Synthesis, Characterization and Physicochemical Properties of Biogenic Silver Nanoparticle-Encapsulated Chitosan Bionanocomposites
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
HyHi, Reg. No. CZ.02.1.01/0.0/0.0/16_019/0000843
Ministry of Education
PubMed
35160453
PubMed Central
PMC8840532
DOI
10.3390/polym14030463
PII: polym14030463
Knihovny.cz E-zdroje
- Klíčová slova
- antibacterial, antioxidant, bionanocomposites, bone regeneration, chitosan scaffold, glycerol, silver nanoparticles, tissue engineering, tween 80, wound dressing,
- Publikační typ
- časopisecké články MeSH
Green bionanocomposites have garnered considerable attention and applications in the pharmaceutical and packaging industries because of their intrinsic features, such as biocompatibility and biodegradability. The work presents a novel approach towards the combined effect of glycerol, tween 80 and silver nanoparticles (AgNPs) on the physicochemical properties of lyophilized chitosan (CH) scaffolds produced via a green synthesis method.The produced bionanocomposites were characterized with the help of Fourier transform infrared spectroscopy (FTIR) and Scanning electron microscopy (SEM). The swelling behavior, water vapor transmission rate, moisture retention capability, degradation in Hanks solution, biodegradability in soil, mechanical strength and electrochemical performance of the composites were evaluated. The addition of additives to the CH matrix alters the physicochemical and biological functioning of the matrix. Plasticized scaffolds showed an increase in swelling degree, water vapor transmission rate and degradability in Hank's balanced solution compared to the blank chitosan scaffolds. The addition of tween 80 made the scaffolds more porous, and changes in physicochemical properties were observed. Green-synthesized AgNPs showed intensified antioxidant and antibacterial properties. Incorporating biogenic nanoparticles into the CH matrix enhances the polymer composites' biochemical properties and increases the demand in the medical and biological sectors. These freeze-dried chitosan-AgNPs composite scaffolds had tremendous applications, especially in biomedical fields like wound dressing, tissue engineering, bone regeneration, etc.
Zobrazit více v PubMed
Darder M., Aranda P., Ruiz-Hitzky E. Bionanocomposites: A new concept of ecological, bioinspired, and functional hybrid materials. Adv. Mater. 2007;19:1309–1319. doi: 10.1002/adma.200602328. DOI
Pillai S.K., Ray S.S. Chitosan-based nanocomposites. Nat. Polym. 2012;2:33–68.
Ediyilyam S., George B., Shankar S.S., Dennise T.T., Wacławek S., Černík M., Padil V.V.T. Chitosan/Gelatin/Silver Nanoparticles Composites Films for Biodegradable Food Packaging Applications. Polymers. 2021;13:1680. doi: 10.3390/polym13111680. PubMed DOI PMC
Peers S., Montembault A., Ladavière C. Chitosan hydrogels for sustained drug delivery. J. Control. Release. 2020;326:150–163. doi: 10.1016/j.jconrel.2020.06.012. PubMed DOI
Priyadarshi R., Rhim J.-W. Chitosan-based biodegradable functional films for food packaging applications. Innov. Food Sci. Emerg. Technol. 2020;62:102346. doi: 10.1016/j.ifset.2020.102346. DOI
Madihally S.V., Matthew H.W.T. Porous chitosan scaffolds for tissue engineering. Biomaterials. 1999;20:1133–1142. doi: 10.1016/S0142-9612(99)00011-3. PubMed DOI
VandeVord P.J., Matthew H.W.T., DeSilva S.P., Mayton L., Wu B., Wooley P.H. Evaluation of the biocompatibility of a chitosan scaffold in mice. J. Biomed. Mater. Res. Off. J. Soc. Biomater. Jpn. Soc. Biomater. Aust. Soc. Biomater. Korean Soc. Biomater. 2002;59:585–590. doi: 10.1002/jbm.1270. PubMed DOI
Rezaei F.S., Sharifianjazi F., Esmaeilkhanian A., Salehi E. Chitosan films and scaffolds for regenerative medicine applications: A review. Carbohydr. Polym. 2021;273:118631. doi: 10.1016/j.carbpol.2021.118631. PubMed DOI
Thein-Han W.W., Misra R.D.K. Biomimetic chitosan–nanohydroxyapatite composite scaffolds for bone tissue engineering. Acta Biomater. 2009;5:1182–1197. doi: 10.1016/j.actbio.2008.11.025. PubMed DOI
Kim S.E., Park J.H., Cho Y.W., Chung H., Jeong S.Y., Lee E.B., Kwon I.C. Porous chitosan scaffold containing microspheres loaded with transforming growth factor-β1: Implications for cartilage tissue engineering. J. Control. Release. 2003;91:365–374. doi: 10.1016/S0168-3659(03)00274-8. PubMed DOI
Mohandas A., Deepthi S., Biswas R., Jayakumar R. Chitosan based metallic nanocomposite scaffolds as antimicrobial wound dressings. Bioact. Mater. 2018;3:267–277. doi: 10.1016/j.bioactmat.2017.11.003. PubMed DOI PMC
Filippi M., Born G., Chaaban M., Scherberich A. Natural polymeric scaffolds in bone regeneration. Front. Bioeng. Biotechnol. 2020;8:474. doi: 10.3389/fbioe.2020.00474. PubMed DOI PMC
Sukpaita T., Chirachanchai S., Pimkhaokham A., Ampornaramveth R.S. Chitosan-Based Scaffold for Mineralized Tissues Regeneration. Mar. Drugs. 2021;19:551. doi: 10.3390/md19100551. PubMed DOI PMC
Kumari S., Singh R.P., Chavan N.N., Annamalai P.K. Chitosan-based bionanocomposites for biomedical application. BioinspiredBiomim. Nanobiomater. 2016;7:219–227. doi: 10.1680/jbibn.15.00015. DOI
Soliman H., Elsayed A., Dyaa A. Antimicrobial activity of silver nanoparticles biosynthesised by Rhodotorula sp. strain ATL72. Egypt. J. Basic Appl. Sci. 2018;5:228–233. doi: 10.1016/j.ejbas.2018.05.005. DOI
Kumar P. Nano-TiO2 doped chitosan scaffold for the bone tissue engineering applications. Int. J. Biomater. 2018;2018:6576157. doi: 10.1155/2018/6576157. PubMed DOI PMC
Sudheesh Kumar P.T., Lakshmanan V.-K., Anilkumar T.V., Ramya C., Reshmi P., Unnikrishnan A.G., Nair S.V., Jayakumar R. Flexible and microporous chitosan hydrogel/nanoZnO composite bandages for wound dressing: In vitro and in vivo evaluation. ACS Appl. Mater. Interfaces. 2012;4:2618–2629. doi: 10.1021/am300292v. PubMed DOI
Laohakunjit N., Noomhorm A. Effect of plasticizers on mechanical and barrier properties of rice starch film. Starch-Stärke. 2004;56:348–356. doi: 10.1002/star.200300249. DOI
Lavorgna M., Piscitelli F., Mangiacapra P., Buonocore G.G. Study of the combined effect of both clay and glycerol plasticizer on the properties of chitosan films. Carbohydr. Polym. 2010;82:291–298. doi: 10.1016/j.carbpol.2010.04.054. DOI
Wang W., Wang Y.J., Wang D.Q. Dual effects of Tween 80 on protein stability. Int. J. Pharm. 2008;347:31–38. doi: 10.1016/j.ijpharm.2007.06.042. PubMed DOI
Ziani K., Oses J., Coma V., Maté J.I. Effect of the presence of glycerol and Tween 20 on the chemical and physical properties of films based on chitosan with different degree of deacetylation. LWT-Food Sci. Technol. 2008;41:2159–2165. doi: 10.1016/j.lwt.2007.11.023. DOI
Shanthi S., Radha R. Anti-microbial and Phytochemical Studies of Mussaenda frondosa Linn. Leaves. Pharmacogn. J. 2020;12:630–635. doi: 10.5530/pj.2020.12.94. DOI
Jayappa M.D., Ramaiah C.K., Kumar M.A.P., Suresh D., Prabhu A., Devasya R.P., Sheikh S. Green synthesis of zinc oxide nanoparticles from the leaf, stem and in vitro grown callus of Mussaenda frondosa L.: Characterization and their applications. Appl. Nanosci. 2020;10:3057–3074. doi: 10.1007/s13204-020-01382-2. PubMed DOI PMC
Siju E.N., Rajalakshmi G.R., Kavitha V.P., Anju J. In vitro antioxidant activity of Mussaenda frondosa. Int. J. Pharmtech Res. 2010;2:1236–1240.
Bindhu M.R., Umadevi M. Synthesis of monodispersed silver nanoparticles using Hibiscus cannabinus leaf extract and its antimicrobial activity. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2013;101:184–190. doi: 10.1016/j.saa.2012.09.031. PubMed DOI
Dakal T.C., Kumar A., Majumdar R.S., Yadav V. Mechanistic basis of antimicrobial actions of silver nanoparticles. Front. Microbiol. 2016;7:1831. doi: 10.3389/fmicb.2016.01831. PubMed DOI PMC
Wang L., Hu C., Shao L. The antimicrobial activity of nanoparticles: Present situation and prospects for the future. Int. J. Nanomed. 2017;12:1227. doi: 10.2147/IJN.S121956. PubMed DOI PMC
Xing Y., Xu Q., Li X., Chen C., Ma L., Li S., Che Z., Lin H. Chitosan-based coating with antimicrobial agents: Preparation, property, mechanism, and application effectiveness on fruits and vegetables. Int. J. Polym. Sci. 2016;2016:4851730. doi: 10.1155/2016/4851730. DOI
Damiri F., Bachra Y., Bounacir C., Laaraibi A., Berrada M. Synthesis and characterization of lyophilized chitosan-based hydrogels cross-linked with benzaldehyde for controlled drug release. J. Chem. 2020;2020:8747639. doi: 10.1155/2020/8747639. DOI
Cardenas G., Anaya P., Del Rio R., Schrebler R., Von Plessing C., Schneider M. Scanning electron microscopy and atomic force microscopy of chitosan composite films. J. Chil. Chem. Soc. 2010;55:352–354. doi: 10.4067/S0717-97072010000300017. DOI
Vicentini D.S., Smania A., Laranjeira M.C.M. Chitosan/poly (vinyl alcohol) films containing ZnO nanoparticles and plasticizers. Mater. Sci. Eng. C. 2010;30:503–508. doi: 10.1016/j.msec.2009.01.026. DOI
Sreelekha E., George B., Shyam A., Sajina N., Mathew B. A Comparative Study on the Synthesis, Characterization, and Antioxidant Activity of Green and Chemically Synthesized Silver Nanoparticles. BioNanoScience. 2021;11:489–496. doi: 10.1007/s12668-021-00824-7. DOI
Shu Y., Xu J., Chen J., Xu Q., Xiao X., Jin D., Pang H., Hu X. Ultrasensitive electrochemical detection of H2O2 in living cells based on ultrathin MnO2 nanosheets. Sens. Actuators B Chem. 2017;252:72–78. doi: 10.1016/j.snb.2017.05.124. DOI
Sivan S.K., Shankar S.S., KandambathPadinjareveetil A., Pilankatta R., Kumar V.B.S., Mathew B., George B., Makvandi P., Černík M., Padil V.V.T. Fabrication of a Greener TiO2@Gum Arabic-Carbon Paste Electrode for the Electrochemical Detection of Pb2+ Ions in Plastic Toys. ACS Omega. 2020;5:25390–25399. doi: 10.1021/acsomega.0c03781. PubMed DOI PMC
Sarwar M.S., Niazi M.B.K., Jahan Z., Ahmad T., Hussain A. Preparation and characterization of PVA/nanocellulose/Ag nanocomposite films for antimicrobial food packaging. Carbohydr. Polym. 2018;184:453–464. doi: 10.1016/j.carbpol.2017.12.068. PubMed DOI
Purwar R., Sharma S., Sahoo P., Srivastava C.M. Flexible sericin/polyvinyl alcohol/clay blend films. Fibers Polym. 2015;16:761–768. doi: 10.1007/s12221-015-0761-y. DOI
Rodríguez M., Osés J., Ziani K., Mate J.I. Combined effect of plasticizers and surfactants on the physical properties of starch based edible films. Food Res. Int. 2006;39:840–846. doi: 10.1016/j.foodres.2006.04.002. DOI
El-Hadi A.M. Increase the elongation at break of poly (lactic acid) composites for use in food packaging films. Sci. Rep. 2017;7:46767. doi: 10.1038/srep46767. PubMed DOI PMC
Lim L.Y., Wan L.S.C. The effect of plasticizers on the properties of polyvinyl alcohol films. Drug Dev. Ind. Pharm. 1994;20:1007–1020. doi: 10.3109/03639049409038347. PubMed DOI
Tao L., Zhonglong L., Ming X., Zezheng Y., Zhiyuan L., Xiaojun Z., Jinwu W. In vitro and in vivo studies of a gelatin/carboxymethyl chitosan/LAPONITE® composite scaffold for bone tissue engineering. RSC Adv. 2017;7:54100–54110. doi: 10.1039/C7RA06913H. DOI
Bajpai S.K., Chand N., Chaurasia V. Investigation of water vapor permeability and antimicrobial property of zinc oxide nanoparticles-loaded chitosan-based edible film. J. Appl. Polym. Sci. 2010;115:674–683. doi: 10.1002/app.30550. DOI
Gontard N., Guilbert S., Cuq J.-L. Water and glycerol as plasticizers affect mechanical and water vapor barrier properties of an edible wheat gluten film. J. Food Sci. 1993;58:206–211. doi: 10.1111/j.1365-2621.1993.tb03246.x. DOI
Shi Y., Zhang H., Zhang X., Chen Z., Zhao D., Ma J. A comparative study of two porous sponge scaffolds prepared by collagen derived from porcine skin and fish scales as burn wound dressings in a rabbit model. Regen. Biomater. 2020;7:63–70. doi: 10.1093/rb/rbz036. PubMed DOI PMC
Epure V., Griffon M., Pollet E., Avérous L. Structure and properties of glycerol-plasticized chitosan obtained by mechanical kneading. Carbohydr. Polym. 2011;83:947–952. doi: 10.1016/j.carbpol.2010.09.003. DOI
Cerqueira M.A., Souza B.W.S., Teixeira J.A., Vicente A.A. Effect of glycerol and corn oil on physicochemical properties of polysaccharide films–A comparative study. Food Hydrocoll. 2012;27:175–184. doi: 10.1016/j.foodhyd.2011.07.007. DOI
Ye H., Cheng J., Yu K. In situ reduction of silver nanoparticles by gelatin to obtain porous silver nanoparticle/chitosan composites with enhanced antimicrobial and wound-healing activity. Int. J. Biol. Macromol. 2019;121:633–642. doi: 10.1016/j.ijbiomac.2018.10.056. PubMed DOI
Kanimozhi K., Basha S.K., Kumari V.S. Processing and characterization of chitosan/PVA and methylcellulose porous scaffolds for tissue engineering. Mater. Sci. Eng. C. 2016;61:484–491. doi: 10.1016/j.msec.2015.12.084. PubMed DOI
Saral Sarojini K., Indumathi M.P., Rajarajeswari G.R. Mahua oil-based polyurethane/chitosan/nanoZnO composite films for biodegradable food packaging applications. Int. J. Biol. Macromol. 2019;124:163–174. doi: 10.1016/j.ijbiomac.2018.11.195. PubMed DOI
Xiu Z., Zhang Q., Puppala H.L., Colvin V.L., Alvarez P.J.J. Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett. 2012;12:4271–4275. doi: 10.1021/nl301934w. PubMed DOI