Spatio-temporal changes of small protist and free-living bacterial communities in a temperate dimictic lake: insights from metabarcoding and machine learning
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články
Grantová podpora
European Molecular Biology Organization
4150
Ministry of Education and Science
2020/37/B/NZ8/01456
National Science Centre, Poland
PubMed
39039016
PubMed Central
PMC11302952
DOI
10.1093/femsec/fiae104
PII: 7718122
Knihovny.cz E-zdroje
- Klíčová slova
- abiotic factors, freshwater environments, prokaryotes, protists, stratification, temporal dynamics,
- MeSH
- Bacteria * genetika klasifikace MeSH
- biodiverzita MeSH
- časoprostorová analýza MeSH
- ekosystém MeSH
- Eukaryota * genetika klasifikace MeSH
- jezera * mikrobiologie MeSH
- mikrobiota * MeSH
- roční období MeSH
- strojové učení * MeSH
- taxonomické DNA čárové kódování * MeSH
- teplota MeSH
- Publikační typ
- časopisecké články MeSH
Microbial communities, which include prokaryotes and protists, play an important role in aquatic ecosystems and influence ecological processes. To understand these communities, metabarcoding provides a powerful tool to assess their taxonomic composition and track spatio-temporal dynamics in both marine and freshwater environments. While marine ecosystems have been extensively studied, there is a notable research gap in understanding eukaryotic microbial communities in temperate lakes. Our study addresses this gap by investigating the free-living bacteria and small protist communities in Lake Roś (Poland), a dimictic temperate lake. Metabarcoding analysis revealed that both the bacterial and protist communities exhibit distinct seasonal patterns that are not necessarily shaped by dominant taxa. Furthermore, machine learning and statistical methods identified crucial amplicon sequence variants (ASVs) specific to each season. In addition, we identified a distinct community in the anoxic hypolimnion. We have also shown that the key factors shaping the composition of analysed community are temperature, oxygen, and silicon concentration. Understanding these community structures and the underlying factors is important in the context of climate change potentially impacting mixing patterns and leading to prolonged stratification.
Zobrazit více v PubMed
Adrian R, O’Reilly CM, Zagarese H et al. Lakes as sentinels of climate change. Limnol Oceanogr. 2009;54:2283–97. 10.4319/lo.2009.54.6_part_2.2283. PubMed DOI PMC
Allaire J. RStudio: integrated development environment for R, Vol. 770. Boston: The R Project for Statistical Computing, 2012, 165–71.
Amaral-Zettler LA, McCliment EA, Ducklow HW et al. A method for studying protistan diversity using massively parallel sequencing of V9 hypervariable regions of small-subunit ribosomal RNA genes. PLoS One. 2009;4:e6372. PubMed PMC
Andrews S. FastQC: A Quality Control Tool for High Throughput Sequence Data [Online]. 2010. Available online at http://www.bioinformatics.babraham.ac.uk/projects/fastqc/.
Barton AD, Lozier MS, Williams RG. Physical controls of variability in North Atlantic phytoplankton communities: North Atlantic phytoplankton community variability. Limnol Oceanogr. 2015;60:181–97. 10.1002/lno.10011. DOI
Beng KC, Cerbin S, Monaghan MT et al. Long-term effects of surface-water temperature increase on plankton communities in artificially heated lakes: insights from eDNA metabarcoding. Authorea. 2023. 10.22541/au.168639128.85081228/v1. DOI
Bergkemper V, Stadler P, Weisse T. Moderate weather extremes alter phytoplankton diversity—a microcosm study. Freshwat Biol. 2018;63:1211–24. 10.1111/fwb.13127. DOI
Bernard C, Simpson AGB, Patterson DJ. Some free-living flagellates (protista) from anoxic habitats. Ophelia. 2000;52:113–42. 10.1080/00785236.1999.10409422. DOI
Bernhard JM, Kormas K, Pachiadaki MG et al. Benthic protists and fungi of Mediterranean deep hypsersaline anoxic basin redoxcline sediments. Front Microbiol. 2014;5. 10.3389/fmicb.2014.00605. PubMed DOI PMC
Beule L, Karlovsky P. Improved normalization of species count data in ecology by scaling with ranked subsampling (SRS): application to microbial communities. PeerJ. 2020;8:e9593. 10.7717/peerj.9593. PubMed DOI PMC
Bisanz J. Qiime2r (0.99). GitHub, 2018. https://github.com/jbisanz/qiime2R (8 January 2024, date last accessed).
Bock C, Salcher M, Jensen M et al. Synchrony of eukaryotic and prokaryotic planktonic communities in three seasonally sampled Austrian lakes. Front Microbiol. 2018;9:1290. 10.3389/fmicb.2018.01290. PubMed DOI PMC
Bock C, Jensen M, Forster D et al. Factors shaping community patterns of protists and bacteria on a European scale. Environ Microbiol. 2020;22:2243–60. 10.1111/1462-2920.14992. PubMed DOI
Boenigk J, Wodniok S, Bock C et al. Geographic distance and mountain ranges structure freshwater protist communities on a European scalе. Metabarcoding Metagenomics. 2018;2:e21519. 10.3897/mbmg.2.21519. DOI
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20. 10.1093/bioinformatics/btu170. PubMed DOI PMC
Bolyen E, Rideout JR, Dillon MR et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–7. 10.1038/s41587-019-0209-9. PubMed DOI PMC
Breiman L. Random Forests. Machine Learning. 2001;45:5–32. 10.1023/A:1010933404324. DOI
Breitburg D, Levin LA, Oschlies A et al. Declining oxygen in the global ocean and coastal waters. Science. 2018;359:eaam7240. 10.1126/science.aam7240. PubMed DOI
Budria A. Beyond troubled waters: the influence of eutrophication on host–parasite interactions. Funct Ecol. 2017;31:1348–58. 10.1111/1365-2435.12880. DOI
Bunse C, Pinhassi J. Marine bacterioplankton seasonal succession dynamics. Trends Microbiol. 2017;25:494–505. 10.1016/j.tim.2016.12.013. PubMed DOI
Burki F, Roger AJ, Brown MW et al. The new tree of eukaryotes. Trends Ecol Evol. 2019;35:43–55. 10.1016/j.tree.2019.08.008 PubMed DOI
Callahan BJ, McMurdie PJ, Rosen MJ et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3. 10.1038/nmeth.3869. PubMed DOI PMC
Caporaso JG, Lauber CL, Walters WA et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci U S A. 2011;108 Suppl 1:4516–22. 10.1073/pnas.1000080107. PubMed DOI PMC
Caracciolo M, Rigaut-Jalabert F, Romac S et al. Seasonal dynamics of marine protist communities in tidally mixed coastal waters. Mol Ecol. 2022;31:3761–83. 10.1111/mec.16539. PubMed DOI PMC
Caron DA. Inorganic nutrients, bacteria, and the microbial loop. Microb Ecol. 1994;28:295–8. 10.1007/BF00166820. PubMed DOI
Carr S, Buan NR. Insights into the biotechnology potential of Methanosarcina. Front Microbiol. 2022;13:1034674. 10.3389/fmicb.2022.1034674. PubMed DOI PMC
Celewicz S, Gołdyn B. Phytoplankton communities in temporary ponds under different climate scenarios. Sci Rep. 2021;11:17969. 10.1038/s41598-021-97516-9. PubMed DOI PMC
Chang K-H, Doi H, Nishibe Y et al. Feeding habits of omnivorous Asplanchna: comparison of diet composition among Asplanchna herricki, A. priodonta and A. girodi in pond ecosystems. J Limnol. 2010;69:209–16. 10.3274/jl10-69-2-03 DOI
Charvet S, Vincent WF, Comeau A et al. Pyrosequencing analysis of the protist communities in a High Arctic meromictic lake: DNA preservation and change. Front Microbio. 2012;3. 10.3389/fmicb.2012.00422. PubMed DOI PMC
Chessel D, Dufour A-B, Thioulouse J. The ade4 package—I: one-table methods. R News. 2004;4:5–10.
Choi J, Park JS. Comparative analyses of the V4 and V9 regions of 18S rDNA for the extant eukaryotic community using the Illumina platform. Sci Rep. 2020;10:6519. 10.1038/s41598-020-63561-z. PubMed DOI PMC
Cruaud P, Vigneron A, Fradette M-S et al. Annual protist community dynamics in a freshwater ecosystem undergoing contrasted climatic conditions: the Saint-Charles River (Canada). Front Microbiol. 2019;10:2359. 10.3389/fmicb.2019.02359. PubMed DOI PMC
Cruaud P, Vigneron A, Fradette M et al. Annual bacterial community cycle in a seasonally ice-covered river reflects environmental and climatic conditions. Limnol Oceanogr. 2020;65:65. 10.1002/lno.11130. DOI
Crump BC, Hobbie JE. Synchrony and seasonality in bacterioplankton communities of two temperate rivers. Limnol Oceanogr. 2005;50:1718–29. 10.4319/lo.2005.50.6.1718. DOI
Da Silva CFM, Torgan LC, Schneck F. Temperature and surface runoff affect the community of periphytic diatoms and have distinct effects on functional groups: evidence of a mesocosms experiment. Hydrobiologia. 2019;839:37–50. 10.1007/s10750-019-03992-6. DOI
Dakos V, Benincà E, Van Nes EH et al. Interannual variability in species composition explained as seasonally entrained chaos. Proc R Soc B. 2009;276:2871–80. 10.1098/rspb.2009.0584. PubMed DOI PMC
Daniel ADC, Pedrós-Alió C, Pearce DA et al. Composition and interactions among bacterial, microeukaryotic, and T4-like viral assemblages in lakes from both polar zones. Front Microbiol. 2016;7. 10.3389/fmicb.2016.00337. PubMed DOI PMC
David GM, López-García P, Moreira D et al. Small freshwater ecosystems with dissimilar microbial communities exhibit similar temporal patterns. Mol Ecol. 2021;30:2162–77. 10.1111/mec.15864. PubMed DOI
Dawidowicz P. Effectiveness of phytoplankton control by large-bodied and small-bodied zooplankton. In: Gulati RD, Lammens EHRR, Meijer M-L et al.. et al. (eds.), Biomanipulation Tool for Water Management. Heidelberg: Springer, 1990, 43–7. 10.1007/978-94-017-0924-8_4. DOI
de Vargas C, Audic S, Henry N et al. Eukaryotic plankton diversity in the sunlit ocean. Science. 2015;348. 10.1126/science.1261605. PubMed DOI
Dodson S. Predicting crustacean zooplankton species richness. Limnol Oceanogr. 1992;37:848–56. 10.4319/lo.1992.37.4.0848. DOI
Dokulil MT, De Eyto E, Maberly SC et al. Increasing maximum lake surface temperature under climate change. Clim Change. 2021;165:56. 10.1007/s10584-021-03085-1. DOI
Drake JA. The mechanics of community assembly and succession. J Theor Biol. 1990;147:213–33. 10.1016/S0022-5193(05)80053-0. DOI
Drebes G, Kühn SF, Gmelch A et al. Cryothecomonas aestivalis sp. nov., a colourless nanoflagellate feeding on the marine centric diatom Guinardia delicatula (Cleve) Hasle. Helgolander Meeresunters. 1996;50:497–515. 10.1007/BF02367163. DOI
Eckert EM, Salcher MM, Posch T et al. Rapid successions affect microbial N -acetyl-glucosamine uptake patterns during a lacustrine spring phytoplankton bloom. Environ Microbiol. 2012;14:794–806. 10.1111/j.1462-2920.2011.02639.x. PubMed DOI
Edwards M, Richardson AJ. Impact of climate change on marine pelagic phenology and trophic mismatch. Nature. 2004;430:881–4. 10.1038/nature02808. PubMed DOI
Fang B, Li Q, Wan Z et al. Exploring the association between cervical microbiota and HR-HPV infection based on 16S rRNA gene and metagenomic sequencing. Front Cell Infect Microbiol. 2022;12:922554. 10.3389/fcimb.2022.922554. PubMed DOI PMC
Fawley KP, Fawley MW. Observations on the diversity and ecology of freshwater Nannochloropsis (Eustigmatophyceae), with descriptions of new taxa. Protist. 2007;158:325–36. 10.1016/j.protis.2007.03.003. PubMed DOI
Fenchel T. The ecology of heterotrophic microflagellates. In: Marshall KC (ed.), Advances in Microbial Ecology. Vol. 9. New York: Springer, 1986, 57–97., 10.1007/978-1-4757-0611-6_2. DOI
Fermani P, Metz S, Balagué V et al. Microbial eukaryote assemblages and potential novel diversity in four tropical East African Great Lakes. FEMS Microbiol Ecol. 2021;97:fiab114. 10.1093/femsec/fiab114. PubMed DOI
Filker S, Sommaruga R, Vila I et al. Microbial eukaryote plankton communities of high-mountain lakes from three continents exhibit strong biogeographic patterns. Mol Ecol. 2016;25:2286–301. 10.1111/mec.13633. PubMed DOI PMC
Fuhrman JA, Cram JA, Needham DM. Marine microbial community dynamics and their ecological interpretation. Nat Rev Micro. 2015;13:133–46. 10.1038/nrmicro3417. PubMed DOI
Giner CR, Balagué V, Krabberød AK et al. Quantifying long-term recurrence in planktonic microbial eukaryotes. Mol Ecol. 2019;28:923–35. 10.1111/mec.14929. PubMed DOI
Gomaa F, Utter DR, Loo W et al. Exploring the protist microbiome: the diversity of bacterial communities associated with Arcella spp. (Tubulina: Amoebozoa). Eur J Protistol. 2022;82:125861. 10.1016/j.ejop.2021.125861. PubMed DOI
Grossart H, Massana R, McMahon KD et al. Linking metagenomics to aquatic microbial ecology and biogeochemical cycles. Limnol Oceanogr. 2020;65. 10.1002/lno.11382. DOI
Guillou L, Bachar D, Audic S et al. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 2012;41:D597–604. 10.1093/nar/gks1160. PubMed DOI PMC
Hao Q, Wang O, Jiao J-Y et al. Methylobacter couples methane oxidation and N2O production in hypoxic wetland soil. Soil Biol Biochem. 2022;175:108863. 10.1016/j.soilbio.2022.108863. DOI
Hermans SM, Buckley HL, Case BS et al. Using soil bacterial communities to predict physico-chemical variables and soil quality. Microbiome. 2020;8:79. 10.1186/s40168-020-00858-1. PubMed DOI PMC
Isidoro-Ayza M, Lorch JM, Grear DA et al. Pathogenic lineage of Perkinsea associated with mass mortality of frogs across the United States. Sci Rep. 2017;7:10288. 10.1038/s41598-017-10456-1. PubMed DOI PMC
Itoïz S, Metz S, Derelle E et al. Emerging parasitic protists: the case of Perkinsea. Front Microbiol. 2022;12:735815. 10.3389/fmicb.2021.735815. PubMed DOI PMC
Jacobsen BA, Simonsen P. Disturbance events affecting phytoplankton biomass, composition and species diversity in a shallow, eutrophic, temperate lake. Hydrobiologia. 1993;249:9–14. 10.1007/BF00008838. DOI
Jane SF, Hansen GJA, Kraemer BM et al. Widespread deoxygenation of temperate lakes. Nature. 2021;594:66–70. 10.1038/s41586-021-03550-y. PubMed DOI
Jane SF, Mincer JL, Lau MP et al. Longer duration of seasonal stratification contributes to widespread increases in lake hypoxia and anoxia. Global Change Biol. 2023;29:1009–23. 10.1111/gcb.16525. PubMed DOI
Jasser I. The influence of macrophytes on a phytoplankton community in experimental conditions. Hydrobiologia. 1995;306:21–32. 10.1007/BF00007855. DOI
Kammerlander B, Koinig KA, Rott E et al. Ciliate community structure and interactions within the planktonic food web in two alpine lakes of contrasting transparency. Freshwat Biol. 2016;61:1950–65. 10.1111/fwb.12828. PubMed DOI PMC
Kent AD, Yannarell AC, Rusak JA et al. Synchrony in aquatic microbial community dynamics. ISME J. 2007;1:38–47. 10.1038/ismej.2007.6. PubMed DOI
Kiersztyn B, Chróst R, Kaliński T et al. Structural and functional microbial diversity along a eutrophication gradient of interconnected lakes undergoing anthropopressure. Sci Rep. 2019;9:11144. 10.1038/s41598-019-47577-8. PubMed DOI PMC
Kirillin G, Shatwell T. Generalized scaling of seasonal thermal stratification in lakes. Earth Sci Rev. 2016;161:179–90. 10.1016/j.earscirev.2016.08.008. DOI
Kolinko S, Richter M, Glöckner F et al. Single-cell genomics of uncultivated deep-branching magnetotactic bacteria reveals a conserved set of magnetosome genes. Environ Microbiol. 2016;18:21–37. 10.1111/1462-2920.12907. PubMed DOI
Kong X, Seewald M, Dadi T et al. Unravelling winter diatom blooms in temperate lakes using high frequency data and ecological modeling. Water Res. 2021;190:116681. 10.1016/j.watres.2020.116681. PubMed DOI
Lahti L, Shetty S. Microbiome R package. Boston: Bioconductor, 2017. 10.18129/B9.bioc.microbiome. DOI
Lefranc M, Thénot A, Lepère C et al. Genetic diversity of small eukaryotes in lakes differing by their trophic status. Appl Environ Microb. 2005;71:5935–42. 10.1128/AEM.71.10.5935-5942.2005. PubMed DOI PMC
Lepère C, Masquelier S, Mangot J-F et al. Vertical structure of small eukaryotes in three lakes that differ by their trophic status: a quantitative approach. ISME J. 2010;4:1509–19. 10.1038/ismej.2010.83. PubMed DOI
Lepère C, Domaizon I, Hugoni M et al. Diversity and dynamics of active small microbial eukaryotes in the anoxic zone of a freshwater meromictic lake (Pavin, France). Front Microbiol. 2016;7. 10.3389/fmicb.2016.00130. PubMed DOI PMC
Lima-Mendez G, Faust K, Henry N et al. Determinants of community structure in the global plankton interactome. Science. 2015;348:1262073. 10.1126/science.1262073. PubMed DOI
Limburg KE, Breitburg D, Swaney DP et al. Ocean deoxygenation: a primer. One Earth. 2020;2:24–9. 10.1016/j.oneear.2020.01.001. DOI
Lin H, Peddada SD. Analysis of compositions of microbiomes with bias correction. Nat Commun. 2020;11:3514. 10.1038/s41467-020-17041-7. PubMed DOI PMC
Liu L, Yang J, Yu X et al. Patterns in the composition of microbial communities from a subtropical river: effects of environmental, spatial and temporal factors. PLoS One. 2013;8:e81232. 10.1371/journal.pone.0081232. PubMed DOI PMC
Liu L, Yang J, Yu Z et al. The biogeography of abundant and rare bacterioplankton in the lakes and reservoirs of China. ISME J. 2015;9:2068–77. 10.1038/ismej.2015.29. PubMed DOI PMC
Logares R, Tesson SVM, Canbäck B et al. Contrasting prevalence of selection and drift in the community structuring of bacteria and microbial eukaryotes. Environ Microbiol. 2018;20:2231–40. 10.1111/1462-2920.14265. PubMed DOI
López-García P, Rodríguez-Valera F, Pedrós-Alió C et al. Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Nature. 2001;409:603–7. 10.1038/35054537. PubMed DOI
Lovejoy C, Massana R, Pedrós-Alió C. Diversity and distribution of marine microbial eukaryotes in the Arctic Ocean and adjacent seas. Appl Environ Microb. 2006;72:3085–95. 10.1128/AEM.72.5.3085-3095.2006. PubMed DOI PMC
Lu X, Weisse T. Top-down control of planktonic ciliates by microcrustacean predators is stronger in lakes than in the ocean. Sci Rep. 2022;12:10501. 10.1038/s41598-022-14301-y. PubMed DOI PMC
Manel S, Guerin P-E, Mouillot D et al. Global determinants of freshwater and marine fish genetic diversity. Nat Commun. 2020;11:692. 10.1038/s41467-020-14409-7. PubMed DOI PMC
Mangot J-F, Lepère C, Bouvier C et al. Community structure and dynamics of small eukaryotes targeted by new oligonucleotide probes: new insight into the lacustrine microbial food web. Appl Environ Microb. 2009;75:6373–81. 10.1128/AEM.00607-09. PubMed DOI PMC
Margalef R. Life forms of phytoplankton as survival alternatives in an unstable environment. Oceanol Acta. 1978;1:493–509.
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17:10. 10.14806/ej.17.1.200. DOI
Massana R, Gobet A, Audic S et al. Marine protist diversity in european coastal waters and sediments as revealed by high-throughput sequencing. Environ Microbiol. 2015;17:4035–49. 10.1111/1462-2920.12955. PubMed DOI
McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One. 2013;8:e61217. 10.1371/journal.pone.0061217. PubMed DOI PMC
Medinger R, Nolte V, Pandey RV et al. Diversity in a hidden world: potential and limitation of next-generation sequencing for surveys of molecular diversity of eukaryotic microorganisms. Mol Ecol. 2010;19:32–40. 10.1111/j.1365-294X.2009.04478.x. PubMed DOI PMC
Metz S, Huber P, Accattatis V et al. Freshwater protists: unveiling the unexplored in a large floodplain system. Environ Microbiol. 2022;24:1731–45. 10.1111/1462-2920.15838. PubMed DOI
Mikhailov IS, Galachyants YP, Bukin YS et al. Seasonal succession and coherence among bacteria and microeukaryotes in Lake Baikal. Microb Ecol. 2022;84:404–22. 10.1007/s00248-021-01860-2. PubMed DOI
Miller EC. Comparing diversification rates in lakes, rivers, and the sea. Evolution. 2021;75:2055–73. 10.1111/evo.14295. PubMed DOI
Millette NC, Gast RJ, Luo JY et al. Mixoplankton and mixotrophy: future research priorities. J Plankton Res. 2023;45:576–96. 10.1093/plankt/fbad020. PubMed DOI PMC
Mitsi K, Richter DJ, Arroyo AS et al. Taxonomic composition, community structure and molecular novelty of microeukaryotes in a temperate oligomesotrophic lake as revealed by metabarcoding. Sci Rep. 2023;13:3119. 10.1038/s41598-023-30228-4. PubMed DOI PMC
Morabito C, Bournaud C, Maës C et al. The lipid metabolism in thraustochytrids. Prog Lipid Res. 2019;76:101007. 10.1016/j.plipres.2019.101007. PubMed DOI
Moustaka-Gouni M, Kormas KA, Scotti M et al. Warming and acidification effects on planktonic heterotrophic pico- and nanoflagellates in a mesocosm experiment. Protist. 2016;167:389–410. 10.1016/j.protis.2016.06.004. PubMed DOI
Mukherjee I, Hodoki Y, Nakano S. Seasonal dynamics of heterotrophic and plastidic protists in the water column of Lake Biwa, Japan. Aquat Microb Ecol. 2017;80:123–37. 10.3354/ame01843. DOI
Nakano S, Ishii N, Manage P et al. Trophic roles of heterotrophic nanoflagellates and ciliates among planktonic organisms in a hypereutrophic pond. Aquat Microb Ecol. 1998;16:153–61. 10.3354/ame016153. DOI
Nandini S, Miracle MR, Vicente E et al. Strain-related differences in bacterivory and demography of Diaphanosoma mongolianum (Cladocera) in relation to diet and previous exposure to cyanobacteria in nature. Aquat Ecol. 2021;55:1225–39. 10.1007/s10452-021-09892-z. DOI
Nolte V, Pandey RV, Jost S et al. Contrasting seasonal niche separation between rare and abundant taxa conceals the extent of protist diversity: high seasonal protist abundance turnover. Mol Ecol. 2010;19:2908–15. 10.1111/j.1365-294X.2010.04669.x. PubMed DOI PMC
O'Reilly CM, Sharma S, Gray DK et al. Rapid and highly variable warming of lake surface waters around the globe. Geophys Res Lett. 2015;42. 10.1002/2015GL066235. DOI
Obertegger U, Pindo M, Flaim G. Multifaceted aspects of synchrony between freshwater prokaryotes and protists. Mol Ecol. 2019;28:4500–12. 10.1111/mec.15228. PubMed DOI
Oikonomou A, Filker S, Breiner H et al. Protistan diversity in a permanently stratified meromictic lake (Lake Alatsee, sw germany). Environ Microbiol. 2015;17:2144–57. 10.1111/1462-2920.12666. PubMed DOI
Okazaki Y, Nakano S. Vertical partitioning of freshwater bacterioplankton community in a deep mesotrophic lake with a fully oxygenated hypolimnion (Lake Biwa, Japan). Environ Microbiol Rep. 2016;8:780–8. 10.1111/1758-2229.12439. PubMed DOI
Oksanen J, Simpson GL, Blanchet FG et al. Vegan: community ecology package. CRAN, 2023. https://github.com/vegandevs/vegan (8 January 2024, date last accessed).
Oliverio AM, Power JF, Washburne A et al. The ecology and diversity of microbial eukaryotes in geothermal springs. ISME J. 2018;12:1918–28. 10.1038/s41396-018-0104-2. PubMed DOI PMC
Orellana LH, Francis TB, Ferraro M et al. Verrucomicrobiota are specialist consumers of sulfated methyl pentoses during diatom blooms. ISME J. 2022;16:630–41. 10.1038/s41396-021-01105-7. PubMed DOI PMC
Pan J, Del Campo J, Keeling PJ. Reference tree and environmental sequence diversity of Labyrinthulomycetes. J Eukar Microbiol. 2017;64:88–96. 10.1111/jeu.12342. PubMed DOI
Panizzo VN, Roberts S, Swann GEA et al. Spatial differences in dissolved silicon utilization in Lake Baikal, Siberia: examining the impact of high diatom biomass events and eutrophication. Limnol Oceanogr. 2018;63:1562–78. 10.1002/lno.10792. DOI
Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol. 2016;18:1403–14. 10.1111/1462-2920.13023. PubMed DOI
Paradis E, Schliep K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics. 2019;35:526–8. 10.1093/bioinformatics/bty633. PubMed DOI
Paver SF, Youngblut ND, Whitaker RJ et al. Phytoplankton succession affects the composition of p olynucleobacter subtypes in humic lakes. Environ Microbiol. 2015;17:816–28. 10.1111/1462-2920.12529. PubMed DOI
Pieczyńska E, Kołodziejczyk A, Rybak JI. The responses of littoral invertebrates to eutrophication-linked changes in plant communities. Hydrobiologia. 1998;391:9–21. 10.1023/A:1003503731720. DOI
Posch T, Eugster B, Pomati F et al. Network of interactions between ciliates and phytoplankton during spring. Front Microbiol. 2015;6. 10.3389/fmicb.2015.01289. PubMed DOI PMC
Quast C, Pruesse E, Yilmaz P et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2012;41:D590–6. 10.1093/nar/gks1219. PubMed DOI PMC
Råman Vinnå L, Medhaug I, Schmid M et al. The vulnerability of lakes to climate change along an altitudinal gradient. Commun Earth Environ. 2021;2:35. 10.1038/s43247-021-00106-w DOI
Rasconi S, Winter K, Kainz MJ. Temperature increase and fluctuation induce phytoplankton biodiversity loss—evidence from a multi-seasonal mesocosm experiment. Ecol Evol. 2017;7:2936–46. 10.1002/ece3.2889. PubMed DOI PMC
Reche I, Pulido-Villena E, Morales-Baquero R et al. Does ecosystem size determine aquatic bacterial richness?. Ecology. 2005;86:1715–22. 10.1890/04-1587. DOI
Reis PCJ, Thottathil SD, Prairie YT. The role of methanotrophy in the microbial carbon metabolism of temperate lakes. Nat Commun. 2022;13:43. 10.1038/s41467-021-27718-2. PubMed DOI PMC
Richter DJ, Berney C, Strassert JFH et al. EukProt: a database of genome-scale predicted proteins across the diversity of eukaryotes. Peer Commun J. 2022;2:e56. 10.24072/pcjournal.173. DOI
Rognes T, Flouri T, Nichols B et al. VSEARCH: a versatile open source tool for metagenomics. PeerJ. 2016;4:e2584. 10.7717/peerj.2584. PubMed DOI PMC
Rusak JA, Jones SE, Kent AD et al. Spatial synchrony in microbial community dynamics: testing among-year and lake patterns. SIL Proc. 2009;30:936–40. 10.1080/03680770.2009.11902275. DOI
Rybak JI, Błędzki LA. Slodkowodne Skorupiaki Planktonowe. Klucz do oznaczania gatunków. (Freshwater planktonie crustaceans. Species key). Warsaw: Wydawnictwa Uniwersytetu Warszawskiego, 2010.
Saito H, Ota T, Suzuki K et al. Role of heterotrophic dinoflagellate Gyrodinium sp. in the fate of an iron induced diatom bloom. Geophys Res Lett. 2006;33:2005GL025366. 10.1029/2005GL025366. DOI
Sarmento H, Gasol JM. Use of phytoplankton-derived dissolved organic carbon by different types of bacterioplankton. Environ Microbiol. 2012;14:2348–60. 10.1111/j.1462-2920.2012.02787.x. PubMed DOI
Sarmento H, Morana C, Gasol JM. Bacterioplankton niche partitioning in the use of phytoplankton-derived dissolved organic carbon: quantity is more important than quality. ISME J. 2016;10:2582–92. 10.1038/ismej.2016.66. PubMed DOI PMC
Schiaffino MR, Lara E, Fernández LD et al. Microbial eukaryote communities exhibit robust biogeographical patterns along a gradient of Patagonian and Antarctic lakes. Environ Microbiol. 2016;18:5249–64. 10.1111/1462-2920.13566. PubMed DOI
Schiwitza S, Lisson H, Arndt H et al. Morphological and molecular investigation on freshwater choanoflagellates (Craspedida, Salpingoecidae) from the River Rhine at Cologne (Germany). Eur J Protistol. 2020;73:125687. 10.1016/j.ejop.2020.125687. PubMed DOI
Schmidtko S, Stramma L, Visbeck M. Decline in global oceanic oxygen content during the past five decades. Nature. 2017;542:335–9. 10.1038/nature21399. PubMed DOI
Schnepf E, Kühn SF. Food uptake and fine structure of Cryothecomonas longipes sp. nov., a marine nanoflagellate incertae sedis feeding phagotrophically on large diatoms. Helgoland Mar Res. 2000;54:18–32. 10.1007/s101520050032. DOI
Seeleuthner Y, Mondy S, Lombard V et al. , Single-cell genomics of multiple uncultured stramenopiles reveals underestimated functional diversity across oceans. Nat Commun. 2018;9:310. 10.1038/s41467-017-02235-3. PubMed DOI PMC
Selosse M, Charpin M, Not F. Mixotrophy everywhere on land and in water: the grand écart hypothesis. Ecol Lett. 2017;20:246–63. 10.1111/ele.12714. PubMed DOI
Shang Y, Wu X, Wang X et al. Factors affecting seasonal variation of microbial community structure in Hulun Lake, China. Sci Total Environ. 2022;805:150294. 10.1016/j.scitotenv.2021.150294. PubMed DOI
Shi J, Zhang B, Liu J et al. Spatiotemporal dynamics in microbial communities mediating biogeochemical cycling of nutrients across the Xiaowan Reservoir in Lancang River. Sci Total Environ. 2022;813:151862. 10.1016/j.scitotenv.2021.151862. PubMed DOI
Siano R, Lassudrie M, Cuzin P et al. Sediment archives reveal irreversible shifts in plankton communities after World War II and agricultural pollution. Curr Biol. 2021;31:2682–2689.e7. 10.1016/j.cub.2021.03.079. PubMed DOI
Sieber G, Beisser D, Bock C et al. Protistan and fungal diversity in soils and freshwater lakes are substantially different. Sci Rep. 2020;10:20025. 10.1038/s41598-020-77045-7. PubMed DOI PMC
Šimek K, Kasalický V, Jezbera J et al. Differential freshwater flagellate community response to bacterial food quality with a focus on Limnohabitans bacteria. ISME J. 2013;7:1519–30. 10.1038/ismej.2013.57. PubMed DOI PMC
Šimek K, Nedoma J, Znachor P et al. A finely tuned symphony of factors modulates the microbial food web of a freshwater reservoir in spring. Limnol Oceanogr. 2014;59:1477–92. 10.4319/lo.2014.59.5.1477. DOI
Šimek K, Grujčić V, Mukherjee I et al. Cascading effects in freshwater microbial food webs by predatory Cercozoa, Katablepharidacea and ciliates feeding on aplastidic bacterivorous cryptophytes. FEMS Microbiol Ecol. 2020;96:fiaa121. 10.1093/femsec/fiaa121. PubMed DOI PMC
Simon M, Jardillier L, Deschamps P et al. Complex communities of small protists and unexpected occurrence of typical marine lineages in shallow freshwater systems. Environ Microbiol. 2015a;17:3610–27. 10.1111/1462-2920.12591. PubMed DOI PMC
Simon M, López-García P, Deschamps P et al. Marked seasonality and high spatial variability of protist communities in shallow freshwater systems. ISME J. 2015b;9:1941–53. 10.1038/ismej.2015.6. PubMed DOI PMC
Singer D, Seppey CVW, Lentendu G et al. Protist taxonomic and functional diversity in soil, freshwater and marine ecosystems. Environ Int. 2021;146:106262. 10.1016/j.envint.2020.106262. PubMed DOI
Sommer U, Gliwicz ZM, Lampert W et al. The PEG-model of seasonal succession of planktonic events in fresh waters. Archiv_Hydrobiologie. 1986;106:433–71.
Sommer U, Adrian R, De Senerpont Domis L et al. Beyond the Plankton Ecology Group (PEG) model: mechanisms driving plankton succession. Annu Rev Ecol Evol Syst. 2012;43:429–48. 10.1146/annurev-ecolsys-110411-160251. DOI
Steinsdóttir HGR, Schauberger C, Mhatre S et al. Aerobic and anaerobic methane oxidation in a seasonally anoxic basin. Limnol Oceanogr. 2022;67:1257–73. 10.1002/lno.12074. PubMed DOI PMC
Stock A, Jürgens K, Bunge J et al. Protistan diversity in suboxic and anoxic waters of the Gotland Deep (Baltic Sea) as revealed by 18S rRNA clone libraries. Aquat Microb Ecol. 2009;55:267–84. 10.3354/ame01301. DOI
Stockner JG. Phototrophic picoplankton: an overview from marine and freshwater ecosystems. Limnol Oceanogr. 1988;33:765–75. 10.4319/lo.1988.33.4part2.0765. DOI
Stockwell JD, Doubek JP, Adrian R et al. Storm impacts on phytoplankton community dynamics in lakes. Global Change Biol. 2020;26:2756–84. 10.1111/gcb.15033. PubMed DOI PMC
Stoeck T, Bass D, Nebel M et al. Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol Ecol. 2010;19:21–31. 10.1111/j.1365-294X.2009.04480.x. PubMed DOI
Stoof-Leichsenring KR, Dulias K, Biskaborn BK et al. Lake-depth related pattern of genetic and morphological diatom diversity in boreal Lake Bolshoe Toko, Eastern Siberia. PLoS One. 2020;15:e0230284. 10.1371/journal.pone.0230284. PubMed DOI PMC
Sunagawa S, Acinas SG, Bork P et al. Tara Oceans: towards global ocean ecosystems biology. Nat Rev Micro. 2020;18:428–45. 10.1038/s41579-020-0364-5. PubMed DOI
Tada Y, Taniguchi A, Sato-Takabe Y et al. Growth and succession patterns of major phylogenetic groups of marine bacteria during a mesocosm diatom bloom. J Oceanogr. 2012;68:509–19. 10.1007/s10872-012-0114-z. DOI
Takahashi K, Moestrup Ø, Jordan RW et al. Two new freshwater Woloszynskioids Asulcocephalium miricentonis gen. et sp. nov. and Leiocephalium pseudosanguineum gen. et sp. nov. (Suessiaceae, Dinophyceae) lacking an apical furrow apparatus. Protist. 2015;166:638–58. 10.1016/j.protis.2015.10.003. PubMed DOI
Tammert H, Tšertova N, Kiprovskaja J et al. Contrasting seasonal and interannual environmental drivers in bacterial communities within a large shallow lake: evidence from a seven year survey. Aquat Microb Ecol. 2015;75:43–54. 10.3354/ame01744. DOI
Van Grinsven S, Sinninghe Damsté JS, Harrison J et al. Nitrate promotes the transfer of methane-derived carbon from the methanotroph Methylobacter sp. to the methylotroph Methylotenera sp. in eutrophic lake water. Limnol Oceanogr. 2021;66:878–91. 10.1002/lno.11648. DOI
Verbeek L, Gall A, Hillebrand H et al. Warming and oligotrophication cause shifts in freshwater phytoplankton communities. Global Change Biol. 2018;24:4532–43. 10.1111/gcb.14337. PubMed DOI
Villarino E, Watson JR, Jönsson B et al. Large-scale ocean connectivity and planktonic body size. Nat Commun. 2018;9:142. 10.1038/s41467-017-02535-8. PubMed DOI PMC
Wang Q, Garrity GM, Tiedje JM et al. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microb. 2007;73:5261–7. 10.1128/AEM.00062-07. PubMed DOI PMC
Wickham H. 2016. ggplot2: Elegant Graphics for Data Analysis. New York: Springer International Publishing. https://ggplot2.tidyverse.org (8 January 2024, date last accessed).
Wilken S, Soares M, Urrutia-Cordero P et al. Primary producers or consumers? Increasing phytoplankton bacterivory along a gradient of lake warming and browning. Limnol Oceanogr. 2018;63. 10.1002/lno.10728. DOI
Woodhouse JN, Kinsela AS, Collins RN et al. Microbial communities reflect temporal changes in cyanobacterial composition in a shallow ephemeral freshwater lake. ISME J. 2016;10:1337–51. 10.1038/ismej.2015.218. PubMed DOI PMC
Woodhouse JN, Ziegler J, Grossart H-P et al. Cyanobacterial community composition and bacteria–bacteria interactions promote the stable occurrence of particle-associated bacteria. Front Microbiol. 2018;9:777. 10.3389/fmicb.2018.00777. PubMed DOI PMC
Woolway RI, Merchant CJ. Worldwide alteration of lake mixing regimes in response to climate change. Nat Geosci. 2019;12:271–6. 10.1038/s41561-019-0322-x. DOI
Worden AZ, Cuvelier ML, Bartlett DH. In-depth analyses of marine microbial community genomics. Trends Microbiol. 2006;14:331–6. 10.1016/j.tim.2006.06.008. PubMed DOI
Xie N, Wang Z, Hunt DE et al. Niche partitioning of Labyrinthulomycete protists across sharp coastal gradients and their putative relationships with bacteria and fungi. Front Microbiol. 2022;13:906864. 10.3389/fmicb.2022.906864. PubMed DOI PMC
Xiong W, Jousset A, Li R et al. A global overview of the trophic structure within microbiomes across ecosystems. Environ Int. 2021;151:106438. 10.1016/j.envint.2021.106438. PubMed DOI
Yu C, Li C, Wang T et al. Combined effects of experimental warming and eutrophication on phytoplankton dynamics and nitrogen uptake. Water. 2018;10:1057. 10.3390/w10081057. DOI
Zagumyonnyi DG, Radaykina LV, Keeling PJ et al. Centrohelid heliozoans of Ukraine with a description of a new genus and species (Haptista: centroplasthelida). Eur J Protistol. 2022;86:125916. 10.1016/j.ejop.2022.125916. PubMed DOI
Zhang M, Shi X, Chen F et al. The underlying causes and effects of phytoplankton seasonal turnover on resource use efficiency in freshwater lakes. Ecol Evol. 2021;11:8897–909. 10.1002/ece3.7724. PubMed DOI PMC