Widespread deoxygenation of temperate lakes

. 2021 Jun ; 594 (7861) : 66-70. [epub] 20210602

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/pmid34079137
Odkazy

PubMed 34079137
DOI 10.1038/s41586-021-03550-y
PII: 10.1038/s41586-021-03550-y
Knihovny.cz E-zdroje

The concentration of dissolved oxygen in aquatic systems helps to regulate biodiversity1,2, nutrient biogeochemistry3, greenhouse gas emissions4, and the quality of drinking water5. The long-term declines in dissolved oxygen concentrations in coastal and ocean waters have been linked to climate warming and human activity6,7, but little is known about the changes in dissolved oxygen concentrations in lakes. Although the solubility of dissolved oxygen decreases with increasing water temperatures, long-term lake trajectories are difficult to predict. Oxygen losses in warming lakes may be amplified by enhanced decomposition and stronger thermal stratification8,9 or oxygen may increase as a result of enhanced primary production10. Here we analyse a combined total of 45,148 dissolved oxygen and temperature profiles and calculate trends for 393 temperate lakes that span 1941 to 2017. We find that a decline in dissolved oxygen is widespread in surface and deep-water habitats. The decline in surface waters is primarily associated with reduced solubility under warmer water temperatures, although dissolved oxygen in surface waters increased in a subset of highly productive warming lakes, probably owing to increasing production of phytoplankton. By contrast, the decline in deep waters is associated with stronger thermal stratification and loss of water clarity, but not with changes in gas solubility. Our results suggest that climate change and declining water clarity have altered the physical and chemical environment of lakes. Declines in dissolved oxygen in freshwater are 2.75 to 9.3 times greater than observed in the world's oceans6,7 and could threaten essential lake ecosystem services2,3,5,11.

Biodiversity Division National Institute for Environmental Studies Ibaraki Japan

Biology Department State University of New York College at Oneonta Oneonta New York USA

Bureau of Water Supply New York City Department of Environmental Protection Valhalla NY USA

CARRTEL Limnology Center Institut National de la Recherche Agronomique Université Savoie Mont Blanc Chambéry France

Cary Institute of Ecosystem Studies Millbrook New York USA

Centre for Freshwater and Environmental Studies Dundalk Institute of Technology Dundalk Ireland

CNR Water Research Institute Verbania Pallanza Italy

Department of Biological Sciences Rensselaer Polytechnic Institute Troy NY USA

Department of Biology Global Water Center University of Nevada Reno NV USA

Department of Biology Miami University Oxford OH USA

Department of Biology University of Hamburg Hamburg Germany

Department of Earth and Environmental Sciences University of Milan Bicocca Milan Italy

Department of Ecology and Genetics Limnology Uppsala University Uppsala Sweden

Department of Ecology University of Innsbruck Innsbruck Austria

Department of Ecosystem Research IGB Leibniz Institute for Freshwater Ecology and Inland Fisheries Berlin Germany

Department of Environmental Science and Policy University of California Davis CA USA

Department of Experimental Limnology Leibniz Institute of Freshwater Ecology and Inland Fisheries Stechlin Germany

Department of Fisheries Wildlife and Conservation Biology University of Minnesota St Paul MN USA

Department of Hydrology Lomonosov Moscow State University Moscow Russia

Department of Sustainable Agro ecosystems and Bioresources Research and Innovation Centre Fondazione Edmund Mach San Michele all'Adige Italy

Department of Water Protection Engineering and Environmental Microbiology University of Warmia and Mazury in Olsztyn Olsztyn Poland

Departments of Biology and Geography Université Laval Québec Canada

Eawag Swiss Federal Institute of Aquatic Science and Technology Surface Waters Research and Management Kastanienbaum Switzerland

Environmental Research Institute Hamilton New Zealand

ETH Zurich Institute for Atmospheric and Climate Science Zurich Switzerland

European Space Agency Climate Office ECSAT Harwell Campus Didcot Oxfordshire UK

FB Environmental Associates Portsmouth NH USA

Institute for Global Food Security Queen's University Belfast Belfast County Antrim UK

Institute of Biochemistry and Biology Potsdam University Potsdam Germany

Institute of Environmental Change and Society University of Regina Regina Saskatchewan Canada

Institute of Geography University of Gdańsk Gdańsk Poland

Institute of Hydrobiology Biology Centre CAS České Budějovice Czech Republic

Itasca Biological Station and Laboratories University of Minnesota Lake Itasca MN USA

King County Water and Land Resources Division Seattle WA USA

Lake Ecosystems Group UK Centre for Ecology and Hydrology Lancaster UK

Lammi Biological Station University of Helsinki Lammi Finland

National Institute of Water and Atmospheric Research Ltd Hillcrest Hamilton New Zealand

Ontario Ministry of the Environment Conservation and Parks Dorset Environmental Science Centre Dorset ON Canada

Plankton Ecology and Limnology Laboratory Geographical Ecology Group and Ecology and Evolutionary Biology Department of Biology The University of Oklahoma Norman OK USA

School of Natural Resources University of Missouri Columbia MO USA

Vrije Universiteit Brussel Department of Hydrology and Hydraulic Engineering Brussels Belgium

Wisconsin Department of Natural Resources Madison WI USA

Zobrazit více v PubMed

Wetzel, R. G. In Limnology 3rd edn (ed. Wetzel, R. G.), Ch. 9, 151–168 (Academic Press, 2001).

Schindler, D. Warmer climate squeezes aquatic predators out of their preferred habitat. Proc. Natl Acad. Sci. USA 114, 9764–9765 (2017). DOI

North, R. P., North, R. L., Livingstone, D. M., Köster, O. & Kipfer, R. Long-term changes in hypoxia and soluble reactive phosphorus in the hypolimnion of a large temperate lake: consequences of a climate regime shift. Glob. Change Biol. 20, 811–823 (2014). DOI

Fernández, J. E., Peeters, F. & Hofmann, H. Importance of the autumn overturn and anoxic conditions in the hypolimnion for the annual methane emissions from a temperate lake. Environ. Sci. Technol. 48, 7297–7304 (2014). DOI

Michalak, A. M. et al. Record-setting algal bloom in Lake Erie caused by agricultural and meteorological trends consistent with expected future conditions. Proc. Natl Acad. Sci. USA 110, 6448–6452 (2013). DOI

Schmidtko, S., Stramma, L. & Visbeck, M. Decline in global oceanic oxygen content during the past five decades. Nature 542, 335–339 (2017). DOI

Breitburg, D. et al. Declining oxygen in the global ocean and coastal waters. Science 359, (2018).

Jankowski, J., Livingstone, D. M., Bührer, H., Forster, R. & Niederhauser, P. Consequences of the 2003 European heat wave for lake temperature profiles, thermal stability, and hypolimnetic oxygen depletion: implications for a warmer world. Limnol. Oceanogr. 51, 815–819 (2006). DOI

Yvon-Durocher, G., Jones, J. I., Trimmer, M., Woodward, G. & Montoya, J. M. Warming alters the metabolic balance of ecosystems. Phil. Trans. R. Soc. B 365, 2117–2126 (2010). DOI

Seki, H., Takahashi, Y., Hara, Y. & Ichimura, S. Dynamics of dissolved oxygen during algal bloom in Lake Kasumigaura, Japan. Water Res. 14, 179–183 (1980). DOI

Jacobson, P. C., Stefan, H. G. & Pereira, D. L. Coldwater fish oxythermal habitat in Minnesota lakes: influence of total phosphorus, July air temperature, and relative depth. Can. J. Fish. Aquat. Sci. 67, 2002–2013 (2010). DOI

Harke, M. J. et al. A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium, Microcystis spp. Harmful Algae 54, 4–20 (2016). DOI

Vaquer-Sunyer, R. & Duarte, C. M. Thresholds of hypoxia for marine biodiversity. Proc. Natl Acad. Sci. USA 105, 15452–15457 (2008). DOI

Woolway, R. I. & Merchant, C. J. Worldwide alteration of lake mixing regimes in response to climate change. Nat. Geosci. 12, 271–276 (2019). DOI

Livingstone, D. M. Impact of secular climate change on the thermal structure of a large temperate central European lake. Clim. Change 57, 205–225 (2003). DOI

Zhang, Y. et al. Dissolved oxygen stratification and response to thermal structure and long-term climate change in a large and deep subtropical reservoir (Lake Qiandaohu, China). Water Res. 75, 249–258 (2015). DOI

Bouffard, D., Ackerman, J. D. & Boegman, L. Factors affecting the development and dynamics of hypoxia in a large shallow stratified lake: hourly to seasonal patterns. Wat. Resour. Res. 49, 2380–2394 (2013). DOI

O’Reilly, C. M. et al. Rapid and highly variable warming of lake surface waters around the globe. Geophys. Res. Lett. 42, 10773–10781 (2015).

Nürnberg, G. K. Trophic state of clear and colored, soft- and hardwater lakes with special consideration of nutrients, anoxia, phytoplankton and fish. Lake Reserv. Manage. 12, 432–447 (1996). DOI

Ho, J. C., Michalak, A. M. & Pahlevan, N. Widespread global increase in intense lake phytoplankton blooms since the 1980s. Nature 574, 667–670 (2019). DOI

Kosten, S. et al. Warmer climates boost cyanobacterial dominance in shallow lakes. Glob. Change Biol. 18, 118–126 (2012). DOI

Müller, B., Bryant, L. D., Matzinger, A. & Wüest, A. Hypolimnetic oxygen depletion in eutrophic lakes. Environ. Sci. Technol. 46, 9964–9971 (2012). PubMed

Winslow, L. A., Leach, T. A. & Rose, K. C. Global lake response to the recent warming hiatus. Environ. Res. Lett. 13, 054005 (2018). DOI

Livingstone, D. M. An example of the simultaneous occurrence of climate-driven “sawtooth” deep-water warming/cooling episodes in several Swiss lakes. Verh. Int. Ver. Limnol. 26, 822–828 (1997).

Williamson, C. E. et al. Ecological consequences of long-term browning in lakes. Sci. Rep. 5, (2015).

Rose, K. C., Winslow, L. A., Read, J. S. & Hansen, G. J. A. Climate-induced warming of lakes can be either amplified or suppressed by trends in water clarity. Limnol. Oceanogr. Lett. 1, 44–53 (2016). DOI

Woolway, R. I. et al. Northern hemisphere atmospheric stilling accelerates lake thermal responses to a warming world. Geophys. Res. Lett. 46, 11983–11992 (2019). DOI

Carpenter, S. R., Stanley, E. H. & Vander Zanden, M. J. State of the world’s freshwater ecosystems: physical, chemical, and biological changes. Annu. Rev. Environ. Resour. 36, 75–99 (2011). DOI

R Core Team. R: A Language and Environment for Statistical Computing. http://www.R-project.org/ (R Foundation for Statistical Computing, Vienna, 2017).

Borchers, H. W. pracma: Practical Numerical Math Functions. R package version 2.1.5 https://CRAN.R-project.org/package=pracma (2018).

Winslow, L. A. et al. rLakeAnalyzer: Lake Physics Tools. R package version 1.11.4. https://CRAN.R-project.org/package=rLakeAnalyzer (2017).

Winslow, L. A. et al. LakeMetabolizer: an R package for estimating lake metabolism from free-water oxygen using diverse statistical models. Inland Waters 6, 622–636 (2016). DOI

Carslaw, D. C. & Ropkins, K. Openair – an R package for air quality data analysis. Environ. Model. Softw. 27-28, 52–61 (2012). DOI

Moran, P. A. P. The interpretation of statistical maps. J. R. Stat. Soc. B 10, 243–251 (1948).

Kalogirou, S. lctools: Local Correlation, Spatial Inequalities, Geographically Weighted Regression and Other Tools. R package version 0.2-7. https://CRAN.R-project.org/package=lctools (2019).

Copernicus Climate Change Service (C3S). ERA5: Climate Data Store (CDS) https://cds.climate.copernicus.eu/cdsapp#!/home (accessed 1 October 2019).

Gelman, G. & Hill, J. Data Analysis Using Regression and Multilevel/Hierarchical Models (Cambridge Univ. Press, 2007).

Quinn, G. P. & Keough, M. J. Experimental Design and Data Analysis for Biologists (Cambridge Univ. Press, 2002).

Lumley, T. leaps: Regression Subset Selection. R package version 3.1. https://CRAN.R-project.org/package=leaps (2020).

Wood, S. N. Generalized Additive Models: An Introduction with R 2nd edn (CRC Press, 2017). DOI

Wood, S. & Scheipl, F. gamm4: Generalized Additive Mixed Models using ‘mgcv’ and ‘lme4’. R package version 0.2-5. https://CRAN.R-project.org/package=gamm4 (2017).

Pinheiro, J. C. & Bates, D. M. Mixed Effects Models in S and S-Plus (Springer, 2000).

Burnham, K. P., Anderson, D. R. & Huyvaert, K. P. AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behav. Ecol. Sociobiol. 65, 23–35 (2011). DOI

Hosmer, D. W. & Lemeshow, S. Applied Logistic Regression 2nd edn (John Wiley and Sons, Inc., 2000).

Homer, C. G. et al. Completion of the 2011 National Land Cover Database for the conterminous United States – Representing a decade of land cover change information. Photogramm. Eng. Remote Sensing 81, 345–354 (2015).

Lele, S. R., Keim, J. L. & Solymos, P. ResourceSelection: Resource Selection (Probability) Functions for Use-Availability Data. R package version 0.3-2. https://CRAN.R-project.org/package=ResourceSelection (2017).

Cutler, D. R. et al. Random forests for classification in ecology. Ecology 88, 2783–2792 (2007). DOI

Liaw, A. & Wiener, M. Classification and regression by randomForest. R News 2, 18–22 (2002).

Messager, M. L., Lehner, B., Grill, G., Nedeva, I. & Schmitt, O. Estimating the volume and age of water stored in global lakes using a geo-statistical approach. Nat. Commun. 7, 13603 (2016). DOI

Stetler, J. T., Jane, S. F., Mincer, J. L., Sanders, M. N. & Rose, K. C. Long-term lake dissolved oxygen and temperature data, 1941–2018 ver 2. Environmental Data Initiative https://doi.org/10.6073/pasta/841f0472e19853b0676729221aedfb56 (2021).

Adrian, R., Jane, S. F., & Rose, K. C. Widespread deoxygenation of temperate lakes – Müggelsee data. IGB Leibniz-Institute of Freshwater Ecology and Inland Fisheries dataset. https://doi.org/10.18728/568.0 (2021).

Jenny, J.-P. Time series dataset of dissolved oxygen, water temperature and Secchi depths profiles in Lakes Annecy and Geneva. Portail Data INRAE V1, https://doi.org/10.15454/BUJUSX (2021).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...