Differential freshwater flagellate community response to bacterial food quality with a focus on Limnohabitans bacteria
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
23552621
PubMed Central
PMC3721123
DOI
10.1038/ismej.2013.57
PII: ismej201357
Knihovny.cz E-zdroje
- MeSH
- Actinobacteria fyziologie MeSH
- Burkholderiaceae fyziologie MeSH
- časové faktory MeSH
- Comamonadaceae fyziologie MeSH
- Eukaryota růst a vývoj metabolismus fyziologie MeSH
- fyziologie bakterií MeSH
- geny rRNA genetika MeSH
- heterotrofní procesy MeSH
- potravní řetězec MeSH
- sladká voda mikrobiologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Different bacterial strains can have different value as food for heterotrophic nanoflagellates (HNF), thus modulating HNF growth and community composition. We examined the influence of prey food quality using four Limnohabitans strains, one Polynucleobacter strain and one freshwater actinobacterial strain on growth (growth rate, length of lag phase and growth efficiency) and community composition of a natural HNF community from a freshwater reservoir. Pyrosequencing of eukaryotic small subunit rRNA amplicons was used to assess time-course changes in HNF community composition. All four Limnohabitans strains and the Polynucleobacter strain yielded significant HNF community growth while the actinobacterial strain did not although it was detected in HNF food vacuoles. Notably, even within the Limnohabitans strains we found significant prey-related differences in HNF growth parameters, which could not be related only to size of the bacterial prey. Sequence data characterizing the HNF communities showed also that different bacterial prey items induced highly significant differences in community composition of flagellates. Generally, Stramenopiles dominated the communities and phylotypes closely related to Pedospumella (Chrysophyceae) were most abundant bacterivorous flagellates rapidly reacting to addition of the bacterial prey of high food quality.
Zobrazit více v PubMed
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–410. PubMed
Boenigk J, Arndt H. Bacterivory by heterotrophic flagellates: community structure and feeding strategies. Anton Leeuw Int J G. 2002;81:465–480. PubMed
Boenigk J, Jost S, Stoeck T, Garstecki T. Differential thermal adaptation of clonal strains of a protist morphospecies originating from different climatic zones. Environ Microbiol. 2007;9:593–602. PubMed
Boenigk J, Pfandl K, Stadler P, Chatzinotas A. High diversity of the ‘Spumella-like' flagellates: an investigation based on the SSU rRNA gene sequences of isolates from habitats located in six different geographic regions. Environ Microbiol. 2005;7:685–697. PubMed
Boenigk J, Stadler P, Wiedlroither A, Hahn MW. Strain-specific differences in the grazing sensitivities of closely related ultramicrobacteria affiliated with the Polynucleobacter cluster. Appl Environ Microbiol. 2004;70:5787–5793. PubMed PMC
Boenigk J. Some remarks on strain specifity and general patterns in the ecology of Spumella (Chrysophyceae) Nova Hedwigia Beih. 2005;128:167–178.
Eiler A, Bertilsson S. Composition of freshwater bacterial communities associated with cyanobacterial blooms in four Swedish lakes. Environ Microbiol. 2004;6:1228–1243. PubMed
Fenchel T. The ecology of heterotrophic microflagellates. Adv Microb Ecol. 1986;9:57–97.
Gasol JM, Del Giorgio PA. Using flow cytometry for counting natural planktonic bacteria and understanding the structure of planktonic bacterial communities. Sci Mar. 2000;64:197–224.
Hahn MW, Pöckl M. Ecotypes of planktonic Actinobacteria with identical 16S rRNA genes adapted to thermal niches in temperate, subtropical, and tropical freshwater habitats. Appl Environ Microbiol. 2005;71:766–773. PubMed PMC
Hahn MW, Pöckl M, Wu QL. Low intraspecific diversity in a Polynucleobacter subcluster population numerically dominating bacterioplankton of a freshwater pond. Appl Environ Microbiol. 2005;71:4539–4547. PubMed PMC
Hahn MW, Scheuerl T, Jezberová J, Koll U, Jezbera J, Šimek K, et al. The passive yet successful way of planktonic life: genomic and experimental analysis of the ecology of a planktonic Polynucleobacter population. PLoS ONE. 2012;7:e32772. PubMed PMC
Hahn MW, Stadler P, Wu QL, Pöckl M. The filtration–acclimatization method for isolation of an important fraction of the not readily cultivable bacteria. J Microbiol Methods. 2004;57:379–390. PubMed
Hahn MW. Isolation of strains belonging to the cosmopolitan Polynucleobacter necessarius cluster from freshwater habitats located in three climatic zones. Appl Environ Microbiol. 2003;69:5248–5254. PubMed PMC
Huson DH, Auch AF, Qi J, Schuster SC. MEGAN analysis of metagenomic data. Genome Res. 2007;17:377–386. PubMed PMC
Jezbera J, Horňák K, Šimek K. Food selection by bacterivorous protists: insight from the analysis of the food vacuole content by means of fluorescence in situ hybridization. FEMS Microb Ecol. 2005;52:351–363. PubMed
Jezbera J, Jezberová J, Koll U, Horňák K, Šimek K, Hahn MW. Major freshwater bacterioplankton groups: Contrasting trends in distribution of Limnohabitans and Polynucleobacter lineages along a pH gradient of 72 habitats. FEMS Microb Ecol. 2012;81:467–479. PubMed PMC
Jezbera J, Jezberová J, Šimek K, Kasalický V, Hahn MW. Patterns of Limnohabitans microdiversity across a large set of freshwater habitats as revealed by reverse line blot hybridization. PLoS ONE. 2013;8:e58527. PubMed PMC
Jezberová J, Jezbera J, Brandt U, Lindström ES, Langenheder S, Hahn MW. Ubiquity of Polynucleobacter necessarius subsp asymbioticus in lentic freshwater habitats of a heterogenous 2000 km2 area. Environ Microbiol. 2010;12:658–669. PubMed PMC
Jürgens K, Matz C. Predation as a shaping force for the phenotypic and genotypic composition of planktonic bacteria. Anton Leeuw Int J G. 2002;81:413–434. PubMed
Kasalický V, Jezbera J, Šimek K, Hahn MW. Limnohabitans planktonicus sp. nov., and Limnohabitans parvus sp. nov., two novel planktonic Betaproteobacteria isolated from a freshwater reservoir. Int J Syst Evol Microbiol. 2010;60:2710–2714. PubMed PMC
Kasalický V, Jezbera J, Šimek K, Hahn MW. The diversity of the Limnohabitans genus, an important group of freshwater bacterioplankton, by characterization of 35 isolated strains. PLoS ONE. 2013;8:e58205. PubMed PMC
Kühn SF, Drebes G, Schnepf E. Five new species of the nanoflagellate Pirsonia in the German Bight, North Sea, feeding on planktonic diatoms. Helgol Meeresunters. 1996;50:205–222.
Lane DJ.199116S/23S sequencingIn: Stackebrandt E, Goodfellow M (eds)Nucleic Acid Technologies in Bacterial Systematic Wiley: NY, USA; 115–175.
Massana R, Balague V, Guillou L, Pedros-Alio C. Picoeukaryotic diversity in an oligotrophic coastal site studied by molecular and culturing approaches. FEMS Microb Ecol. 2004;50:231–243. PubMed
Medinger R, Nolte V, Pandey RV, Jost S, Ottenwälder B, Schlötterer C, et al. Diversity in a hidden world: potential and limitation of next-generation sequencing for surveys of molecular diversity of eukaryotic microorganisms. Mol Ecol. 2010;19:32–40. PubMed PMC
Medlin L, Elwood HJ, Stickel S, Sogin ML. The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene. 1988;71:491–499. PubMed
Montagnes DJS, Barbosa AB, Boenigk J, Davidson K, Jürgens K, Macek M, et al. Selective feeding behaviour of key free-living protists: avenues for continued study. Aquat Microbiol Ecol. 2008;53:83–98.
Newton RJ, Jones SE, Eiler A, McMahon KD, Bertilsson S. A Guide to the natural history of freshwater lake bacteria. Microb Mol Biol Rev. 2011;75:14–49. PubMed PMC
Nolte V, Pandey RV, Jost S, Medinger R, Ottenwälder B, Boenigk J, et al. Contrasting seasonal niche separation between rare and abundant taxa conceals the extent of protist diversity. Mol Ecol. 2010;19:2908–2915. PubMed PMC
Pandey RV, Nolte V, Boenigk J, Schlötterer C. CANGS DB: a stand-alone web-based database tool for processing, managing and analyzing 454 data in biodiversity studies. BMC Res Notes. 2011;4:227. PubMed PMC
Pernthaler A, Pernthaler J, Amann R. Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Appl Environ Microbiol. 2002;68:3094–3101. PubMed PMC
Pernthaler J. Predation on prokaryotes in the water column and its ecological implications. Nat Rev Microbiol. 2005;3:537–546. PubMed
Peréz MT, Sommaruga R. Differential effect of algal- and soil-derived dissolved organic matter on alpine lake bacterial community composition and activity. Limnol Oceanogr. 2006;51:2527–2537.
Salcher MM, Hofer J, Horňák K, Jezbera J, Sonntag B, Vrba J, et al. Modulation of microbial predator-prey dynamics by phosphorus availability: growth patterns and survival strategies of bacterial phynogenetic clades. FEMS Microb Ecol. 2007;60:40–50. PubMed
Salcher MM, Pernthaler J, Zeder M, Psenner R, Posch T. Spatio-temporal niche separation of planktonic Betaproteobacteria in an oligo-mesotrophic lake. Environ Microbiol. 2008;10:2074–2086. PubMed
Schnepf E, Schweikert M. Pirsonia, phagotrophic nanoflagellates incertae sedis, feeding on marine diatoms: attachment, fine structure and taxonomy. Arch Protistenkd. 1997;147:361–371.
Sherr EB, Sherr BF, Albright L. Bacteria: link or sink. Science. 1987;235:88. PubMed
Sherr EB, Sherr BF.1993Protistan grazing rates via uptake to fluorescently labelled preyIn: Kemp P, Sherr BF, Sherr EB, Cole J (eds)Handbook of methods in aquatic microbial ecology Lewis: Boca Raton, FL, USA; 695–701.
Sherr EB, Sherr BF. Significance of predation by protists in aquatic microbial food webs. Anton Leeuw Int J G. 2002;81:293–308. PubMed
Šimek K, Hartman P, Nedoma J, Pernthaler J, Vrba J, Springmann D, et al. Community structure, picoplankton grazing and zooplankton control of heterotrophic nanoflagellates in a eutrophic reservoir during the summer phytoplankton maximum. Aquat Microb Ecol. 1997;12:49–63.
Šimek K, Horňák K, Jezbera J, Nedoma J, Vrba J, Straškrabová V, et al. Maximum growth rates and possible life strategies of different bacterioplankton groups in relation to phosphorus availability in a freshwater reservoir. Environ Microbiol. 2006;8:1613–1624. PubMed
Šimek K, Kasalický V, Jezbera J, Jezberová J, Hejzlar J, Hahn MW. Broad habitat range of the phylogenetically narrow R-BT065 cluster, representing a core group of the betaproteobacterial genus Limnohabitans. Appl Environ Microbiol. 2010;76:631–639. PubMed PMC
Šimek K, Kasalický V, Zapomělová E, Horňák K. Algal-derived substrates select for distinct betaproteobacterial lineages and contribute to niche separation in Limnohabitans strains. Appl Environ Microbiol. 2011;77:7307–7315. PubMed PMC
Šimek K, Pernthaler J, Weinbauer MG, Horňák K, Dolan JR, Nedoma J, et al. Changes in bacterial community composition, dynamics, and viral mortality rates associated with enhanced flagellate grazing in a mesoeutrophic reservoir. Appl Environ Microbiol. 2001;67:2723–2733. PubMed PMC
Šimek K, Weinbauer MG, Horňák K, Jezbera J, Nedoma J, Dolan J. Grazer and virus-induced mortality of bacterioplankton accelerates development of Flectobacillus populations in a freshwater community. Environ Microbiol. 2007;9:789–800. PubMed
Stoeck T, Bass D, Nebel M, Christe R, Jones MDH, Breiner H-W, et al. Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol Ecol. 2010;19:21–31. PubMed
Tarao M, Jezbera J, Hahn MW. Involvement of cell surface structures in size-independent grazing resistance of freshwater Actinobacteria. Appl Environ Microbiol. 2009;75:4720–4726. PubMed PMC
Weber F, del Campo J, Wylezich C, Massana R, Jürgens K. Unveiling trophic functions of uncultured protist taxa by incubation experiments in the brackish Baltic Sea. PLoS ONE. 2012;7:e41970. PubMed PMC
Trophic flexibility of marine diplonemids - switching from osmotrophy to bacterivory
CARD-FISH in the Sequencing Era: Opening a New Universe of Protistan Ecology
Cryptophyta as major bacterivores in freshwater summer plankton
Microdiversification in genome-streamlined ubiquitous freshwater Actinobacteria
Aerobic Anoxygenic Photosynthesis Is Commonly Present within the Genus Limnohabitans