Bacillus spp., nanoparticle characterization and their activity against bean yellow mosaic virus and human pathogens. Front. Microbiol. 2015;6:453. doi: 10.3389/fmicb.2015.00453. PubMed DOI PMC
Zhang H., Li Q., Lu Y., Sun D., Lin X., Deng X., He N., Zheng S. Biosorption and bioreduction of diamine silver complex by Corynebacterium. J. Chem. Technol. Biotechnol. 2005;80:285–290. doi: 10.1002/jctb.1191. DOI
Klaus T., Joerger R., Olsson E., Granqvist C.G. Silver-based crystalline nanoparticles, microbially fabricated. Proc. Natl. Acad. Sci. USA. 1999;96:13611–13614. doi: 10.1073/pnas.96.24.13611. PubMed DOI PMC
El-Baghdady K.Z., El-Shatoury E.H., Abdullah O.M., Khalil M.M.H. Biogenic production of silver nanoparticles by Enterobacter cloacae Ism26. Turk. J. Biol. 2018;42:319–328. doi: 10.3906/biy-1801-53. PubMed DOI PMC
Ghashghaei S., Emtiazi G. The methods of nanoparticle synthesis using bacteria as biological nanofactories, their mechanisms and major applications. Curr. Bionanotechnol. 2015;1:3–17. doi: 10.2174/2213529401999140310104655. DOI
Wang F., Liu B., Huang P.J., Liu J. Rationally designed nucleobase and nucleotide coordinated nanoparticles for selective DNA adsorption and detection. Anal. Chem. 2013;85:12144–12151. doi: 10.1021/ac4033627. PubMed DOI
Jeevan P., Ramya K., Edith Rena A. Extracellular biosynthesis of silver nanoparticles by culture supernatant of Pseudomonas Aeruginosa. Indian J. Biotechnol. 2012;11:72–76.
Luo K., Jung S., Park K.H., Kim Y.R. Microbial biosynthesis of silver nanoparticles in different culture media. J. Agric. Food Chem. 2018;66:957–962. doi: 10.1021/acs.jafc.7b05092. PubMed DOI
Naik R.R., Stringer S.J., Agarwal G., Jones S.E., Stone M.O. Biomimetic synthesis and patterning of silver nanoparticles. Nat. Mater. 2002;1:169–172. doi: 10.1038/nmat758. PubMed DOI
Nam H.Y., Hahn H.J., Nam K., Choi W.H., Jeong Y., Kim D.E., Park J.S. Evaluation of generations 2, 3 and 4 arginine modified PAMAM dendrimers for gene delivery. Int. J. Pharm. 2008;363:199–205. doi: 10.1016/j.ijpharm.2008.07.021. PubMed DOI
Graf P., Mantion A., Foelske A., Shkilnyy A., Masic A., Thunemann A.F., Taubert A. Peptide-coated silver nanoparticles: Synthesis, surface chemistry, and pH-triggered, reversible assembly into particle assemblies. Chemistry. 2009;15:5831–5844. doi: 10.1002/chem.200802329. PubMed DOI
Crookes-Goodson W.J., Slocik J.M., Naik R.R. Bio-directed synthesis and assembly of nanomaterials. Chem. Soc. Rev. 2008;37:2403–2412. doi: 10.1039/b702825n. PubMed DOI
Ahmad A., Mukherjee P., Senapati S., Mandal D., Khan M.I., Kumar R., Sastry M. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf. B. 2003;28:313–318. doi: 10.1016/S0927-7765(02)00174-1. DOI
Ingle A., Gade A., Pierrat S., Sonnichsen C., Rai M. Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria. Curr. Nanosci. 2008;4:141–144. doi: 10.2174/157341308784340804. DOI
Durán N., Marcato P.D., Alves O.L., DeSouza G.H.I., Esposito E. Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J. Nanobiotechnol. 2005;3:8. doi: 10.1186/1477-3155-3-8. PubMed DOI PMC
Kumar S.A., Abyaneh M.K., Gosavi S.W., Kulkarni S.K., Pasricha R., Ahmad A., Khan M.I. Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO3. Biotechnol. Lett. 2007;29:439–445. doi: 10.1007/s10529-006-9256-7. PubMed DOI
Li G., He D., Qian Y., Guan B., Gao S., Cui Y., Yokoyama K., Wang L. Fungus-mediated green synthesis of silver nanoparticles using Aspergillus terreus. Int. J. Mol. Sci. 2012;13:466–476. doi: 10.3390/ijms13010466. PubMed DOI PMC
Mukherjee P., Roy M., Mandal B.P., Dey G.K., Mukherjee P.K., Ghatak J., Tyagi A.K., Kale S.P. Green synthesis of highly stabilized nanocrystalline silver particles by a nonpathogenic and agriculturally important fungus T. asperellum. Nanotechnology. 2008;19:103–110. doi: 10.1088/0957-4484/19/7/075103. PubMed DOI
Sanghi R., Verma P. Biomimetic synthesis and characterization of protein capped silver nanoparticles. Bioresour. Technol. 2009;100:502–504. doi: 10.1016/j.biortech.2008.05.048. PubMed DOI
Vetchinkina E., Loshchinina E., Kupryashina M., Burov A., Pylaev T., Nikitina V. Green synthesis of nanoparticles with extracellular and intracellular extracts of basidiomycetes. PeerJ. 2018;6:e5237. doi: 10.7717/peerj.5237. PubMed DOI PMC
Mukherjee P., Ahmad A., Mandal D., Senapati S., Sainkar S.R., Khan M.I., Ramani R., Parischa R., Ajayakumar P.V., Alam M., et al. Bioreduction of AuCl4− ions by the fungus Verticillium sp. and surface trapping of the gold nanoparticles formed. Angew. Chem. Int. Ed. 2001;40:3585–3588. doi: 10.1002/1521-3773(20011001)40:19<3585::AID-ANIE3585>3.0.CO;2-K. PubMed DOI
Riddin T.L., Gericke M., Whiteley C.G. Analysis of the inter- and extracellular formation of platinum nanoparticles by Fusarium oxysporum f sp. lycopersici using response surface methodology. Nanotechnology. 2006;17:3482–3489. doi: 10.1088/0957-4484/17/14/021. PubMed DOI
Mittal J., Jain R., Sharma M.M. Phytofabrication of nanoparticles through plant as nanofactories. Adv. Nat. Sci. Nanosci. Nanotechnol. 2014;5:043002. doi: 10.1088/2043-6262/5/4/043002. DOI
Arshad H., Sami M.A., Sadaf S., Hassan U. Salvadora persica mediated synthesis of silver nanoparticles and their antimicrobial efficacy. Sci. Rep. 2021;11:5996. doi: 10.1038/s41598-021-85584-w. PubMed DOI PMC
Dauthal P., Mukhopadhyay M. Noble metal nanoparticles: Plant-mediated synthesis, mechanistic aspects of synthesis, and applications. Ind. Eng. Chem. Res. 2016;55:9557–9577. doi: 10.1021/acs.iecr.6b00861. DOI
Aljabali A.A.A., Akkam Y., Al Zoubi M.S., Al-Batayneh K.M., Al-Trad B., Abo Alrob O., Alkilany A.M., Benamara M., Evans D.J. Synthesis of Gold Nanoparticles Using Leaf Extract of Ziziphus zizyphus and their Antimicrobial Activity. Nanomaterials. 2018;8:174. doi: 10.3390/nano8030174. PubMed DOI PMC
Shankar S.S., Ahmad A., Sastry M. Geranium leaf assisted biosynthesis of silver nanoparticles. Biotechnol. Prog. 2003;19:1627–1631. doi: 10.1021/bp034070w. PubMed DOI
Shankar S.S., Rai A., Ahmad A., Sastry M. Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J. Colloid Interface Sci. 2004;275:496–502. doi: 10.1016/j.jcis.2004.03.003. PubMed DOI
Ahmad N., Sharma S., Alam M.K., Singh V.N., Shamsi S.F., Mehta B.R., Fatma A. Rapid synthesis of silver nanoparticles using dried medicinal plant of basil. Colloids Surf. B. 2010;81:81–86. doi: 10.1016/j.colsurfb.2010.06.029. PubMed DOI
Vanaja M., Annadurai G. Coleus aromaticus leaf extract mediated synthesis of silver nanoparticles and its bactericidal activity. Appl. Nanosci. 2012;3:217–223. doi: 10.1007/s13204-012-0121-9. DOI
Gardea-Torresdey J.L., Parsons J.G., Gomez E., Peralta-Videa J.R., Troiani H.E., Santiago P., Jose-Yacaman M. Formation and growth of Au nanoparticles inside live Alfalfa plants. Nano Lett. 2002;2:397–401. doi: 10.1021/nl015673+. DOI
Xia Y., Xia X., Peng H.C. Shape-controlled synthesis of colloidal metal nanocrystals: Thermodynamic versus kinetic products. J. Am. Chem. Soc. 2015;137:7947–7966. doi: 10.1021/jacs.5b04641. PubMed DOI
El-Rafie M.H., El-Naggar M.E., Ramadan M.A., Fouda M.M.G., Al-Dey S.S., Hebeish A. Environmental synthesis of silver nanoparticles using hydroxypropyl starch and their characterization. Carbohydr. Polym. 2011;86:630–635. doi: 10.1016/j.carbpol.2011.04.088. DOI
Roy A., Bulut O., Some S., Kumar Mandal A., Yilmaz M.D. Green synthesis of silver nanoparticles: Biomolecule-nanoparticle organizations targeting antimicrobial activity. RSC Adv. 2019;9:2673–2702. doi: 10.1039/C8RA08982E. PubMed DOI PMC
Ingle A., Rai M., Gade A., Bawaskar M. Fusarium solani: A novel biological agent for the extracellular synthesis of silver nanoparticles. J. Nanopart. Res. 2009;11:2079–2085. doi: 10.1007/s11051-008-9573-y. DOI
Kowalczyk B., Lagzi I., Grzybowski B.A. Nanoseparations: Strategies for size and/or shape-selective purification of nanoparticles. Curr. Opin. Colloid Interface Sci. 2011;16:135–148. doi: 10.1016/j.cocis.2011.01.004. DOI
Ashrafi S.J., Rastegar M.F., Ashrafi M., Yazdian F., Pourrahim R., Suresh A.K. Influence of external factors on the production and morphology of biogenic silver nanocrystallites. J. Nanosci. Nanotechnol. 2013;13:2295–2301. doi: 10.1166/jnn.2013.6791. PubMed DOI
Qidwai A., Pandey A., Kumar R., Shukla S.K., Dikshit A. Advances in biogenic nanoparticles and the mechanisms of antimicrobial effects. Indian J. Pharm. Sci. 2018;80:592–603. doi: 10.4172/pharmaceutical-sciences.1000398. DOI
Yahyaei B., Pourali P. One step conjugation of some chemotherapeutic drugs to the biologically produced gold nanoparticles and assessment of their anticancer effects. Sci. Rep. 2019;9:10242. doi: 10.1038/s41598-019-46602-0. PubMed DOI PMC
John M.S., Nagoth J.A., Ramasamy K.P., Mancini A., Giuli G., Natalello A., Ballarini P., Miceli C., Pucciarelli S. Synthesis of bioactive silver nanoparticles by a Pseudomonas strain associated with the Antarctic psychrophilic protozoon Euplotes focardii. Mar. Drugs. 2020;18:38. doi: 10.3390/md18010038. PubMed DOI PMC
Netala V.R., Kotakadi V.S., Domdi L., Gaddam S.A., Bobbu P., Venkata S.K., Ghosh S.B., Tartte V. Biogenic silver nanoparticles: Efficient and effective antifungal agents. Appl. Nanosci. 2016;6:475–484. doi: 10.1007/s13204-015-0463-1. DOI
Datkhile K.D., Durgawale P.P., Patil M.N. Biogenic silver nanoparticles are equally cytotoxic as chemically synthesized silver nanoparticles. Biomed. Pharmacol. J. 2017;10:337–344. doi: 10.13005/bpj/1114. DOI
Gurunathan S., Kalishwaralal K., Vaidyanathan R., Venkataraman D., Pandian S.R., Muniyandi J., Hariharan N., Eom S.H. Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloids Surf. B Biointerfaces. 2009;74:328–335. doi: 10.1016/j.colsurfb.2009.07.048. PubMed DOI
Schröfel A., Kratošová G., Šafařík I., Šafaříková M., Raška I., Shor L.M. Applications of biosynthesized metallic nanoparticles—A review. Acta Biomater. 2014;10:4023–4042. doi: 10.1016/j.actbio.2014.05.022. PubMed DOI
Thiruvengadam M., Rajakumar G., Chung I.M. Nanotechnology: Current uses and future applications in the food industry. 3 Biotech. 2018;8:74. doi: 10.1007/s13205-018-1104-7. PubMed DOI PMC
Xu L., Wang Y.Y., Huang J., Chen C.Y., Wang Z.X., Xie H. Silver nanoparticles: Synthesis, medical applications and biosafety. Theranostics. 2020;10:8996. doi: 10.7150/thno.45413. PubMed DOI PMC
Prathna T.C., Chandrasekaran N., Raichur A.M., Mukherjee A. Kinetic evolution studies of silver nanoparticles in a bio-based green synthesis process. Colloids Surf. A Physicochem. Eng. Asp. 2011;377:212–216. doi: 10.1016/j.colsurfa.2010.12.047. DOI
Ma R., Levard C., Marinakos S.M., Cheng Y., Liu J., Michel F.M., Lowry G.V. Size-controlled dissolution of organic-coated silver nanoparticles. Environ. Sci. Technol. 2012;46:752–759. doi: 10.1021/es201686j. PubMed DOI
Gurunathan S., Jeong J.K., Han J.W., Zhang X.F., Park J.H., Kim J.H. Multidimensional effects of biologically synthesized silver nanoparticles in Helicobacter pylori, Helicobacter felis, and human lung (L132) and lung carcinoma A549 cells. Nanoscale Res. Lett. 2015;10:35. doi: 10.1186/s11671-015-0747-0. PubMed DOI PMC
Vigneshwaran N., Ashtaputre N.M., Varadarajan P.V., Nachane R.P., Paralikar K.M., Balasubramanian R.H. Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mater. Lett. 2007;61:1413–1418. doi: 10.1016/j.matlet.2006.07.042. DOI
Fenfen L.Ü., Yixian G.A.O., Huang J., Daohua S., Qingbiao L.I. Roles of biomolecules in the biosynthesis of silver nanoparticles: Case of Gardenia jasminoides extract. Chin. J. Chem. Eng. 2014;22:706–712. doi: 10.1016/S1004-9541(14)60086-0. DOI
Haggag E.G., Elshamy A.M., Rabeh M.A., Gabr N.M., Salem M., Youssif K.A., Abdelmohsen U.R. Antiviral potential of green synthesized silver nanoparticles of Lampranthuscoc cineus and Malephora lutea. Int. J. Nanomed. 2019;14:6217. doi: 10.2147/IJN.S214171. PubMed DOI PMC
Mujaddidi N., Nisa S., Al Ayoubi S., Bibi Y., Khan S., Sabir M., Qayyum A. Pharmacological properties of biogenically synthesized silver nanoparticles using endophyte Bacillus cereus extract of Berberis lyceum against oxidative stress and pathogenic multidrug-resistant bacteria. Saudi J. Biol. Sci. 2021;28:6432–6440. doi: 10.1016/j.sjbs.2021.07.009. PubMed DOI PMC
Rai M., Golińska P. Microbial Nanotechnology. CRC Press; Boca Raton, FL, USA: Taylor and Francis Group; Boca Raton, FL, USA: 2020.
Golińska P., Wypij M., Ingle A.P., Gupta I., Dahm H., Rai M. Biogenic synthesis of metal nanoparticles from actinomycetes: Biomedical applications and cytotoxicity. Appl. Microbiol. Biotechnol. 2014;98:8083–8097. doi: 10.1007/s00253-014-5953-7. PubMed DOI
Yetisgin A.A., Cetinel S., Zuvin M., Kosar A., Kutlu O. Therapeutic Nanoparticles and Their Targeted Delivery Applications. Molecules. 2020;25:2193. doi: 10.3390/molecules25092193. PubMed DOI PMC
Lee W., Kim K., Lee D.G. A novel mechanism for the antibacterial effect of silver nanoparticles on Escherichia coli. Biometals. 2014;27:1191–1201. doi: 10.1007/s10534-014-9782-z. PubMed DOI
Fernández J.G., Fernández-Baldo M.A., Berni E., Camí G., Durán N., Raba J., Sanz M.I. Production of silver nanoparticles using yeasts and evaluation of their antifungal activity against phytopathogenic fungi. Process Biochem. 2016;51:1306–1313. doi: 10.1016/j.procbio.2016.05.021. DOI
Ebrahimi A., Jafferi H., Habibian S., Lotfalian S. Evaluation of anti biofilm and antibiotic potentiation activities of silver nanoparticles against some nosocomial pathogens. Iran. J. Pharm. Sci. 2018;14:7–14. doi: 10.22034/IJPS.2018.33684. DOI
Fanti J.R., Tomiotto-Pellissier F., Miranda-Sapla M.M., Cataneo A.H.D., Andrade C.G.T.J., Panis C., Rodrigues J.H.D.S., Wowk P.F., Kuczera D., Costa I.N., et al. Biogenic silver nanoparticles inducing Leishmania amazonensis promastigote and amastigote death in vitro. Acta Trop. 2018;178:46–54. doi: 10.1016/j.actatropica.2017.10.027. PubMed DOI
Abdel-Aziz M.M., Emam T.M., Elsherbiny E.A. Bioactivity of magnesium oxide nanoparticles synthesized from cell filtrate of endobacterium Burkholderia rinojensis against Fusarium oxysporum. Mater. Sci. Eng. C. 2020;109:110617. doi: 10.1016/j.msec.2019.110617. PubMed DOI
Wypij M., Jędrzejewski T., Ostrowski M., Trzcińska J., Rai M., Golińska P. Biogenic silver nanoparticles: Assessment of their cytotoxicity, genotoxicity and study of capping proteins. Molecules. 2020;25:3022. doi: 10.3390/molecules25133022. PubMed DOI PMC
Ajaz S., Ahmed T., Shahid M., Noman M., Shah A.A., Mehmood M.A., Li B. Bioinspired green synthesis of silver nanoparticles by using a native Bacillus sp. strain AW1-2: Characterization and antifungal activity against Colletotrichum falcatum Went. Enzyme Microb. Technol. 2021;144:109745. doi: 10.1016/j.enzmictec.2021.109745. PubMed DOI
Al-Kalifawi E.J., Al-Azzawi Y.J., Feaza M.A. Antibacterial, antivirulence and antifungal activity of silver nanoparticles synthesized using alkhal mother shae. J. Phys. Conf. Ser. 2021;1879:022054. doi: 10.1088/1742-6596/1879/2/022054. DOI
Franci G., Falanga A., Galdiero S., Palomba L., Rai M., Morelli G., Galdiero M. Silver Nanoparticles as Potential Antibacterial Agents. Molecules. 2015;20:8856–8874. doi: 10.3390/molecules20058856. PubMed DOI PMC
Gopinath P.M., Narchonai G., Dhanasekaran D. Mycosynthesis, characterization and antibacterial properties of AgNPs against multidrug resistant (MDR) bacterial pathogens of female infertility cases. Asian J. Pharm. Sci. 2015;10:138–145. doi: 10.1016/j.ajps.2014.08.007. DOI
Crisan C.M., Mocan T., Manolea M., Lasca L.I., Tăbăran F.A., Mocan L. Review on Silver Nanoparticles as a Novel Class of Antibacterial Solutions. Appl. Sci. 2021;11:1120. doi: 10.3390/app11031120. DOI
Anasane N., Golińska P., Wypij M., Rathod D., Dahm H., Rai M. Acidophilic actinobacteria synthesised silver nanoparticles showed remarkable activity against fungi-causing superficial mycoses in humans. Mycoses. 2016;59:157–166. doi: 10.1111/myc.12445. PubMed DOI
Bakhtiari-Sardari A., Mashreghi M., Eshghi H., Behnam-Rasouli F., Lashani E., Shahnavaz B. Comparative evaluation of silver nanoparticles biosynthesis by two cold-tolerant Streptomyces strains and their biological activities. Biotechnol. Lett. 2020;42:1985–1999. doi: 10.1007/s10529-020-02921-1. PubMed DOI
Gurunathan S. Rapid biological synthesis of silver nanoparticles and their enhanced antibacterial effects against Escherichia fergusonii and Streptococcus mutans. Arab. J. Chem. 2019;12:168–180. doi: 10.1016/j.arabjc.2014.11.014. DOI
Hossain A., Hong X., Ibrahim E., Li B., Sun G., Meng Y., Wang Y., An Q. Green Synthesis of Silver Nanoparticles with Culture Supernatant of a Bacterium Pseudomonas rhodesiae and Their Antibacterial Activity against Soft Rot Pathogen Dickeya dadantii. Molecules. 2019;24:2303. doi: 10.3390/molecules24122303. PubMed DOI PMC
Divya M., Kiran G., Hassan S., Selvin J. Biogenic Synthesis and Effect of Silver Nanoparticles (AgNPs) to Combat Catheter-Related Urinary Tract Infections. Biocatal. Agric. Biotechnol. 2019;18:101037. doi: 10.1016/j.bcab.2019.101037. DOI
Saravanan M., Barik S.K., MubarakAli D., Prakash P., Pugazhendhi A. Synthesis of silver nanoparticles from Bacillus brevis (NCIM 2533) and their antibacterial activity against pathogenic bacteria. Microb. Pathog. 2018;116:221–226. doi: 10.1016/j.micpath.2018.01.038. PubMed DOI
Dawoud T.M., Yassin M.A., El-Samawaty A.R.M., Elgorban A.M. Silver nanoparticles synthesized by Nigrospora oryzae showed antifungal activity. Saudi J. Biol. Sci. 2021;28:1847–1852. doi: 10.1016/j.sjbs.2020.12.036. PubMed DOI PMC
Singh T., Jyoti K., Patnaik A., Singh A., Chauhan R., Chandel S.S. Biosynthesis, characterization and antibacterial activity of silver nanoparticles using an endophytic fungal supernatant of Raphanus sativus. J. Genet. Eng. Biotechnol. 2017;15:31–39. doi: 10.1016/j.jgeb.2017.04.005. PubMed DOI PMC
Gond S.K., Mishra A., Verma S.K., Sharma V.K., Kharwar R.N. Synthesis and characterization of antimicrobial silver nanoparticles by an endophytic fungus isolated from Nyctanthes arbor-tristis. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2020;90:641–645. doi: 10.1007/s40011-019-01137-2. DOI
Azmath P., Baker S., Rakshith D., Satish S. Mycosynthesis of silver nanoparticles bearing antibacterial activity. Saudi Pharm. J. 2016;24:140–146. doi: 10.1016/j.jsps.2015.01.008. PubMed DOI PMC
Rodrigues A.G., RdC R., Selari P.J.R.G., de Araujo W.L., de Souza A.O. Anti-biofilm action of biological silver nanoparticles produced by Aspergillus tubingensis and antimicrobial activity of fabrics carrying it. Biointerface Res. Appl. Chem. 2021;11:14764–14774. doi: 10.33263/BRIAC116.1476414774. DOI
Hulikere M.M., Joshi C. Characterization, antioxidant and antimicrobial activity of silver nanoparticles synthesized using marine endophytic fungus- Cladosporium cladosporioides. Process Biochem. 2019;82:199–204. doi: 10.1016/j.procbio.2019.04.011. DOI
Khorrami S., Zarrabi A., Khaleghi M., Danaei M., Mozafari M.R. Selective cytotoxicity of green synthesized silver nanoparticles against the MCF-7 tumor cell line and their enhanced antioxidant and antimicrobial properties. Int. J. Nanomed. 2018;13:8013. doi: 10.2147/IJN.S189295. PubMed DOI PMC
He Y., Du Z., Ma S., Cheng S., Jiang S., Liu Y., Zheng X. Biosynthesis, antibacterial activity and anticancer effects against prostate cancer (PC-3) cells of silver nanoparticles using Dimocarpus Longan Lour. peel extract. Nanoscale Res. Lett. 2016;11:300. doi: 10.1186/s11671-016-1511-9. PubMed DOI PMC
Wunnoo S., Paosen S., Lethongkam S., Sukkurd R., Waen-ngoen T., Nuidate T., Voravuthikunchai S.P. Biologically rapid synthesized silver nanoparticles from aqueous Eucalyptus camaldulensis leaf extract: Effects on hyphal growth, hydrolytic enzymes, and biofilm formation in Candida albicans. Biotechnol. Bioeng. 2021;118:1578–1592. doi: 10.1002/bit.27675. PubMed DOI
Chatterjee T., Chatterjee B.K., Majumdar D., Chakrabarti P. Antibacterial effect of silver nanoparticles and the modeling of bacterial growth kinetics using a modified Gompertz model. Biochim. Biophys. Acta Gen. Subj. 2015;1850:299–306. doi: 10.1016/j.bbagen.2014.10.022. PubMed DOI
Aghajanyan A., Gabrielyan L., Schubert R., Trchounian A. Silver ion bioreduction in nanoparticles using Artemisia annua L. extract: Characterization and application as antibacterial agents. AMB Express. 2020;10:66. doi: 10.1186/s13568-020-01002-w. PubMed DOI PMC
Hambardzumyan S., Sahakyan N., Petrosyan M., Nasim M.J., Jacob C., Trchounian A. Origanum vulgare L. extract-mediated synthesis of silver nanoparticles, their characterization and antibacterial activities. AMB Express. 2020;10:162. doi: 10.1186/s13568-020-01100-9. PubMed DOI PMC
Wypij M., Świecimska M., Czarnecka J., Dahm H., Rai M., Golinska P. Antimicrobial and cytotoxicactivity of silvernanoparticlessynthesized from twohaloalkaliphilicactinobacterialstrainsalone and in combination with antibiotics. J. Appl. Microbiol. 2018;124:1411–1424. doi: 10.1111/jam.13723. PubMed DOI
Kim K.J., Sung W.S., Moon S.K., Choi J.S., Kim J.G., Lee D.G. Antifungal effect of silver nanoparticles on dermatophytes. J. Microbiol. Biotechnol. 2008;18:1482–1484. PubMed
Hassanab A.A., Mansourb M.K., Mahmoud H.H. Biosynthesis of silver nanoparticles (Ag-Nps) (a model of metals) by Candida albicans and its antifungal activity on some fungal pathogens (Trichophyton mentagrophytes and Candida albicans) N. Y. Sci. J. 2013;6:27–34.
Joshi P.A., Bonde S.R., Gaikwad S.C., Joshi P.A., Bonde S.R., Gaikwad S.C., Gade A.K., Abd-Elsalam K., Rai M.K. Comparative studies on synthesis of silver nanoparticles by Fusarium oxysporum and Macrophomina phaseolina and its efficacy against bacteria and Malassezia furfur. J. Bionanosci. 2013;7:378–385. doi: 10.1166/jbns.2013.1148. DOI
Pereira L., Dias N., Carvalho J., Fernandes S., Santos C., Lima N. Synthesis, characterization and antifungal activity of chemically and fungal-produced silver nanoparticles against Trichophyton rubrum. J. Appl. Microbiol. 2014;117:1601–1613. doi: 10.1111/jam.12652. PubMed DOI
Thanighaiarassu R.R., BalwinNambikkairaj R.D. Green synthesis of silver nanoparticles and characterization using plant leaf essential oil compound citral and their antifungal activity against human pathogenic fungi. J. Pharmacogn. Phytochem. 2018;7:902–907.
Robles-Martínez M., González J.F.C., Pérez-Vázquez F.J., Montejano-Carrizales J.M., Pérez E., Patiño-Herrera R. Antimycotic activity potentiation of Allium sativum extract and silver nanoparticles against Trichophyton rubrum. Chem. Biodivers. 2019;16:e1800525. doi: 10.1002/cbdv.201800525. PubMed DOI
Dutta T., Ghosh N.N., Das M., Adhikary R., Mandal V., Chattopadhyay A.P. Green synthesis of antibacterial and antifungal silver nanoparticles using Citrus limetta peel extract: Experimental and theoretical studies. J. Environ. Chem. Eng. 2020;8:104019. doi: 10.1016/j.jece.2020.104019. DOI
Salleh A., Naomi R., Utami N.D., Mohammad A.W., Mahmoudi E., Mustafa N., Fauzi M.B. The Potential of Silver Nanoparticles for Antiviral and Antibacterial Applications: A Mechanism of Action. Nanomaterials. 2020;10:1566. doi: 10.3390/nano10081566. PubMed DOI PMC
Xia Z.K., Ma Q.H., Li S.Y., Zhang D.Q., Cong L., Tian Y.L., Yang R.Y. The antifungal effect of silver nanoparticles on Trichosporon asahii. J. Microbiol. Immunol. Infect. 2016;49:182–188. doi: 10.1016/j.jmii.2014.04.013. PubMed DOI
Krishnaraj C., Jagan E.G., Rajasekar S., Selvakumar P., Kalaichelvan P.T., Mohan N. Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids Surf. B. 2010;76:50–56. doi: 10.1016/j.colsurfb.2009.10.008. PubMed DOI
Kim S.W., Jung J.H., Lamsal K., Kim Y.S., Min J.S., Lee Y.S. Antifungal effects of silver nanoparticles (AgNPs) against various plant pathogenic fungi. Mycobiology. 2012;40:53–58. doi: 10.5941/MYCO.2012.40.1.053. PubMed DOI PMC
Lara H.H., Ayala-Núnez N.V., Turrent L.D.C.I., Padilla C.R. Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World J. Microbiol. Biotechnol. 2010;26:615–621. doi: 10.1007/s11274-009-0211-3. DOI
El-Rab S.M.G., Halawani E.M., Alzahrani S.S. Biosynthesis of silver nano-drug using Juniperus excelsa and its synergistic antibacterial activity against multidrug-resistant bacteria for wound dressing applications. 3 Biotech. 2021;11:255. doi: 10.1007/s13205-021-02782-z. PubMed DOI PMC
Kumar S.S.D., Houreld N.N., Kroukamp E.M., Abrahamse H. Cellular imaging and bactericidal mechanism of green-synthesized silver nanoparticles against human pathogenic bacteria. J. Photochem. Photobiol. B. 2018;178:259–269. doi: 10.1016/j.jphotobiol.2017.11.001. PubMed DOI
Escárcega-González C.E., Garza-Cervantes J.A., Vazquez-Rodríguez A., Montelongo-Peralta L.Z., Treviño-Gonzalez M.T., Castro E.D.B., Morones-Ramirez J.R. In vivo antimicrobial activity of silver nanoparticles produced via a green chemistry synthesis using Acacia rigidula as a reducing and capping agent. Int. J. Nanomed. 2018;13:2349. doi: 10.2147/IJN.S160605. PubMed DOI PMC
Longhi C., Santos J.P., Morey A.T., Marcato P.D., Durán N., Pinge-Filho P., Yamauchi L.M. Combination of fluconazole with silver nanoparticles produced by Fusarium oxysporum improves antifungal effect against planktonic cells and biofilm of drug-resistant Candida albicans. Sabouraudia. 2015;54:428–432. doi: 10.1093/mmy/myv036. PubMed DOI
Galdiero S., Falanga A., Vitiello M., Cantisani M., Marra V., Galdiero M. Silver Nanoparticles as Potential Antiviral Agents. Molecules. 2011;16:8894–8918. doi: 10.3390/molecules16108894. PubMed DOI PMC
Akbarzadeh A., Kafshdooz L., Razban Z., Dastranj Tbrizi A., Rasoulpour S., Khalilov R., Kafshdooz T. An overview application of silver nanoparticles in inhibition of herpes simplex virus. Artif. Cells Nanomed. Biotechnol. 2018;46:263–267. doi: 10.1080/21691401.2017.1307208. PubMed DOI
Tortella G.R., Pieretti J.C., Rubilar O., Fernández-Baldo M., Benavides-Mendoza A., Diez M.C., Seabra A.B. Silver, copper and copper oxide nanoparticles in the fight against human viruses: Progress and perspectives. Crit. Rev. Biotechnol. 2021;7:1–19. doi: 10.1080/07388551.2021.1939260. PubMed DOI
Avilala J., Golla N. Antibacterial and antiviral properties of silver nanoparticles synthesized by marine Actinomycetes. Int. J. Pharm. Sci. Res. 2019;10:1223–1228. doi: 10.13040/IJPSR.0975-8232.10(3).1223-28. DOI
Sreekanth T.V.M., Nagajyothi P.C., Muthuraman P., Enkhtaivan G., Vattikuti S.V.P., Tettey C.O., Yoo K. Ultra-sonication-assisted silver nanoparticles using Panax ginseng root extract and their anti-cancer and antiviral activities. J. Photochem. Photobiol. B. 2018;188:6–11. doi: 10.1016/j.jphotobiol.2018.08.013. PubMed DOI
Morris D., Ansar M., Speshock J., Ivanciuc T., Qu Y., Casola A., Garofalo R.P. Antiviral and Immunomodulatory Activity of Silver Nanoparticles in Experimental RSV Infection. Viruses. 2019;11:732. doi: 10.3390/v11080732. PubMed DOI PMC
Yang X.X., Li C.M., Huang C.Z. Curcumin modified silver nanoparticles for highly efficient inhibition of respiratory syncytial virus infection. Nanoscale. 2016;8:3040–3048. doi: 10.1039/C5NR07918G. PubMed DOI
Rai M., Bonde S., Yadav A., Plekhanova Y., Reshetilov A., Gupta I., Golińska P., Pandit R., Ingle A.P. Nanotechnology-based promising strategies for the management of COVID-19: Current development and constraints. Expert Rev. Anti Infect. Ther. 2020;8:1–10. doi: 10.1080/14787210.2021.1836961. PubMed DOI
Machado L.F., Sanfelice R.A., Bosqui L.R., Assolini J.P., Scandorieiro S., Navarro I.T., DepieriCataneo A.H., Wowk P.F., Nakazato G., Bordignon J., et al. Biogenic silver nanoparticles reduce adherence, infection, and proliferation of toxoplasma gondii RH strain in HeLa cells without inflammatory mediators induction. Exp. Parasitol. 2020;211:107853. doi: 10.1016/j.exppara.2020.107853. PubMed DOI
Ratan Z.A., Haidere M.F., Nurunnabi M., Shahriar S.M., Ahammad A.J.S., Shim Y.Y., Reaney M.J.T., Cho J.Y. Green Chemistry Synthesis of Silver Nanoparticles and Their Potential Anticancer Effects. Cancers. 2020;12:855. doi: 10.3390/cancers12040855. PubMed DOI PMC
Mishra A., Mehdi S.J., Irshad M., Ali A., Sardar M., Moshahid M., Rizvi A. Effect of biologically synthesized silver nanoparticles on human cancer cells. Sci. Adv. Mater. 2012;4:1200–1206. doi: 10.1166/sam.2012.1414. DOI
Gurunathan S., Park J.H., Han J.W., Kim J.H. Comparative assessment of the apoptotic potential of silver nanoparticles synthesized by Bacillus tequilensis and Calocybe indica in MDA-MB-231 human breast cancer cells: Targeting p53 for anticancer therapy. Int. J. Nanomed. 2015;10:4203. doi: 10.2147/IJN.S83953. PubMed DOI PMC
Khanra K., Panja S., Choudhuri I., Chakraborty A., Bhattacharyya N. Evaluation of antibacterial activity and cytotoxicity of green synthesized silver nanoparticles using Scopariadulcis. Nano Biomed. Eng. 2015;7:128–133. doi: 10.5101/nbe.v7i3.p128-133. DOI
Inbakandan D., Kumar C., Bavanilatha M., Ravindra D.N., Kirubagaran R., Khan S.A. Ultrasonic-assisted green synthesis of flower like silver nanocolloids using marine sponge extract and its effect on oral biofilm bacteria and oral cancer cell lines. Microb. Pathog. 2016;99:135–141. doi: 10.1016/j.micpath.2016.08.018. PubMed DOI
Sathishkumar P., Preethi J., Vijayan R., Yusoff A.R.M., Ameen F., Suresh S., Balagurunathan R., Palvannan T. Anti-acne, anti-dandruff and anti-breast cancer efficacy of green synthesised silver nanoparticles using Coriandrum sativum leaf extract. J. Photochem. Photobiol. B Biol. 2016;163:69–76. doi: 10.1016/j.jphotobiol.2016.08.005. PubMed DOI
Ovais M., Khalil T.A., Raza A., Khan M.A., Ahmad I., Islam N.U., Saravanan M., Ubaid M.F., Ali M., Shinwari Z.K. Green synthesis of silver nanoparticles via plant extracts: Beginning a new era in cancer theranostics. Nanomedicine. 2016;11:3157–3177. doi: 10.2217/nnm-2016-0279. PubMed DOI
Mousavi B., Tafvizi F., ZakerBostanabad S. Green synthesis of silver nanoparticles using Artemisia turcomanica leaf extract and the study of anti-cancer effect and apoptosis induction on gastric cancer cell line (AGS) Artif. Cells Nanomed. Biotechnol. 2018;46:499–510. doi: 10.1080/21691401.2018.1430697. PubMed DOI
Mukherjee S., Chowdhury D., Kotcherlakota R., Patra S.B.V., Bhadra M.P., Sreedhar B., Parta C.R. Potential theranostics application of bio-synthesized silver nanoparticles (4-in-1 system) Theranostics. 2014;4:316–335. doi: 10.7150/thno.7819. PubMed DOI PMC
Gurunathan S., Han J.W., Eppakayala V., Jeyaraj M., Kim J.-H. Cytotoxicity of biologically synthesized silver nanoparticles in MDA-MB-231 human breast cancer cells. Biomed. Res. Int. 2013;2013:535796. doi: 10.1155/2013/535796. PubMed DOI PMC
Gurunathan S., Raman J., Malek S.N.A., John P.A., Vikineswary S. Green synthesis of silver nanoparticles using Ganoderma neo-japonicum Imazeki: A potential cytotoxic agent against breast cancer cells. Int. J. Nanomed. 2013;8:4399–4413. doi: 10.2147/IJN.S51881. PubMed DOI PMC
Gurunathan S., Lee K.J., Kalishwaralal K., Sheikpranbabu S., Vaidyanathan R., Eom S.H. Antiangiogenic properties of silver nanoparticles. Biomaterials. 2009;30:6341–6350. doi: 10.1016/j.biomaterials.2009.08.008. PubMed DOI
Baharara J., Namvar F., Mousavi M., Ramezani T., Mohamad R. Anti-Angiogenesis Effect of Biogenic Silver Nanoparticles Synthesized Using Saliva officinalis on Chick Chorioalantoic Membrane (CAM) Molecules. 2014;19:13498–13508. doi: 10.3390/molecules190913498. PubMed DOI PMC
Jeyaraj M., Sathishkumar G., Sivanandhan G., MubarakAli D., Rajesh M., Arun R. Ganapathi; A. Biogenic silver nanoparticles for cancer treatment: An experimental report. Colloids Surf. B. 2013;106:86–92. doi: 10.1016/j.colsurfb.2013.01.027. PubMed DOI
Salehi S., Shandiz S.A.S., Ghanbar F., Darvish M.R., Ardestani M.S., Mirzaie A., Jafari M. Phytosynthesis of silver nanoparticles using Artemisia marschalliana Sprengel aerial part extract and assessment of their antioxidant, anticancer, and antibacterial properties. Int. J. Nanomed. 2016;11:1835. doi: 10.2147/IJN.S99882. PubMed DOI PMC
Patra S., Mukherjee S., Barui A.K., Ganguly A., Sreedhar B., Patra C.R. Green synthesis, characterization of gold and silver nanoparticles and their potential application for cancer therapeutics. Mater. Sci. Eng. C. 2015;53:298–309. doi: 10.1016/j.msec.2015.04.048. PubMed DOI
Kumar V., Singh S., Srivastava B., Bhadouria R., Singh R. Green synthesis of silver nanoparticles using leaf extract of Holoptelea integrifolia and preliminary investigation of its antioxidant, antiinflammatory, antidiabetic and antibacterial activities. J. Environ. Chem. Eng. 2019;7:103094. doi: 10.1016/j.jece.2019.103094. DOI
Ibrahim S., Zahoor Ahmad Z., Manzoor M.Z., Muhammad Mujahid M., Faheem Z., Adnan A. Optimization for biogenic microbial synthesis of silver nanoparticles through response surface methodology, characterization, their antimicrobial, antioxidant, and catalytic potential. Sci. Rep. 2021;11:770. doi: 10.1038/s41598-020-80805-0. PubMed DOI PMC
Savary S., Willocquet L., Pethybridge S.J., Esker P., McRoberts N., Nelson A. The global burden of pathogens and pests on major food crops. Nat. Ecol. Evol. 2019;3:430–439. doi: 10.1038/s41559-018-0793-y. PubMed DOI
Arya A., Arya C., Misra R. Mechanism of action in arbuscular mycorrhizal symbionts to control fungal diseases. In: Arya A., Perello A.E., editors. Management of Fungal Plant Pathogens. CABI; Wallingford, UK: 2010. pp. 171–182.
Medina-Pérez G., Fernández-Luqueño F., Campos-Montiel R.G., Sánchez-López K.B., Afanador-Barajas L.N., Prince L. Nano-Biopesticides Today and Future Perspectives. Academic Press; Cambridge, MA, USA: 2019. Nanotechnology in crop protection: Status and future trends; pp. 17–45. DOI
Jamdagni P., Khatri P., Rana J.S. Biogenic synthesis of silver nanoparticles from leaf extract of Elettaria cardamomum and their antifungal activity against phytopathogens. Adv. Mater. Proc. 2018;3:129–135. doi: 10.5185/amp.2018/977. DOI
Elamawi R.M., Al-Harbi R.E. Effect of biosynthesized silver nanoparticles on Fusarium oxysporum fungus the cause of seed rot disease of faba bean, tomato and barley. J. Plant Prot. Pathol. 2014;5:225–237. doi: 10.21608/jppp.2014.87901. DOI
Win T.T., Khan S., Fu P. Fungus-(Alternaria sp.) mediated silver nanoparticles synthesis, characterization, and screening of antifungal activity against some phytopathogens. J. Nanotechnol. 2020;2020:8828878. doi: 10.1155/2020/8828878. DOI
Mishra S., Singh B.R., Singh A., Keswani C., Naqvi A.H., Singh H.B. Biofabricated silver nanoparticles act as a strong fungicide against Bipolarissorokiniana causing spot blotch disease in wheat. PLoS ONE. 2014;9:e97881. doi: 10.1371/journal.pone.0097881. PubMed DOI PMC
Krishnaraj C., Ramachandran R., Mohan K., Kalaichelvan P.T. Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi. Spectrochim. Acta Mol. Biomol. Spectrosc. 2012;93:95–99. doi: 10.1016/j.saa.2012.03.002. PubMed DOI
Heflish A.A., Hanfy A.E., Ansari M.J., Dessoky E.S., Attia A.O., Elshaer M.M., Behiry S.I. Green biosynthesized silver nanoparticles using Acalypha wilkesiana extract control root-knot nematode. J. King Saud Univ. Sci. 2021;33:101516. doi: 10.1016/j.jksus.2021.101516. DOI
Al-Otibi F., Perveen K., Al-Saif N.A., Alharbi R.I., Bokhari N.A., Albasher G., Al-Mosa M.A. Biosynthesis of silver nanoparticles using Malva parviflora and their antifungal activity. Saudi J. Biol. Sci. 2021 28:2229–2235. doi: 10.1016/j.sjbs.2021.01.012. PubMed DOI PMC
Sharma P., Bhatt D., Zaidi M.G.H., Saradhi P.P., Khanna P.K., Arora S. Silver nanoparticle-mediated enhancement in growth and antioxidant status of Brassica juncea. Appl. Biochem. Biotechnol. 2012;167:2225–2233. doi: 10.1007/s12010-012-9759-8. PubMed DOI
Mehmood A., Murtaza G. Application of SNPs to improve yield of Pisum sativum L. (pea) IET Nanobiotechnol. 2017;11:390–394. doi: 10.1049/iet-nbt.2016.0041. PubMed DOI PMC
Batool S.U., Javed B., Sohail, Zehra S.S., Mashwani Z.-U.-R., Raja N.I., Khan T., ALHaithloul H.A.S., Alghanem S.M., Al-Mushhin A.A.M., et al. Exogenous Applications of Bio-fabricated Silver Nanoparticles to Improve Biochemical, Antioxidant, Fatty Acid and Secondary Metabolite Contents of Sunflower. Nanomaterials. 2021;11:1750. doi: 10.3390/nano11071750. PubMed DOI PMC
Haji Basheerudeen M.A., Mushtaq S.A., Soundhararajan R., Nachimuthu S.K., Srinivasan H. Marine endophytic fungi mediated Silver nanoparticles and their application in plant growth promotion in Vigna radiata L. Int. J. Nano Dimens. 2021;12:1–10.
Zhang H., Chen S., Jia X., Huang Y., Ji R., Zhao L. Comparation of the phytotoxicity between chemically and green synthesized silver nanoparticles. Sci. Total Environ. 2021;752:142264. doi: 10.1016/j.scitotenv.2020.142264. PubMed DOI
Yeleliere E., Cobbina S.J., Abubakari Z.I. Review of microbial food contamination and food hygiene in selected capital cities of Ghana. Cogent. Food Agric. 2017;3:1395102. doi: 10.1080/23311932.2017.1395102. DOI
Ravindran R.E., Subha V., Ilangovan R. Silver nanoparticles blended PEG/PVA nanocomposites synthesis and characterization for food packaging. Arab. J. Chem. 2020;13:6056–6060. doi: 10.1016/j.arabjc.2020.05.005. DOI
Kowsalya E., MosaChristas K., Balashanmugam P., Manivasagan V., Devasena T., Jaquline C.R.I. Sustainable use of biowaste for synthesis of silver nanoparticles and its incorporation into gelatin-based nanocomposite films for antimicrobial food packaging applications. J. Food Process Eng. 2021;44:e13641. doi: 10.1111/jfpe.13641. DOI
Ediyilyam S., George B., Shankar S.S., Dennis T.T., Wacławek S., Černík M., Padil V.V.T. Chitosan/Gelatin/Silver Nanoparticles Composites Films for Biodegradable Food Packaging Applications. Polymers. 2021;13:1680. doi: 10.3390/polym13111680. PubMed DOI PMC
Bhople S., Gaikwad S., Deshmukh S., Bonde S., Gade A., Sen S., Brzezinska A., Dahm H., Rai M. Myxobacteria-mediated synthesis of silver nanoparticles and their impregnation in wrapping paper used for enhancing shelf life of apples. IET Nanobiotechnol. 2016;10:389–394. doi: 10.1049/iet-nbt.2015.0111. PubMed DOI PMC
Shastri J.P., Rupani M.G., Jain R.L. Antimicrobial activity of nanosilver-coated socks fabrics against foot pathogens. J. Text. Inst. 2012;103:1234–1243. doi: 10.1080/00405000.2012.675680. DOI
Hasan K.M.F., Pervez M.N., Talukder M.E., Sultana M.Z., Mahmud S., Meraz M.M., Bansal V., Genyang C. A Novel Coloration of Polyester Fabric through Green Silver Nanoparticles (G-AgNPs@PET) Nanomaterials. 2019;9:569. doi: 10.3390/nano9040569. PubMed DOI PMC
Ravindra S., Mohan Y.M., Reddy N.N., Raju K.M. Fabrication of antibacterial cotton fibres loaded with silver nanoparticles via “Green Approach”. Colloids Surf. A Physicochem. Eng. 2010 367:31–40. doi: 10.1016/j.colsurfa.2010.06.013. DOI
Montes-Hernandez G., Di Girolamo M., Sarret G., Bureau S., Fernandez-Martinez A., Lelong C., EymardVernain E. In Situ Formation of Silver Nanoparticles (Ag-NPs) onto Textile Fibers. ACS Omega. 2021;6:1316–1327. doi: 10.1021/acsomega.0c04814. PubMed DOI PMC
Shateri-Khalilabad M., Yazdanshenas M.E., Etemadifar A. Fabricating multifunctional silver nanoparticles-coated cotton fabric. Arab. J. Chem. 2017;10:S2355–S2362. doi: 10.1016/j.arabjc.2013.08.013. DOI
Shabbir M., Mohammad F. Multifunctional AgNPs@ Wool: Colored, UV-protective and antioxidant functional textiles. Appl. Nanosci. 2018;8:545–555. doi: 10.1007/s13204-018-0668-1. DOI
Vankar P.S., Shukla D. Biosynthesis of silver nanoparticles using lemon leaves extract and its application for antimicrobial finish on fabric. Appl. Nanosci. 2012;2:163–168. doi: 10.1007/s13204-011-0051-y. DOI
Rehan M., Elshemy N.S., Haggag K., Montaser A.S., Ibrahim G.E. Phytochemicals and volatile compounds of peanut red skin extract: Simultaneous coloration and in situ synthesis of silver nanoparticles for multifunctional viscose fibers. Cellulose. 2020;27:9893–9912. doi: 10.1007/s10570-020-03452-8. DOI
Čuk N., Šala M., Gorjanc M. Development of antibacterial and UV protective cotton fabrics using plant food waste and alien invasive plant extracts as reducing agents for the in-situ synthesis of silver nanoparticles. Cellulose. 2021;28:3215–3233. doi: 10.1007/s10570-021-03715-y. DOI
Arya G., Kumari R.M., Sharma N., Gupta N., Kumar A., Chatterjee S., Nimesh S. Catalytic, antibacterial and antibiofilm efficacy of biosynthesised silver nanoparticles using Prosopis juliflora leaf extract along with their wound healing potential. J. Photochem. Photobiol. B Biol. 2019;190:50–58. doi: 10.1016/j.jphotobiol.2018.11.005. PubMed DOI
David L., Moldovan B. Green Synthesis of Biogenic Silver Nanoparticles for Efficient Catalytic Removal of Harmful Organic Dyes. Nanomaterials. 2020;10:202. doi: 10.3390/nano10020202. PubMed DOI PMC
Saha P., Mahiuddin M., Nazmul Islam A.B.M., Ochiai B. Biogenic synthesis and catalyticefficacy of silver nanoparticles based on peel extracts of Citrusma croptera fruit. ACS Omega. 2021;6:18260–18268. doi: 10.1021/acsomega.1c02149. PubMed DOI PMC
Wani I.A. Recent advances in biogenic silver nanoparticles and nano composite based plasmonic-colorimetric and electrochemical sensors. ECS J. Solid State Sci. Technol. 2021;10:047003. doi: 10.1149/2162-8777/abf2df. DOI
Hoyos L.E.S.D., Sánchez-Mendieta V., Vilchis-Nestor A.R., Camacho-López M.A. Biogenic silver nanoparticles as sensors of Cu2+ and Pb2+ in aqueous solutions. Univ. J. Mater. Sci. 2017;5:29–37. doi: 10.13189/ujms.2017.050201. DOI
Al-Thabaiti S.A., Khan Z. Biogenic synthesis of silver nanoparticles, sensing and photo catalytic activities for bromothymol blue. J. Photochem. Photobiol. 2020;3–4:100010. doi: 10.1016/j.jpap.2020.100010. DOI
Hussain M., Nafady A., Sirajuddin, Avcı A., Pehlivan E., Nisar J., Sherazi S.T.H., Balouch A., Shah M.R., Almaghrabi O.A., et al. Biogenic silver nanoparticles for trace colorimetric sensing of enzyme disrupter fungicide vinclozolin. Nanomaterials. 2019;9:1604. doi: 10.3390/nano9111604. PubMed DOI PMC
Tagad C.K., Dugasani S.R., Aiyer R., Park S., Kulkarni A., Sabharwal S. Green synthesis of silver nanoparticles and their application for the development of optical fiber based hydrogen peroxide sensor. Sens. Actuators B Chem. 2013;183:144–149. doi: 10.1016/j.snb.2013.03.106. DOI
Khan M.Z.H., Tarek F.K., Nuzat M., Momin M.A., Hasan M.R. Rapid biological synthesis of silver nanoparticles from Ocimum sanctum and their characterization. J. Nanosci. 2017;2017:1693416. doi: 10.1155/2017/1693416. DOI
Ahmed S., Saifullah, Ahmad M., Swami B.L., Ikram S. Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. J. Radiat. Res. Appl. Sci. 2016;9:1–7. doi: 10.1016/j.jrras.2015.06.006. DOI
Akter M., Sikder T., Rahman M., Ullah A.K.M.A., Hossain K.F.B., Banik S., Hosokawa T., Saito T., Kurasaki M. A systematic review on silver nanoparticles-induced cytotoxicity: Physicochemical properties and perspectives. J. Adv. Res. 2018;9:1–16. doi: 10.1016/j.jare.2017.10.008. PubMed DOI PMC
Ferdous Z., Nemmar A. Health Impact of Silver Nanoparticles: A Review of the Biodistribution and Toxicity Following Various Routes of Exposure. Int. J. Mol. Sci. 2020;21:2375. doi: 10.3390/ijms21072375. PubMed DOI PMC
Dong L., Lai Y., Zhou H., Yan B., Liu J. The biodistribution and transformation of nanoparticulate and ionic silver in rat organs in vivo. NanoImpact. 2020;20:100265. doi: 10.1016/j.impact.2020.100265. DOI
Keat C.L., Aziz A., Eid A.M., Elmarzugi N.A. Biosynthesis of nanoparticles and silver nanoparticles. Bioresour. Bioprocess. 2015;2:47. doi: 10.1186/s40643-015-0076-2. DOI
Sung J.H., Ji J.H., Yoon J.U., Kim D.S., Song M.Y., Jeong J., Han B.S., Han J.H., Chung Y.H., Kim J. Lung function changes in Sprague-Dawley rats after prolonged inhalation exposure to silver nanoparticles. Inhal. Toxicol. 2008;20:567–574. doi: 10.1080/08958370701874671. PubMed DOI
Yang L., Kuang H., Zhang W., Aguilar Z.P., Wei H., Xu H. Comparisons of the biodistribution and toxicological examinations after repeated intravenous administration of silver and gold nanoparticles in mice. Sci. Rep. 2017;7:3303. doi: 10.1038/s41598-017-03015-1. PubMed DOI PMC
Dziendzikowska K., Gromadzka-Ostrowska J., Lankoff A., Oczkowski M., Krawczyńska A., Chwastowska J., Sadowska-Bratek M., Chajduk E., Wojewódzka M., Dušinská M., et al. Time-dependent biodistribution and excretion of silver nanoparticles in male Wistar rats. J. Appl. Toxicol. 2012;32:920–928. doi: 10.1002/jat.2758. PubMed DOI
Zande V.M., Vandebriel R.J., van Doren E., Kramer E., Herrera Rivera Z., Serrano-Rojero C.S., Gremmer E.R., Mast J., Peters R.J.B., Hollman P.C.G., et al. Distribution, Elimination, and Toxicity of Silver Nanoparticles and Silver Ions in Rats after 28-Day Oral Exposure. ACS Nano. 2012;6:7427–7442. doi: 10.1021/nn302649p. PubMed DOI
Panda K.K., Achary V.M.M., Krishnaveni R., Padhi B.K., Sarangi S.N., Sahu S.N., Panda B.B. In vitro biosynthesis and genotoxicity bioassay of silver nanoparticles using plants. Toxicol. In Vitro. 2011;25:1097–1105. doi: 10.1016/j.tiv.2011.03.008. PubMed DOI
Pannerselvam B., Thiyagarajan D., Pazhani A., Thangavelu K.P., Kim H.J., Rangarajulu S.K. Copperpod Plant Synthesized AgNPs Enhance Cytotoxic and Apoptotic Effect in Cancer Cell Lines. Processes. 2021;9:888. doi: 10.3390/pr9050888. DOI
Ashajyothia C., Chandrakanth R.K. A pilot toxicology study of biogenic silver nanoparticles: In vivo by intraperitoneal and intravenous infusion routes in rats. J. Exp. Nanosci. 2019;14:89–106. doi: 10.1080/17458080.2018.1502479. DOI
Lima R., Seabra A.B., Durán N. Silver nanoparticles: A brief review of cytotoxicity and genotoxicity of chemically and biogenically synthesized nanoparticles. J. Appl. Toxicol. 2012;32:867–879. doi: 10.1002/jat.2780. PubMed DOI
Arunachalam K.D., Arun L.B., Annamalai S.K., Arunachalam A.M. Potential anticancer properties of bioactive compounds of Gymnema sylvestre and its biofunctionalized silver nanoparticle. Int. J. Nanomed. 2015;10:31–41. doi: 10.2147/IJN.S71182. PubMed DOI PMC
El-Naggar N.E.-A., Hussein M.H., El-Sawah A.A. Bio-fabrication of silver nanoparticles by phycocyanin, characterization, in vitro anticancer activity against breast cancer cell line and in vivo cytotoxicity. Sci. Rep. 2017;7:10844–10864. doi: 10.1038/s41598-017-11121-3. PubMed DOI PMC
Ansar S., Tabassum H., Aladwan N.S.M., Ali M.N., Almaarik B., AlMahrouqi S., Abudawood M., Banu N., Alsubki R. Ecofriendly silver nanoparticles synthesis by Brassica oleracea and its antibacterial, anticancer and antioxidant properties. Sci. Rep. 2020;10:18564. doi: 10.1038/s41598-020-74371-8. PubMed DOI PMC
Hamida R.S., Abdelmeguid N.E., Ali M.A., Bin-Meferij M.M., Khalil M.I. Synthesis of silver nanoparticles using a novel cyanobacteria Desertifilum sp. extract: Their antibacterial and cytotoxicity effects. Int. J. Nanomed. 2020;15:49–63. doi: 10.2147/IJN.S238575. PubMed DOI PMC
Recordati C., De Maglie M., Bianchessi S., Argentiere S., Cella C., Mattiello S., Cubadda F., Aureli F., D’Amato M., Raggi A. Tissue distribution and acute toxicity of silver after single intravenous administration in mice: Nano-specific and size-dependent effects. Part. Fibre Toxicol. 2016;13:12. doi: 10.1186/s12989-016-0124-x. PubMed DOI PMC
Netala V.R., Bethu M.S., Pushpalatha B. Biogenesis of silver nanoparticles using endophytic fungus Pestalotiopsis microspora and evaluation of their antioxidant and anticancer activities. Int. J. Nanomed. 2016;11:5683. doi: 10.2147/IJN.S112857. PubMed DOI PMC
Szerencsés B., Igaz N., Tóbiás A., Prucsi Z., Rónavári A., Bélteky P., Madarász D., Papp C., Makra I., Vágvölgyi C., et al. Size-dependent activity of silver nanoparticles on the morphological switch and biofilm formation of opportunistic pathogenic yeasts. BMC Microbiol. 2020;20:176. doi: 10.1186/s12866-020-01858-9. PubMed DOI PMC
Gopinath V.S., Arunkumar J., Marsili E., MubarakAlie F., Velusamya P., Vadivelu J. Biogenic synthesis, characterization of antibacterial silver nanoparticles and its cell cytotoxicity. Arabian J. Chem. 2017;10:1107–1117. doi: 10.1016/j.arabjc.2015.11.011. DOI
Ballotin D., Fulaz S., Souza M.L., Corio P., Rodrigues A.G., Souza A.O. Elucidating protein involvement in the stabilization of the biogenic silver nanoparticles. Nanoscale Res. Lett. 2016;11:313. doi: 10.1186/s11671-016-1538-y. PubMed DOI PMC