Dance Intervention Impact on Brain Plasticity: A Randomized 6-Month fMRI Study in Non-expert Older Adults

. 2021 ; 13 () : 724064. [epub] 20211027

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34776925

Background: Dance is a complex activity combining physical exercise with cognitive, social, and artistic stimulation. Objectives: We aimed to assess the effects of dance intervention (DI) on intra and inter-network resting-state functional connectivity (rs-FC) and its association to cognitive changes in a group of non-demented elderly participants. Methods: Participants were randomly assigned into two groups: DI and life as usual (LAU). Six-month-long DI consisted of supervised 60 min lessons three times per week. Resting-state fMRI data were processed using independent component analysis to evaluate the intra and inter-network connectivity of large-scale brain networks. Interaction between group (DI, LAU) and visit (baseline, follow-up) was assessed using ANOVA, and DI-induced changes in rs-FC were correlated with cognitive outcomes. Results: Data were analyzed in 68 participants (DI; n = 36 and LAU; n = 32). A significant behavioral effect was found in the attention domain, with Z scores increasing in the DI group and decreasing in the LAU group (p = 0.017). The DI as compared to LAU led to a significant rs-FC increase of the default mode network (DMN) and specific inter-network pairings, including insulo-opercular and right frontoparietal/frontoparietal control networks (p = 0.019 and p = 0.023), visual and language/DMN networks (p = 0.012 and p = 0.015), and cerebellar and visual/language networks (p = 0.015 and p = 0.003). The crosstalk of the insulo-opercular and right frontoparietal networks were associated with attention/executive domain Z-scores (R = 0.401, p = 0.015, and R = 0.412, p = 0.012). Conclusion: The DI led to intervention-specific complex brain plasticity changes that were of cognitive relevance.

Zobrazit více v PubMed

Agosta F., Pievani M., Geroldi C., Copetti M., Frisoni G. B., Filippi M. (2012). Resting state fMRI in Alzheimer’s disease: beyond the default mode network. Neurobiol. Aging 33 1564–1578. 10.1016/j.neurobiolaging.2011.06.007 PubMed DOI

Alpert P. T., Miller S. K., Wallmann H., Havey R., Cross C., Chevalia T., et al. (2009). The effect of modified jazz dance on balance, cognition, and mood in older adults. J. Am. Acad. Nurse Pract. 21 108–115. 10.1111/j.1745-7599.2008.00392.x PubMed DOI

Blefari M. L., Martuzzi R., Salomon R., Bello-Ruiz J., Herbelin B., Serino A., et al. (2017). Bilateral Rolandic operculum processing underlying heartbeat awareness reflects changes in bodily self-consciousness. Eur. J. Neurosci. 45 1300–1312. 10.1111/ejn.13567 PubMed DOI

Boraxbekk C.-J., Salami A., Wåhlin A., Nyberg L. (2016). Physical activity over a decade modifies age-related decline in perfusion, gray matter volume, and functional connectivity of the posterior default-mode network—A multimodal approach. NeuroImage 131 133–141. 10.1016/j.neuroimage.2015.12.010 PubMed DOI

Brustio P. R., Liubicich M. E., Chiabrero M., Rabaglietti E. (2018). Dancing in the golden age: a study on physical function, quality of life, and social engagement. Geriatr. Nurs. 39 635–639. 10.1016/j.gerinurse.2018.04.013 PubMed DOI

Burdette J. H., Laurienti P. J., Espeland M. A., Morgan A., Telesford Q., Vechlekar C. D., et al. (2010). Using network science to evaluate exercise-associated brain changes in older adults. Front. Ag. Neurosci. 2:23. 10.3389/fnagi.2010.00023 PubMed DOI PMC

Burzynska A. Z., Finc K., Taylor B. K., Knecht A. M., Kramer A. F. (2017). The Dancing brain: structural and functional signatures of expert dance training. Front. Hum. Neurosci. 11:566. 10.3389/fnhum.2017.00566 PubMed DOI PMC

Calhoun V. D., Adali T., Pearlson G. D., Pekar J. J. (2001). A method for making group inferences from functional MRI data using independent component analysis. Hum. Brain Mapp. 14 140–151. PubMed PMC

Carter C. S., Botvinick M. M., Cohen J. D. (1999). The contribution of the anterior cingulate cortex to executive processes in cognition. Rev. Neurosci. 10 49–57. 10.1515/REVNEURO.1999.10.1.49 PubMed DOI

Chirles T. J., Reiter K., Weiss L. R., Alfini A. J., Nielson K. A., Smith J. C. (2017). Exercise training and functional connectivity changes in mild cognitive impairment and healthy elders. J. Alzheimers Dis. 57 845–856. 10.3233/JAD-161151 PubMed DOI PMC

Coubard O. (2011). Practice of contemporary dance improves cognitive flexibility in aging. Front. Ag. Neurosci 3:13. 10.3389/fnagi.2011.00013 PubMed DOI PMC

Cui L., Yin H., Lyu S., Shen Q., Wang Y., Li X., et al. (2019). Tai chi chuan vs general aerobic exercise in brain plasticity: a multimodal mri study. Sci. Rep. 9:17264. 10.1038/s41598-019-53731-z PubMed DOI PMC

Diamond A. (2015). Effects of physical exercise on executive functions: going beyond simply moving to moving with thought. Ann. Sports Med. Res. 2:1011. PubMed PMC

Eckert M. A., Menon V., Walczak A., Ahlstrom J., Denslow S., Horwitz A., et al. (2009). At the heart of the ventral attention system: the right anterior insula. Hum. Brain Mapp. 30 2530–2541. 10.1002/hbm.20688 PubMed DOI PMC

Farrant K., Uddin L. Q. (2015). Asymmetric development of dorsal and ventral attention networks in the human brain. Dev. Cogn. Neurosci. 12 165–174. 10.1016/j.dcn.2015.02.001 PubMed DOI PMC

Flodin P., Jonasson L. S., Riklund K., Nyberg L., Boraxbekk C. J. (2017). Does Aerobic exercise influence intrinsic brain activity? An aerobic exercise intervention among healthy old adults. Front. Aging Neurosci. 9:267. 10.3389/fnagi.2017.00267 PubMed DOI PMC

Gatti R., Rocca M. A., Fumagalli S., Cattrysse E., Kerckhofs E., Falini A., et al. (2017). The effect of action observation/execution on mirror neuron system recruitment: an fMRI study in healthy individuals. Brain Imaging Behav. 11 565–576. 10.1007/s11682-016-9536-3 PubMed DOI

Geerligs L., Renken R. J., Saliasi E., Maurits N. M., Lorist M. M. (2015). A brain-wide study of age-related changes in functional connectivity. Cereb. Cortex 25 1987–1999. 10.1093/cercor/bhu012 PubMed DOI

Greicius M. D., Krasnow B., Reiss A. L., Menon V. (2003). Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc. Natl. Acad. Sci.U.S.A. 100 253–258. 10.1073/pnas.0135058100 PubMed DOI PMC

Himberg J., Hyvärinen A., Esposito F. (2004). Validating the independent components of neuroimaging time series via clustering and visualization. NeuroImage 22 1214–1222. 10.1016/j.neuroimage.2004.03.027 PubMed DOI

Hugenschmidt C. E., Johnston M. E., Jung Y., Kraft R. A., Laurienti P. J., Whitlow C. T., et al. (2017). Effects of aerobic exercise on functional connectivity of prefrontal cortex in mci: results of a randomized controlled trial. Alzheimers Dement. 13 569–570. 10.1016/j.jalz.2017.07.184 DOI

Ikuta T., Frith E., Ponce P., Loprinzi P. D. (2019). Association of physical activity on the functional connectivity of the hippocampal–orbitofrontal pathway. Phys. Sportsmed. 47 290–294. 10.1080/00913847.2018.1549461 PubMed DOI

Kattenstroth J.-C., Kalisch T., Holt S., Tegenthoff M., Dinse H. R. (2013). Six months of dance intervention enhances postural, sensorimotor, and cognitive performance in elderly without affecting cardio-respiratory functions. Front. Aging Neurosci. 5:5. 10.3389/fnagi.2013.00005 PubMed DOI PMC

Kim S.-H., Kim M., Ahn Y.-B., Lim H.-K., Kang S.-G., Cho J.-H., et al. (2011). Effect of dance exercise on cognitive function in elderly patients with metabolic syndrome: a pilot study. J. Sports Sci. Med. 10 671–678. PubMed PMC

Krajcovicova L., Marecek R., Mikl M., Rektorova I. (2014). Disruption of resting functional connectivity in Alzheimer’s patients and at-risk subjects. Curr. Neurol. Neurosci. Rep. 14:491. 10.1007/s11910-014-0491-3 PubMed DOI

Kropacova S., Mitterova K., Klobusiakova P., Brabenec L., Anderkova L., Nemcova-Elfmarkova N., et al. (2019). Cognitive effects of dance-movement intervention in a mixed group of seniors are not dependent on hippocampal atrophy. J Neural Transm 126 1455–1463. 10.1007/s00702-019-02068-y PubMed DOI

Kshtriya S., Barnstaple R., Rabinovich D. B., DeSouza J. F. X. (2015). Dance and aging: a critical review of findings in neuroscience. Am. J. Dance Ther. 37 81–112. 10.1007/s10465-015-9196-7 DOI

La C., Mossahebi P., Nair V. A., Bendlin B. B., Birn R., Meyerand M. E., et al. (2015). Age-related changes in inter-network connectivity by component analysis. Front. Aging Neurosci. 7:237. 10.3389/fnagi.2015.00237 PubMed DOI PMC

Leavitt V. M., Cirnigliaro C., Cohen A., Farag A., Brooks M., Wecht J. M., et al. (2014). Aerobic exercise increases hippocampal volume and improves memory in multiple sclerosis: preliminary findings. Neurocase 20 695–697. 10.1080/13554794.2013.841951 PubMed DOI

Li M., Huang M., Li S., Tao J., Zheng G., Chen L. (2017). The effects of aerobic exercise on the structure and function of DMN-related brain regions: a systematic review. Int. J. Neurosci. 127 634–649. 10.1080/00207454.2016.1212855 PubMed DOI

Li Y.-O., Adalı T., Calhoun V. D. (2007). Estimating the number of independent components for functional magnetic resonance imaging data. Hum. Brain Mapp. 28 1251–1266. 10.1002/hbm.20359 PubMed DOI PMC

Manto M., Bower J. M., Conforto A. B., Delgado-García J. M., da Guarda S. N. F., Gerwig M., et al. (2012). Consensus paper: roles of the cerebellum in motor control—the diversity of ideas on cerebellar involvement in movement. Cerebellum 11 457–487. 10.1007/s12311-011-0331-9 PubMed DOI PMC

McGregor K. M., Crosson B., Krishnamurthy L. C., Krishnamurthy V., Hortman K., Gopinath K., et al. (2018). Effects of a 12-week aerobic spin intervention on resting state networks in previously sedentary older adults. Front. Psychol. 9:2376. 10.3389/fpsyg.2018.02376 PubMed DOI PMC

Menon V. (2015). Salience network. Brain Mapp. 2 597–611. 10.1016/B978-0-12-397025-1.00052-X DOI

Müller P., Rehfeld K., Schmicker M., Hökelmann A., Dordevic M., Lessmann V., et al. (2017). Evolution of neuroplasticity in response to physical activity in old age: the case for dancing. Front. Aging Neurosci. 9:56. 10.3389/fnagi.2017.00056 PubMed DOI PMC

Nichols T., Hayasaka S. (2003). Controlling the familywise error rate in functional neuroimaging: a comparative review. Stat. Methods Med. Res. 12 419–446. 10.1191/0962280203sm341ra PubMed DOI

Power J. D., Barnes K. A., Snyder A. Z., Schlaggar B. L., Petersen S. E. (2012). Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage 59 2142–2154. 10.1016/j.neuroimage.2011.10.018 PubMed DOI PMC

Prehn K., Lesemann A., Krey G., Witte A. V., Köbe T., Grittner U., et al. (2019). Using resting-state fMRI to assess the effect of aerobic exercise on functional connectivity of the DLPFC in older overweight adults. Brain Cogn. 131 34–44. 10.1016/j.bandc.2017.08.006 PubMed DOI

Qi M., Zhu Y., Zhang L., Wu T., Wang J. (2018b). The effect of aerobic dance intervention on brain spontaneous activity in older adults with mild cognitive impairment: a resting-state functional MRI study. Exp. Ther. Med. 17 715–722. 10.3892/etm.2018.7006 PubMed DOI PMC

Qi H., Liu H., Hu H., He H., Zhao X. (2018a). Primary disruption of the memory-related subsystems of the default mode network in Alzheimer’s disease: resting-state functional connectivity MRI study. Front. Aging Neurosci. 10:344. 10.3389/fnagi.2018.00344 PubMed DOI PMC

Rajab A. S., Crane D. E., Middleton L. E., Robertson A. D., Hampson M., MacIntosh B. J. (2014). A single session of exercise increases connectivity in sensorimotor-related brain networks: a resting-state fMRI study in young healthy adults. Front. Hum. Neurosci. 8:625. 10.3389/fnhum.2014.00625 PubMed DOI PMC

Rehfeld K., Lüders A., Hökelmann A., Lessmann V., Kaufmann J., Brigadski T., et al. (2018). Dance training is superior to repetitive physical exercise in inducing brain plasticity in the elderly. PLoS One 13:e0196636. 10.1371/journal.pone.0196636 PubMed DOI PMC

Rehfeld K., Müller P., Aye N., Schmicker M., Dordevic M., Kaufmann J., et al. (2017). Dancing or fitness sport? The effects of two training programs on hippocampal plasticity and balance abilities in healthy seniors. Front. Hum. Neurosci. 11:305. 10.3389/fnhum.2017.00305 PubMed DOI PMC

Rektorova I., Klobusiakova P., Balazova Z., Kropacova S., Sejnoha Minsterova A., Grmela R., et al. (2020). Brain structure changes in nondemented seniors after six-month dance-exercise intervention. Acta Neurol. Scand. 141 90–97. 10.1111/ane.13181 PubMed DOI

Rosano C., Venkatraman V. K., Guralnik J., Newman A. B., Glynn N. W., Launer L., et al. (2010). Psychomotor speed and functional brain MRI 2 years after completing a physical activity treatment. J. Gerontol. Ser. A 65 639–647. 10.1093/gerona/glq038 PubMed DOI PMC

Schmitt A., Upadhyay N., Martin J. A., Rojas S., Strüder H. K., Boecker H. (2019). Modulation of distinct intrinsic resting state brain networks by acute exercise bouts of differing intensity. BPL 5 39–55. 10.3233/BPL-190081 PubMed DOI PMC

Seeley W. W. (2019). The salience network: a neural system for perceiving and responding to homeostatic demands. J. Neurosci. 39 9878–9882. 10.1523/JNEUROSCI.1138-17.2019 PubMed DOI PMC

Sejnoha Minsterova A., Klobusiakova P., Kropacova S., Novakova L., Brabenec L., Balazova Z., et al. (2020). Multishell diffusion MRI reflects improved physical fitness induced by dance intervention. Neural Plast. 2020 1–9. 10.1155/2020/8836925 PubMed DOI PMC

Solé R. V., Corominas-Murtra B., Valverde S., Steels L. (2010). Language networks: their structure, function, and evolution. Complexity 15 20–26. 10.1002/cplx.20305 DOI

Teixeira-Machado L., Arida R. M., de Jesus Mari J. (2019). Dance for neuroplasticity: a descriptive systematic review. Neurosc. Biobehav. Rev. 96 232–240. 10.1016/j.neubiorev.2018.12.010 PubMed DOI

Tozzi L., Carballedo A., Lavelle G., Doolin K., Doyle M., Amico F., et al. (2016). Longitudinal functional connectivity changes correlate with mood improvement after regular exercise in a dose-dependent fashion. Eur. J. Neurosci. 43 1089–1096. 10.1111/ejn.13222 PubMed DOI

van den Heuvel M. P., Hulshoff Pol H. E. (2010). Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur. Neuropsychopharmacol. 20 519–534. 10.1016/j.euroneuro.2010.03.008 PubMed DOI

Vidal-Piñeiro D., Valls-Pedret C., FernÃindez-Cabello S., Arenaza-Urquijo E. M., Sala-Llonch R., Solana E., et al. (2014). Decreased default mode network connectivity correlates with age-associated structural and cognitive changes. Front. Aging Neurosci. 6:256. 10.3389/fnagi.2014.00256 PubMed DOI PMC

Voss M. W., Prakash R. S., Erickson K. I., Basak C., Chaddock L., Kim J. S., et al. (2010). Plasticity of brain networks in a randomized intervention trial of exercise training in older adults. Front. Aging Neurosci. 2:32. 10.3389/fnagi.2010.00032 PubMed DOI PMC

Wallis G., Stokes M., Cousijn H., Woolrich M., Nobre A. C. (2015). Frontoparietal and cingulo-opercular networks play dissociable roles in control of working memory. J. Cogn. Neurosci. 27 2019–2034. 10.1162/jocn_a_00838 PubMed DOI

Xiong J., Ye M., Wang L., Zheng G. (2021). Effects of physical exercise on executive function in cognitively healthy older adults: a systematic review and meta-analysis of randomized controlled trials. Int. J. Nurs. Stud. 114:103810. 10.1016/j.ijnurstu.2020.103810 PubMed DOI

Zonneveld H. I., Pruim R. H. R., Bos D., Vrooman H. A., Muetzel R. L., Hofman A., et al. (2019). Patterns of functional connectivity in an aging population: the rotterdam study. NeuroImage 189 432–444. 10.1016/j.neuroimage.2019.01.041 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace