Spatio-temporal changes of small protist and free-living bacterial communities in a temperate dimictic lake: insights from metabarcoding and machine learning

. 2024 Jul 12 ; 100 (8) : .

Jazyk angličtina Země Velká Británie, Anglie Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39039016

Grantová podpora
European Molecular Biology Organization
4150 Ministry of Education and Science
2020/37/B/NZ8/01456 National Science Centre, Poland

Microbial communities, which include prokaryotes and protists, play an important role in aquatic ecosystems and influence ecological processes. To understand these communities, metabarcoding provides a powerful tool to assess their taxonomic composition and track spatio-temporal dynamics in both marine and freshwater environments. While marine ecosystems have been extensively studied, there is a notable research gap in understanding eukaryotic microbial communities in temperate lakes. Our study addresses this gap by investigating the free-living bacteria and small protist communities in Lake Roś (Poland), a dimictic temperate lake. Metabarcoding analysis revealed that both the bacterial and protist communities exhibit distinct seasonal patterns that are not necessarily shaped by dominant taxa. Furthermore, machine learning and statistical methods identified crucial amplicon sequence variants (ASVs) specific to each season. In addition, we identified a distinct community in the anoxic hypolimnion. We have also shown that the key factors shaping the composition of analysed community are temperature, oxygen, and silicon concentration. Understanding these community structures and the underlying factors is important in the context of climate change potentially impacting mixing patterns and leading to prolonged stratification.

Zobrazit více v PubMed

Adrian  R, O’Reilly  CM, Zagarese  H  et al.  Lakes as sentinels of climate change. Limnol Oceanogr. 2009;54:2283–97. 10.4319/lo.2009.54.6_part_2.2283. PubMed DOI PMC

Allaire  J. RStudio: integrated development environment for R, Vol. 770. Boston: The R Project for Statistical Computing, 2012, 165–71.

Amaral-Zettler LA, McCliment EA, Ducklow HW  et al.  A method for studying protistan diversity using massively parallel sequencing of V9 hypervariable regions of small-subunit ribosomal RNA genes. PLoS One. 2009;4:e6372. PubMed PMC

Andrews S. FastQC: A Quality Control Tool for High Throughput Sequence Data [Online]. 2010. Available online at http://www.bioinformatics.babraham.ac.uk/projects/fastqc/.

Barton  AD, Lozier  MS, Williams  RG. Physical controls of variability in North Atlantic phytoplankton communities: North Atlantic phytoplankton community variability. Limnol Oceanogr. 2015;60:181–97. 10.1002/lno.10011. DOI

Beng  KC, Cerbin  S, Monaghan  MT  et al.  Long-term effects of surface-water temperature increase on plankton communities in artificially heated lakes: insights from eDNA metabarcoding. Authorea. 2023. 10.22541/au.168639128.85081228/v1. DOI

Bergkemper  V, Stadler  P, Weisse  T. Moderate weather extremes alter phytoplankton diversity—a microcosm study. Freshwat Biol. 2018;63:1211–24. 10.1111/fwb.13127. DOI

Bernard  C, Simpson  AGB, Patterson  DJ. Some free-living flagellates (protista) from anoxic habitats. Ophelia. 2000;52:113–42. 10.1080/00785236.1999.10409422. DOI

Bernhard  JM, Kormas  K, Pachiadaki  MG  et al.  Benthic protists and fungi of Mediterranean deep hypsersaline anoxic basin redoxcline sediments. Front Microbiol. 2014;5. 10.3389/fmicb.2014.00605. PubMed DOI PMC

Beule  L, Karlovsky  P. Improved normalization of species count data in ecology by scaling with ranked subsampling (SRS): application to microbial communities. PeerJ. 2020;8:e9593. 10.7717/peerj.9593. PubMed DOI PMC

Bisanz  J. Qiime2r (0.99). GitHub, 2018. https://github.com/jbisanz/qiime2R (8 January 2024, date last accessed).

Bock  C, Salcher  M, Jensen  M  et al.  Synchrony of eukaryotic and prokaryotic planktonic communities in three seasonally sampled Austrian lakes. Front Microbiol. 2018;9:1290. 10.3389/fmicb.2018.01290. PubMed DOI PMC

Bock  C, Jensen  M, Forster  D  et al.  Factors shaping community patterns of protists and bacteria on a European scale. Environ Microbiol. 2020;22:2243–60. 10.1111/1462-2920.14992. PubMed DOI

Boenigk  J, Wodniok  S, Bock  C  et al.  Geographic distance and mountain ranges structure freshwater protist communities on a European scalе. Metabarcoding Metagenomics. 2018;2:e21519. 10.3897/mbmg.2.21519. DOI

Bolger  AM, Lohse  M, Usadel  B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20. 10.1093/bioinformatics/btu170. PubMed DOI PMC

Bolyen  E, Rideout  JR, Dillon  MR  et al.  Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–7. 10.1038/s41587-019-0209-9. PubMed DOI PMC

Breiman  L. Random Forests. Machine Learning. 2001;45:5–32. 10.1023/A:1010933404324. DOI

Breitburg  D, Levin  LA, Oschlies  A  et al.  Declining oxygen in the global ocean and coastal waters. Science. 2018;359:eaam7240. 10.1126/science.aam7240. PubMed DOI

Budria  A. Beyond troubled waters: the influence of eutrophication on host–parasite interactions. Funct Ecol. 2017;31:1348–58. 10.1111/1365-2435.12880. DOI

Bunse  C, Pinhassi  J. Marine bacterioplankton seasonal succession dynamics. Trends Microbiol. 2017;25:494–505. 10.1016/j.tim.2016.12.013. PubMed DOI

Burki  F, Roger  AJ, Brown  MW  et al.  The new tree of eukaryotes. Trends Ecol Evol. 2019;35:43–55. 10.1016/j.tree.2019.08.008 PubMed DOI

Callahan  BJ, McMurdie  PJ, Rosen  MJ  et al.  DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3. 10.1038/nmeth.3869. PubMed DOI PMC

Caporaso JG, Lauber CL, Walters WA  et al.  Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci U S A. 2011;108 Suppl 1:4516–22. 10.1073/pnas.1000080107. PubMed DOI PMC

Caracciolo  M, Rigaut-Jalabert  F, Romac  S  et al.  Seasonal dynamics of marine protist communities in tidally mixed coastal waters. Mol Ecol. 2022;31:3761–83. 10.1111/mec.16539. PubMed DOI PMC

Caron  DA. Inorganic nutrients, bacteria, and the microbial loop. Microb Ecol. 1994;28:295–8. 10.1007/BF00166820. PubMed DOI

Carr  S, Buan  NR. Insights into the biotechnology potential of Methanosarcina. Front Microbiol. 2022;13:1034674. 10.3389/fmicb.2022.1034674. PubMed DOI PMC

Celewicz  S, Gołdyn  B. Phytoplankton communities in temporary ponds under different climate scenarios. Sci Rep. 2021;11:17969. 10.1038/s41598-021-97516-9. PubMed DOI PMC

Chang  K-H, Doi  H, Nishibe  Y  et al.  Feeding habits of omnivorous Asplanchna: comparison of diet composition among Asplanchna herricki, A. priodonta and A. girodi in pond ecosystems. J Limnol. 2010;69:209–16. 10.3274/jl10-69-2-03 DOI

Charvet  S, Vincent  WF, Comeau  A  et al.  Pyrosequencing analysis of the protist communities in a High Arctic meromictic lake: DNA preservation and change. Front Microbio. 2012;3. 10.3389/fmicb.2012.00422. PubMed DOI PMC

Chessel  D, Dufour  A-B, Thioulouse  J. The ade4 package—I: one-table methods. R News. 2004;4:5–10.

Choi  J, Park  JS. Comparative analyses of the V4 and V9 regions of 18S rDNA for the extant eukaryotic community using the Illumina platform. Sci Rep. 2020;10:6519. 10.1038/s41598-020-63561-z. PubMed DOI PMC

Cruaud  P, Vigneron  A, Fradette  M-S  et al.  Annual protist community dynamics in a freshwater ecosystem undergoing contrasted climatic conditions: the Saint-Charles River (Canada). Front Microbiol. 2019;10:2359. 10.3389/fmicb.2019.02359. PubMed DOI PMC

Cruaud  P, Vigneron  A, Fradette  M  et al.  Annual bacterial community cycle in a seasonally ice-covered river reflects environmental and climatic conditions. Limnol Oceanogr. 2020;65:65. 10.1002/lno.11130. DOI

Crump  BC, Hobbie  JE. Synchrony and seasonality in bacterioplankton communities of two temperate rivers. Limnol Oceanogr. 2005;50:1718–29. 10.4319/lo.2005.50.6.1718. DOI

Da Silva  CFM, Torgan  LC, Schneck  F.  Temperature and surface runoff affect the community of periphytic diatoms and have distinct effects on functional groups: evidence of a mesocosms experiment. Hydrobiologia. 2019;839:37–50. 10.1007/s10750-019-03992-6. DOI

Dakos  V, Benincà  E, Van Nes  EH  et al.  Interannual variability in species composition explained as seasonally entrained chaos. Proc R Soc B. 2009;276:2871–80. 10.1098/rspb.2009.0584. PubMed DOI PMC

Daniel  ADC, Pedrós-Alió  C, Pearce  DA  et al.  Composition and interactions among bacterial, microeukaryotic, and T4-like viral assemblages in lakes from both polar zones. Front Microbiol. 2016;7. 10.3389/fmicb.2016.00337. PubMed DOI PMC

David  GM, López-García  P, Moreira  D  et al.  Small freshwater ecosystems with dissimilar microbial communities exhibit similar temporal patterns. Mol Ecol. 2021;30:2162–77. 10.1111/mec.15864. PubMed DOI

Dawidowicz  P. Effectiveness of phytoplankton control by large-bodied and small-bodied zooplankton. In: Gulati  RD, Lammens  EHRR, Meijer  M-L  et al.. et al. (eds.), Biomanipulation Tool for Water Management. Heidelberg: Springer, 1990, 43–7. 10.1007/978-94-017-0924-8_4. DOI

de Vargas  C, Audic  S, Henry  N  et al.  Eukaryotic plankton diversity in the sunlit ocean. Science. 2015;348. 10.1126/science.1261605. PubMed DOI

Dodson  S. Predicting crustacean zooplankton species richness. Limnol Oceanogr. 1992;37:848–56. 10.4319/lo.1992.37.4.0848. DOI

Dokulil  MT, De Eyto  E, Maberly  SC  et al.  Increasing maximum lake surface temperature under climate change. Clim Change. 2021;165:56. 10.1007/s10584-021-03085-1. DOI

Drake  JA. The mechanics of community assembly and succession. J Theor Biol. 1990;147:213–33. 10.1016/S0022-5193(05)80053-0. DOI

Drebes  G, Kühn  SF, Gmelch  A  et al.  Cryothecomonas aestivalis sp. nov., a colourless nanoflagellate feeding on the marine centric diatom Guinardia delicatula (Cleve) Hasle. Helgolander Meeresunters. 1996;50:497–515. 10.1007/BF02367163. DOI

Eckert  EM, Salcher  MM, Posch  T  et al.  Rapid successions affect microbial N -acetyl-glucosamine uptake patterns during a lacustrine spring phytoplankton bloom. Environ Microbiol. 2012;14:794–806. 10.1111/j.1462-2920.2011.02639.x. PubMed DOI

Edwards  M, Richardson  AJ. Impact of climate change on marine pelagic phenology and trophic mismatch. Nature. 2004;430:881–4. 10.1038/nature02808. PubMed DOI

Fang  B, Li  Q, Wan  Z  et al.  Exploring the association between cervical microbiota and HR-HPV infection based on 16S rRNA gene and metagenomic sequencing. Front Cell Infect Microbiol. 2022;12:922554. 10.3389/fcimb.2022.922554. PubMed DOI PMC

Fawley  KP, Fawley  MW. Observations on the diversity and ecology of freshwater Nannochloropsis (Eustigmatophyceae), with descriptions of new taxa. Protist. 2007;158:325–36. 10.1016/j.protis.2007.03.003. PubMed DOI

Fenchel  T. The ecology of heterotrophic microflagellates. In: Marshall  KC (ed.), Advances in Microbial Ecology. Vol. 9. New York: Springer, 1986, 57–97., 10.1007/978-1-4757-0611-6_2. DOI

Fermani  P, Metz  S, Balagué  V  et al.  Microbial eukaryote assemblages and potential novel diversity in four tropical East African Great Lakes. FEMS Microbiol Ecol. 2021;97:fiab114. 10.1093/femsec/fiab114. PubMed DOI

Filker  S, Sommaruga  R, Vila  I  et al.  Microbial eukaryote plankton communities of high-mountain lakes from three continents exhibit strong biogeographic patterns. Mol Ecol. 2016;25:2286–301. 10.1111/mec.13633. PubMed DOI PMC

Fuhrman  JA, Cram  JA, Needham  DM. Marine microbial community dynamics and their ecological interpretation. Nat Rev Micro. 2015;13:133–46. 10.1038/nrmicro3417. PubMed DOI

Giner  CR, Balagué  V, Krabberød  AK  et al.  Quantifying long-term recurrence in planktonic microbial eukaryotes. Mol Ecol. 2019;28:923–35. 10.1111/mec.14929. PubMed DOI

Gomaa  F, Utter  DR, Loo  W  et al.  Exploring the protist microbiome: the diversity of bacterial communities associated with Arcella spp. (Tubulina: Amoebozoa). Eur J Protistol. 2022;82:125861. 10.1016/j.ejop.2021.125861. PubMed DOI

Grossart  H, Massana  R, McMahon  KD  et al.  Linking metagenomics to aquatic microbial ecology and biogeochemical cycles. Limnol Oceanogr. 2020;65. 10.1002/lno.11382. DOI

Guillou  L, Bachar  D, Audic  S  et al.  The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 2012;41:D597–604. 10.1093/nar/gks1160. PubMed DOI PMC

Hao  Q, Wang  O, Jiao  J-Y  et al.  Methylobacter couples methane oxidation and N2O production in hypoxic wetland soil. Soil Biol Biochem. 2022;175:108863. 10.1016/j.soilbio.2022.108863. DOI

Hermans  SM, Buckley  HL, Case  BS  et al.  Using soil bacterial communities to predict physico-chemical variables and soil quality. Microbiome. 2020;8:79. 10.1186/s40168-020-00858-1. PubMed DOI PMC

Isidoro-Ayza  M, Lorch  JM, Grear  DA  et al.  Pathogenic lineage of Perkinsea associated with mass mortality of frogs across the United States. Sci Rep. 2017;7:10288. 10.1038/s41598-017-10456-1. PubMed DOI PMC

Itoïz  S, Metz  S, Derelle  E  et al.  Emerging parasitic protists: the case of Perkinsea. Front Microbiol. 2022;12:735815. 10.3389/fmicb.2021.735815. PubMed DOI PMC

Jacobsen  BA, Simonsen  P. Disturbance events affecting phytoplankton biomass, composition and species diversity in a shallow, eutrophic, temperate lake. Hydrobiologia. 1993;249:9–14. 10.1007/BF00008838. DOI

Jane  SF, Hansen  GJA, Kraemer  BM  et al.  Widespread deoxygenation of temperate lakes. Nature. 2021;594:66–70. 10.1038/s41586-021-03550-y. PubMed DOI

Jane  SF, Mincer  JL, Lau  MP  et al.  Longer duration of seasonal stratification contributes to widespread increases in lake hypoxia and anoxia. Global Change Biol. 2023;29:1009–23. 10.1111/gcb.16525. PubMed DOI

Jasser  I. The influence of macrophytes on a phytoplankton community in experimental conditions. Hydrobiologia. 1995;306:21–32. 10.1007/BF00007855. DOI

Kammerlander  B, Koinig  KA, Rott  E  et al.  Ciliate community structure and interactions within the planktonic food web in two alpine lakes of contrasting transparency. Freshwat Biol. 2016;61:1950–65. 10.1111/fwb.12828. PubMed DOI PMC

Kent  AD, Yannarell  AC, Rusak  JA  et al.  Synchrony in aquatic microbial community dynamics. ISME J. 2007;1:38–47. 10.1038/ismej.2007.6. PubMed DOI

Kiersztyn  B, Chróst  R, Kaliński  T  et al.  Structural and functional microbial diversity along a eutrophication gradient of interconnected lakes undergoing anthropopressure. Sci Rep. 2019;9:11144. 10.1038/s41598-019-47577-8. PubMed DOI PMC

Kirillin  G, Shatwell  T. Generalized scaling of seasonal thermal stratification in lakes. Earth Sci Rev. 2016;161:179–90. 10.1016/j.earscirev.2016.08.008. DOI

Kolinko  S, Richter  M, Glöckner  F  et al.  Single-cell genomics of uncultivated deep-branching magnetotactic bacteria reveals a conserved set of magnetosome genes. Environ Microbiol. 2016;18:21–37. 10.1111/1462-2920.12907. PubMed DOI

Kong  X, Seewald  M, Dadi  T  et al.  Unravelling winter diatom blooms in temperate lakes using high frequency data and ecological modeling. Water Res. 2021;190:116681. 10.1016/j.watres.2020.116681. PubMed DOI

Lahti  L, Shetty  S. Microbiome R package. Boston: Bioconductor, 2017. 10.18129/B9.bioc.microbiome. DOI

Lefranc  M, Thénot  A, Lepère  C  et al.  Genetic diversity of small eukaryotes in lakes differing by their trophic status. Appl Environ Microb. 2005;71:5935–42. 10.1128/AEM.71.10.5935-5942.2005. PubMed DOI PMC

Lepère  C, Masquelier  S, Mangot  J-F  et al.  Vertical structure of small eukaryotes in three lakes that differ by their trophic status: a quantitative approach. ISME J. 2010;4:1509–19. 10.1038/ismej.2010.83. PubMed DOI

Lepère  C, Domaizon  I, Hugoni  M  et al.  Diversity and dynamics of active small microbial eukaryotes in the anoxic zone of a freshwater meromictic lake (Pavin, France). Front Microbiol. 2016;7. 10.3389/fmicb.2016.00130. PubMed DOI PMC

Lima-Mendez  G, Faust  K, Henry  N  et al.  Determinants of community structure in the global plankton interactome. Science. 2015;348:1262073. 10.1126/science.1262073. PubMed DOI

Limburg  KE, Breitburg  D, Swaney  DP  et al.  Ocean deoxygenation: a primer. One Earth. 2020;2:24–9. 10.1016/j.oneear.2020.01.001. DOI

Lin  H, Peddada  SD. Analysis of compositions of microbiomes with bias correction. Nat Commun. 2020;11:3514. 10.1038/s41467-020-17041-7. PubMed DOI PMC

Liu  L, Yang  J, Yu  X  et al.  Patterns in the composition of microbial communities from a subtropical river: effects of environmental, spatial and temporal factors. PLoS One. 2013;8:e81232. 10.1371/journal.pone.0081232. PubMed DOI PMC

Liu  L, Yang  J, Yu  Z  et al.  The biogeography of abundant and rare bacterioplankton in the lakes and reservoirs of China. ISME J. 2015;9:2068–77. 10.1038/ismej.2015.29. PubMed DOI PMC

Logares  R, Tesson  SVM, Canbäck  B  et al.  Contrasting prevalence of selection and drift in the community structuring of bacteria and microbial eukaryotes. Environ Microbiol. 2018;20:2231–40. 10.1111/1462-2920.14265. PubMed DOI

López-García  P, Rodríguez-Valera  F, Pedrós-Alió  C  et al.  Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Nature. 2001;409:603–7. 10.1038/35054537. PubMed DOI

Lovejoy  C, Massana  R, Pedrós-Alió  C. Diversity and distribution of marine microbial eukaryotes in the Arctic Ocean and adjacent seas. Appl Environ Microb. 2006;72:3085–95. 10.1128/AEM.72.5.3085-3095.2006. PubMed DOI PMC

Lu  X, Weisse  T. Top-down control of planktonic ciliates by microcrustacean predators is stronger in lakes than in the ocean. Sci Rep. 2022;12:10501. 10.1038/s41598-022-14301-y. PubMed DOI PMC

Manel  S, Guerin  P-E, Mouillot  D  et al.  Global determinants of freshwater and marine fish genetic diversity. Nat Commun. 2020;11:692. 10.1038/s41467-020-14409-7. PubMed DOI PMC

Mangot  J-F, Lepère  C, Bouvier  C  et al.  Community structure and dynamics of small eukaryotes targeted by new oligonucleotide probes: new insight into the lacustrine microbial food web. Appl Environ Microb. 2009;75:6373–81. 10.1128/AEM.00607-09. PubMed DOI PMC

Margalef  R. Life forms of phytoplankton as survival alternatives in an unstable environment. Oceanol Acta. 1978;1:493–509.

Martin  M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17:10. 10.14806/ej.17.1.200. DOI

Massana  R, Gobet  A, Audic  S  et al.  Marine protist diversity in european coastal waters and sediments as revealed by high-throughput sequencing. Environ Microbiol. 2015;17:4035–49. 10.1111/1462-2920.12955. PubMed DOI

McMurdie  PJ, Holmes  S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One. 2013;8:e61217. 10.1371/journal.pone.0061217. PubMed DOI PMC

Medinger  R, Nolte  V, Pandey  RV  et al.  Diversity in a hidden world: potential and limitation of next-generation sequencing for surveys of molecular diversity of eukaryotic microorganisms. Mol Ecol. 2010;19:32–40. 10.1111/j.1365-294X.2009.04478.x. PubMed DOI PMC

Metz  S, Huber  P, Accattatis  V  et al.  Freshwater protists: unveiling the unexplored in a large floodplain system. Environ Microbiol. 2022;24:1731–45. 10.1111/1462-2920.15838. PubMed DOI

Mikhailov  IS, Galachyants  YP, Bukin  YS  et al.  Seasonal succession and coherence among bacteria and microeukaryotes in Lake Baikal. Microb Ecol. 2022;84:404–22. 10.1007/s00248-021-01860-2. PubMed DOI

Miller  EC. Comparing diversification rates in lakes, rivers, and the sea. Evolution. 2021;75:2055–73. 10.1111/evo.14295. PubMed DOI

Millette  NC, Gast  RJ, Luo  JY  et al.  Mixoplankton and mixotrophy: future research priorities. J Plankton Res. 2023;45:576–96. 10.1093/plankt/fbad020. PubMed DOI PMC

Mitsi  K, Richter  DJ, Arroyo  AS  et al.  Taxonomic composition, community structure and molecular novelty of microeukaryotes in a temperate oligomesotrophic lake as revealed by metabarcoding. Sci Rep. 2023;13:3119. 10.1038/s41598-023-30228-4. PubMed DOI PMC

Morabito  C, Bournaud  C, Maës  C  et al.  The lipid metabolism in thraustochytrids. Prog Lipid Res. 2019;76:101007. 10.1016/j.plipres.2019.101007. PubMed DOI

Moustaka-Gouni  M, Kormas  KA, Scotti  M  et al.  Warming and acidification effects on planktonic heterotrophic pico- and nanoflagellates in a mesocosm experiment. Protist. 2016;167:389–410. 10.1016/j.protis.2016.06.004. PubMed DOI

Mukherjee  I, Hodoki  Y, Nakano  S. Seasonal dynamics of heterotrophic and plastidic protists in the water column of Lake Biwa, Japan. Aquat Microb Ecol. 2017;80:123–37. 10.3354/ame01843. DOI

Nakano  S, Ishii  N, Manage  P  et al.  Trophic roles of heterotrophic nanoflagellates and ciliates among planktonic organisms in a hypereutrophic pond. Aquat Microb Ecol. 1998;16:153–61. 10.3354/ame016153. DOI

Nandini  S, Miracle  MR, Vicente  E  et al.  Strain-related differences in bacterivory and demography of Diaphanosoma mongolianum (Cladocera) in relation to diet and previous exposure to cyanobacteria in nature. Aquat Ecol. 2021;55:1225–39. 10.1007/s10452-021-09892-z. DOI

Nolte  V, Pandey  RV, Jost  S  et al.  Contrasting seasonal niche separation between rare and abundant taxa conceals the extent of protist diversity: high seasonal protist abundance turnover. Mol Ecol. 2010;19:2908–15. 10.1111/j.1365-294X.2010.04669.x. PubMed DOI PMC

O'Reilly  CM, Sharma  S, Gray  DK  et al.  Rapid and highly variable warming of lake surface waters around the globe. Geophys Res Lett. 2015;42. 10.1002/2015GL066235. DOI

Obertegger  U, Pindo  M, Flaim  G. Multifaceted aspects of synchrony between freshwater prokaryotes and protists. Mol Ecol. 2019;28:4500–12. 10.1111/mec.15228. PubMed DOI

Oikonomou  A, Filker  S, Breiner  H  et al.  Protistan diversity in a permanently stratified meromictic lake (Lake Alatsee, sw germany). Environ Microbiol. 2015;17:2144–57. 10.1111/1462-2920.12666. PubMed DOI

Okazaki  Y, Nakano  S. Vertical partitioning of freshwater bacterioplankton community in a deep mesotrophic lake with a fully oxygenated hypolimnion (Lake Biwa, Japan). Environ Microbiol Rep. 2016;8:780–8. 10.1111/1758-2229.12439. PubMed DOI

Oksanen  J, Simpson  GL, Blanchet  FG  et al.  Vegan: community ecology package. CRAN, 2023. https://github.com/vegandevs/vegan (8 January 2024, date last accessed).

Oliverio  AM, Power  JF, Washburne  A  et al.  The ecology and diversity of microbial eukaryotes in geothermal springs. ISME J. 2018;12:1918–28. 10.1038/s41396-018-0104-2. PubMed DOI PMC

Orellana  LH, Francis  TB, Ferraro  M  et al.  Verrucomicrobiota are specialist consumers of sulfated methyl pentoses during diatom blooms. ISME J. 2022;16:630–41. 10.1038/s41396-021-01105-7. PubMed DOI PMC

Pan  J, Del Campo  J, Keeling  PJ. Reference tree and environmental sequence diversity of Labyrinthulomycetes. J Eukar Microbiol. 2017;64:88–96. 10.1111/jeu.12342. PubMed DOI

Panizzo  VN, Roberts  S, Swann  GEA  et al.  Spatial differences in dissolved silicon utilization in Lake Baikal, Siberia: examining the impact of high diatom biomass events and eutrophication. Limnol Oceanogr. 2018;63:1562–78. 10.1002/lno.10792. DOI

Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol. 2016;18:1403–14. 10.1111/1462-2920.13023. PubMed DOI

Paradis  E, Schliep  K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics. 2019;35:526–8. 10.1093/bioinformatics/bty633. PubMed DOI

Paver  SF, Youngblut  ND, Whitaker  RJ  et al.  Phytoplankton succession affects the composition of p olynucleobacter subtypes in humic lakes. Environ Microbiol. 2015;17:816–28. 10.1111/1462-2920.12529. PubMed DOI

Pieczyńska  E, Kołodziejczyk  A, Rybak  JI. The responses of littoral invertebrates to eutrophication-linked changes in plant communities. Hydrobiologia. 1998;391:9–21. 10.1023/A:1003503731720. DOI

Posch  T, Eugster  B, Pomati  F  et al.  Network of interactions between ciliates and phytoplankton during spring. Front Microbiol. 2015;6. 10.3389/fmicb.2015.01289. PubMed DOI PMC

Quast  C, Pruesse  E, Yilmaz  P  et al.  The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2012;41:D590–6. 10.1093/nar/gks1219. PubMed DOI PMC

Råman Vinnå  L, Medhaug  I, Schmid  M  et al.  The vulnerability of lakes to climate change along an altitudinal gradient. Commun Earth Environ. 2021;2:35. 10.1038/s43247-021-00106-w DOI

Rasconi  S, Winter  K, Kainz  MJ. Temperature increase and fluctuation induce phytoplankton biodiversity loss—evidence from a multi-seasonal mesocosm experiment. Ecol Evol. 2017;7:2936–46. 10.1002/ece3.2889. PubMed DOI PMC

Reche  I, Pulido-Villena  E, Morales-Baquero  R  et al.  Does ecosystem size determine aquatic bacterial richness?. Ecology. 2005;86:1715–22. 10.1890/04-1587. DOI

Reis  PCJ, Thottathil  SD, Prairie  YT. The role of methanotrophy in the microbial carbon metabolism of temperate lakes. Nat Commun. 2022;13:43. 10.1038/s41467-021-27718-2. PubMed DOI PMC

Richter  DJ, Berney  C, Strassert  JFH  et al.  EukProt: a database of genome-scale predicted proteins across the diversity of eukaryotes. Peer Commun J. 2022;2:e56. 10.24072/pcjournal.173. DOI

Rognes  T, Flouri  T, Nichols  B  et al.  VSEARCH: a versatile open source tool for metagenomics. PeerJ. 2016;4:e2584. 10.7717/peerj.2584. PubMed DOI PMC

Rusak  JA, Jones  SE, Kent  AD  et al.  Spatial synchrony in microbial community dynamics: testing among-year and lake patterns. SIL Proc. 2009;30:936–40. 10.1080/03680770.2009.11902275. DOI

Rybak  JI, Błędzki  LA. Slodkowodne Skorupiaki Planktonowe. Klucz do oznaczania gatunków. (Freshwater planktonie crustaceans. Species key). Warsaw: Wydawnictwa Uniwersytetu Warszawskiego, 2010.

Saito  H, Ota  T, Suzuki  K  et al.  Role of heterotrophic dinoflagellate Gyrodinium sp. in the fate of an iron induced diatom bloom. Geophys Res Lett. 2006;33:2005GL025366. 10.1029/2005GL025366. DOI

Sarmento  H, Gasol  JM. Use of phytoplankton-derived dissolved organic carbon by different types of bacterioplankton. Environ Microbiol. 2012;14:2348–60. 10.1111/j.1462-2920.2012.02787.x. PubMed DOI

Sarmento  H, Morana  C, Gasol  JM. Bacterioplankton niche partitioning in the use of phytoplankton-derived dissolved organic carbon: quantity is more important than quality. ISME J. 2016;10:2582–92. 10.1038/ismej.2016.66. PubMed DOI PMC

Schiaffino  MR, Lara  E, Fernández  LD  et al.  Microbial eukaryote communities exhibit robust biogeographical patterns along a gradient of Patagonian and Antarctic lakes. Environ Microbiol. 2016;18:5249–64. 10.1111/1462-2920.13566. PubMed DOI

Schiwitza  S, Lisson  H, Arndt  H  et al.  Morphological and molecular investigation on freshwater choanoflagellates (Craspedida, Salpingoecidae) from the River Rhine at Cologne (Germany). Eur J Protistol. 2020;73:125687. 10.1016/j.ejop.2020.125687. PubMed DOI

Schmidtko  S, Stramma  L, Visbeck  M. Decline in global oceanic oxygen content during the past five decades. Nature. 2017;542:335–9. 10.1038/nature21399. PubMed DOI

Schnepf  E, Kühn  SF. Food uptake and fine structure of Cryothecomonas longipes sp. nov., a marine nanoflagellate incertae sedis feeding phagotrophically on large diatoms. Helgoland Mar Res. 2000;54:18–32. 10.1007/s101520050032. DOI

Seeleuthner  Y, Mondy  S, Lombard  V  et al. , Single-cell genomics of multiple uncultured stramenopiles reveals underestimated functional diversity across oceans. Nat Commun. 2018;9:310. 10.1038/s41467-017-02235-3. PubMed DOI PMC

Selosse  M, Charpin  M, Not  F. Mixotrophy everywhere on land and in water: the grand écart hypothesis. Ecol Lett. 2017;20:246–63. 10.1111/ele.12714. PubMed DOI

Shang  Y, Wu  X, Wang  X  et al.  Factors affecting seasonal variation of microbial community structure in Hulun Lake, China. Sci Total Environ. 2022;805:150294. 10.1016/j.scitotenv.2021.150294. PubMed DOI

Shi  J, Zhang  B, Liu  J  et al.  Spatiotemporal dynamics in microbial communities mediating biogeochemical cycling of nutrients across the Xiaowan Reservoir in Lancang River. Sci Total Environ. 2022;813:151862. 10.1016/j.scitotenv.2021.151862. PubMed DOI

Siano  R, Lassudrie  M, Cuzin  P  et al.  Sediment archives reveal irreversible shifts in plankton communities after World War II and agricultural pollution. Curr Biol. 2021;31:2682–2689.e7. 10.1016/j.cub.2021.03.079. PubMed DOI

Sieber  G, Beisser  D, Bock  C  et al.  Protistan and fungal diversity in soils and freshwater lakes are substantially different. Sci Rep. 2020;10:20025. 10.1038/s41598-020-77045-7. PubMed DOI PMC

Šimek  K, Kasalický  V, Jezbera  J  et al.  Differential freshwater flagellate community response to bacterial food quality with a focus on Limnohabitans bacteria. ISME J. 2013;7:1519–30. 10.1038/ismej.2013.57. PubMed DOI PMC

Šimek  K, Nedoma  J, Znachor  P  et al.  A finely tuned symphony of factors modulates the microbial food web of a freshwater reservoir in spring. Limnol Oceanogr. 2014;59:1477–92. 10.4319/lo.2014.59.5.1477. DOI

Šimek  K, Grujčić  V, Mukherjee  I  et al.  Cascading effects in freshwater microbial food webs by predatory Cercozoa, Katablepharidacea and ciliates feeding on aplastidic bacterivorous cryptophytes. FEMS Microbiol Ecol. 2020;96:fiaa121. 10.1093/femsec/fiaa121. PubMed DOI PMC

Simon  M, Jardillier  L, Deschamps  P  et al.  Complex communities of small protists and unexpected occurrence of typical marine lineages in shallow freshwater systems. Environ Microbiol. 2015a;17:3610–27. 10.1111/1462-2920.12591. PubMed DOI PMC

Simon  M, López-García  P, Deschamps  P  et al.  Marked seasonality and high spatial variability of protist communities in shallow freshwater systems. ISME J. 2015b;9:1941–53. 10.1038/ismej.2015.6. PubMed DOI PMC

Singer  D, Seppey  CVW, Lentendu  G  et al.  Protist taxonomic and functional diversity in soil, freshwater and marine ecosystems. Environ Int. 2021;146:106262. 10.1016/j.envint.2020.106262. PubMed DOI

Sommer  U, Gliwicz  ZM, Lampert  W  et al.  The PEG-model of seasonal succession of planktonic events in fresh waters. Archiv_Hydrobiologie. 1986;106:433–71.

Sommer  U, Adrian  R, De Senerpont Domis  L  et al.  Beyond the Plankton Ecology Group (PEG) model: mechanisms driving plankton succession. Annu Rev Ecol Evol Syst. 2012;43:429–48. 10.1146/annurev-ecolsys-110411-160251. DOI

Steinsdóttir  HGR, Schauberger  C, Mhatre  S  et al.  Aerobic and anaerobic methane oxidation in a seasonally anoxic basin. Limnol Oceanogr. 2022;67:1257–73. 10.1002/lno.12074. PubMed DOI PMC

Stock  A, Jürgens  K, Bunge  J  et al.  Protistan diversity in suboxic and anoxic waters of the Gotland Deep (Baltic Sea) as revealed by 18S rRNA clone libraries. Aquat Microb Ecol. 2009;55:267–84. 10.3354/ame01301. DOI

Stockner  JG. Phototrophic picoplankton: an overview from marine and freshwater ecosystems. Limnol Oceanogr. 1988;33:765–75. 10.4319/lo.1988.33.4part2.0765. DOI

Stockwell  JD, Doubek  JP, Adrian  R  et al.  Storm impacts on phytoplankton community dynamics in lakes. Global Change Biol. 2020;26:2756–84. 10.1111/gcb.15033. PubMed DOI PMC

Stoeck  T, Bass  D, Nebel  M  et al.  Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol Ecol. 2010;19:21–31. 10.1111/j.1365-294X.2009.04480.x. PubMed DOI

Stoof-Leichsenring  KR, Dulias  K, Biskaborn  BK  et al.  Lake-depth related pattern of genetic and morphological diatom diversity in boreal Lake Bolshoe Toko, Eastern Siberia. PLoS One. 2020;15:e0230284. 10.1371/journal.pone.0230284. PubMed DOI PMC

Sunagawa  S, Acinas  SG, Bork  P  et al.  Tara Oceans: towards global ocean ecosystems biology. Nat Rev Micro. 2020;18:428–45. 10.1038/s41579-020-0364-5. PubMed DOI

Tada  Y, Taniguchi  A, Sato-Takabe  Y  et al.  Growth and succession patterns of major phylogenetic groups of marine bacteria during a mesocosm diatom bloom. J Oceanogr. 2012;68:509–19. 10.1007/s10872-012-0114-z. DOI

Takahashi  K, Moestrup  Ø, Jordan  RW  et al.  Two new freshwater Woloszynskioids Asulcocephalium miricentonis gen. et sp. nov. and Leiocephalium pseudosanguineum gen. et sp. nov. (Suessiaceae, Dinophyceae) lacking an apical furrow apparatus. Protist. 2015;166:638–58. 10.1016/j.protis.2015.10.003. PubMed DOI

Tammert  H, Tšertova  N, Kiprovskaja  J  et al.  Contrasting seasonal and interannual environmental drivers in bacterial communities within a large shallow lake: evidence from a seven year survey. Aquat Microb Ecol. 2015;75:43–54. 10.3354/ame01744. DOI

Van Grinsven  S, Sinninghe Damsté  JS, Harrison  J  et al.  Nitrate promotes the transfer of methane-derived carbon from the methanotroph Methylobacter sp. to the methylotroph Methylotenera sp. in eutrophic lake water. Limnol Oceanogr. 2021;66:878–91. 10.1002/lno.11648. DOI

Verbeek  L, Gall  A, Hillebrand  H  et al.  Warming and oligotrophication cause shifts in freshwater phytoplankton communities. Global Change Biol. 2018;24:4532–43. 10.1111/gcb.14337. PubMed DOI

Villarino  E, Watson  JR, Jönsson  B  et al.  Large-scale ocean connectivity and planktonic body size. Nat Commun. 2018;9:142. 10.1038/s41467-017-02535-8. PubMed DOI PMC

Wang  Q, Garrity  GM, Tiedje  JM  et al.  Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microb. 2007;73:5261–7. 10.1128/AEM.00062-07. PubMed DOI PMC

Wickham  H. 2016. ggplot2: Elegant Graphics for Data Analysis. New York: Springer International Publishing. https://ggplot2.tidyverse.org (8 January 2024, date last accessed).

Wilken  S, Soares  M, Urrutia-Cordero  P  et al.  Primary producers or consumers? Increasing phytoplankton bacterivory along a gradient of lake warming and browning. Limnol Oceanogr. 2018;63. 10.1002/lno.10728. DOI

Woodhouse  JN, Kinsela  AS, Collins  RN  et al.  Microbial communities reflect temporal changes in cyanobacterial composition in a shallow ephemeral freshwater lake. ISME J. 2016;10:1337–51. 10.1038/ismej.2015.218. PubMed DOI PMC

Woodhouse  JN, Ziegler  J, Grossart  H-P  et al.  Cyanobacterial community composition and bacteria–bacteria interactions promote the stable occurrence of particle-associated bacteria. Front Microbiol. 2018;9:777. 10.3389/fmicb.2018.00777. PubMed DOI PMC

Woolway  RI, Merchant  CJ. Worldwide alteration of lake mixing regimes in response to climate change. Nat Geosci. 2019;12:271–6. 10.1038/s41561-019-0322-x. DOI

Worden  AZ, Cuvelier  ML, Bartlett  DH. In-depth analyses of marine microbial community genomics. Trends Microbiol. 2006;14:331–6. 10.1016/j.tim.2006.06.008. PubMed DOI

Xie  N, Wang  Z, Hunt  DE  et al.  Niche partitioning of Labyrinthulomycete protists across sharp coastal gradients and their putative relationships with bacteria and fungi. Front Microbiol. 2022;13:906864. 10.3389/fmicb.2022.906864. PubMed DOI PMC

Xiong  W, Jousset  A, Li  R  et al.  A global overview of the trophic structure within microbiomes across ecosystems. Environ Int. 2021;151:106438. 10.1016/j.envint.2021.106438. PubMed DOI

Yu  C, Li  C, Wang  T  et al.  Combined effects of experimental warming and eutrophication on phytoplankton dynamics and nitrogen uptake. Water. 2018;10:1057. 10.3390/w10081057. DOI

Zagumyonnyi  DG, Radaykina  LV, Keeling  PJ  et al.  Centrohelid heliozoans of Ukraine with a description of a new genus and species (Haptista: centroplasthelida). Eur J Protistol. 2022;86:125916. 10.1016/j.ejop.2022.125916. PubMed DOI

Zhang  M, Shi  X, Chen  F  et al.  The underlying causes and effects of phytoplankton seasonal turnover on resource use efficiency in freshwater lakes. Ecol Evol. 2021;11:8897–909. 10.1002/ece3.7724. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...