Widespread deoxygenation of temperate lakes
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
PubMed
34079137
DOI
10.1038/s41586-021-03550-y
PII: 10.1038/s41586-021-03550-y
Knihovny.cz E-zdroje
- MeSH
- časové faktory MeSH
- ekosystém MeSH
- fytoplankton metabolismus MeSH
- jezera chemie MeSH
- klimatické změny MeSH
- kyslík analýza chemie metabolismus MeSH
- oceány a moře MeSH
- rozpustnost MeSH
- teplota * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Geografické názvy
- oceány a moře MeSH
- Názvy látek
- kyslík MeSH
The concentration of dissolved oxygen in aquatic systems helps to regulate biodiversity1,2, nutrient biogeochemistry3, greenhouse gas emissions4, and the quality of drinking water5. The long-term declines in dissolved oxygen concentrations in coastal and ocean waters have been linked to climate warming and human activity6,7, but little is known about the changes in dissolved oxygen concentrations in lakes. Although the solubility of dissolved oxygen decreases with increasing water temperatures, long-term lake trajectories are difficult to predict. Oxygen losses in warming lakes may be amplified by enhanced decomposition and stronger thermal stratification8,9 or oxygen may increase as a result of enhanced primary production10. Here we analyse a combined total of 45,148 dissolved oxygen and temperature profiles and calculate trends for 393 temperate lakes that span 1941 to 2017. We find that a decline in dissolved oxygen is widespread in surface and deep-water habitats. The decline in surface waters is primarily associated with reduced solubility under warmer water temperatures, although dissolved oxygen in surface waters increased in a subset of highly productive warming lakes, probably owing to increasing production of phytoplankton. By contrast, the decline in deep waters is associated with stronger thermal stratification and loss of water clarity, but not with changes in gas solubility. Our results suggest that climate change and declining water clarity have altered the physical and chemical environment of lakes. Declines in dissolved oxygen in freshwater are 2.75 to 9.3 times greater than observed in the world's oceans6,7 and could threaten essential lake ecosystem services2,3,5,11.
Biodiversity Division National Institute for Environmental Studies Ibaraki Japan
Biology Department State University of New York College at Oneonta Oneonta New York USA
Bureau of Water Supply New York City Department of Environmental Protection Valhalla NY USA
Cary Institute of Ecosystem Studies Millbrook New York USA
Centre for Freshwater and Environmental Studies Dundalk Institute of Technology Dundalk Ireland
CNR Water Research Institute Verbania Pallanza Italy
Department of Biological Sciences Rensselaer Polytechnic Institute Troy NY USA
Department of Biology Global Water Center University of Nevada Reno NV USA
Department of Biology Miami University Oxford OH USA
Department of Biology University of Hamburg Hamburg Germany
Department of Earth and Environmental Sciences University of Milan Bicocca Milan Italy
Department of Ecology and Genetics Limnology Uppsala University Uppsala Sweden
Department of Ecology University of Innsbruck Innsbruck Austria
Department of Environmental Science and Policy University of California Davis CA USA
Department of Fisheries Wildlife and Conservation Biology University of Minnesota St Paul MN USA
Department of Hydrology Lomonosov Moscow State University Moscow Russia
Departments of Biology and Geography Université Laval Québec Canada
Environmental Research Institute Hamilton New Zealand
ETH Zurich Institute for Atmospheric and Climate Science Zurich Switzerland
European Space Agency Climate Office ECSAT Harwell Campus Didcot Oxfordshire UK
FB Environmental Associates Portsmouth NH USA
Institute for Global Food Security Queen's University Belfast Belfast County Antrim UK
Institute of Biochemistry and Biology Potsdam University Potsdam Germany
Institute of Environmental Change and Society University of Regina Regina Saskatchewan Canada
Institute of Geography University of Gdańsk Gdańsk Poland
Institute of Hydrobiology Biology Centre CAS České Budějovice Czech Republic
Itasca Biological Station and Laboratories University of Minnesota Lake Itasca MN USA
King County Water and Land Resources Division Seattle WA USA
Lake Ecosystems Group UK Centre for Ecology and Hydrology Lancaster UK
Lammi Biological Station University of Helsinki Lammi Finland
National Institute of Water and Atmospheric Research Ltd Hillcrest Hamilton New Zealand
School of Natural Resources University of Missouri Columbia MO USA
Vrije Universiteit Brussel Department of Hydrology and Hydraulic Engineering Brussels Belgium
Zobrazit více v PubMed
Wetzel, R. G. In Limnology 3rd edn (ed. Wetzel, R. G.), Ch. 9, 151–168 (Academic Press, 2001).
Schindler, D. Warmer climate squeezes aquatic predators out of their preferred habitat. Proc. Natl Acad. Sci. USA 114, 9764–9765 (2017). DOI
North, R. P., North, R. L., Livingstone, D. M., Köster, O. & Kipfer, R. Long-term changes in hypoxia and soluble reactive phosphorus in the hypolimnion of a large temperate lake: consequences of a climate regime shift. Glob. Change Biol. 20, 811–823 (2014). DOI
Fernández, J. E., Peeters, F. & Hofmann, H. Importance of the autumn overturn and anoxic conditions in the hypolimnion for the annual methane emissions from a temperate lake. Environ. Sci. Technol. 48, 7297–7304 (2014). DOI
Michalak, A. M. et al. Record-setting algal bloom in Lake Erie caused by agricultural and meteorological trends consistent with expected future conditions. Proc. Natl Acad. Sci. USA 110, 6448–6452 (2013). DOI
Schmidtko, S., Stramma, L. & Visbeck, M. Decline in global oceanic oxygen content during the past five decades. Nature 542, 335–339 (2017). DOI
Breitburg, D. et al. Declining oxygen in the global ocean and coastal waters. Science 359, (2018).
Jankowski, J., Livingstone, D. M., Bührer, H., Forster, R. & Niederhauser, P. Consequences of the 2003 European heat wave for lake temperature profiles, thermal stability, and hypolimnetic oxygen depletion: implications for a warmer world. Limnol. Oceanogr. 51, 815–819 (2006). DOI
Yvon-Durocher, G., Jones, J. I., Trimmer, M., Woodward, G. & Montoya, J. M. Warming alters the metabolic balance of ecosystems. Phil. Trans. R. Soc. B 365, 2117–2126 (2010). DOI
Seki, H., Takahashi, Y., Hara, Y. & Ichimura, S. Dynamics of dissolved oxygen during algal bloom in Lake Kasumigaura, Japan. Water Res. 14, 179–183 (1980). DOI
Jacobson, P. C., Stefan, H. G. & Pereira, D. L. Coldwater fish oxythermal habitat in Minnesota lakes: influence of total phosphorus, July air temperature, and relative depth. Can. J. Fish. Aquat. Sci. 67, 2002–2013 (2010). DOI
Harke, M. J. et al. A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium, Microcystis spp. Harmful Algae 54, 4–20 (2016). DOI
Vaquer-Sunyer, R. & Duarte, C. M. Thresholds of hypoxia for marine biodiversity. Proc. Natl Acad. Sci. USA 105, 15452–15457 (2008). DOI
Woolway, R. I. & Merchant, C. J. Worldwide alteration of lake mixing regimes in response to climate change. Nat. Geosci. 12, 271–276 (2019). DOI
Livingstone, D. M. Impact of secular climate change on the thermal structure of a large temperate central European lake. Clim. Change 57, 205–225 (2003). DOI
Zhang, Y. et al. Dissolved oxygen stratification and response to thermal structure and long-term climate change in a large and deep subtropical reservoir (Lake Qiandaohu, China). Water Res. 75, 249–258 (2015). DOI
Bouffard, D., Ackerman, J. D. & Boegman, L. Factors affecting the development and dynamics of hypoxia in a large shallow stratified lake: hourly to seasonal patterns. Wat. Resour. Res. 49, 2380–2394 (2013). DOI
O’Reilly, C. M. et al. Rapid and highly variable warming of lake surface waters around the globe. Geophys. Res. Lett. 42, 10773–10781 (2015).
Nürnberg, G. K. Trophic state of clear and colored, soft- and hardwater lakes with special consideration of nutrients, anoxia, phytoplankton and fish. Lake Reserv. Manage. 12, 432–447 (1996). DOI
Ho, J. C., Michalak, A. M. & Pahlevan, N. Widespread global increase in intense lake phytoplankton blooms since the 1980s. Nature 574, 667–670 (2019). DOI
Kosten, S. et al. Warmer climates boost cyanobacterial dominance in shallow lakes. Glob. Change Biol. 18, 118–126 (2012). DOI
Müller, B., Bryant, L. D., Matzinger, A. & Wüest, A. Hypolimnetic oxygen depletion in eutrophic lakes. Environ. Sci. Technol. 46, 9964–9971 (2012). PubMed
Winslow, L. A., Leach, T. A. & Rose, K. C. Global lake response to the recent warming hiatus. Environ. Res. Lett. 13, 054005 (2018). DOI
Livingstone, D. M. An example of the simultaneous occurrence of climate-driven “sawtooth” deep-water warming/cooling episodes in several Swiss lakes. Verh. Int. Ver. Limnol. 26, 822–828 (1997).
Williamson, C. E. et al. Ecological consequences of long-term browning in lakes. Sci. Rep. 5, (2015).
Rose, K. C., Winslow, L. A., Read, J. S. & Hansen, G. J. A. Climate-induced warming of lakes can be either amplified or suppressed by trends in water clarity. Limnol. Oceanogr. Lett. 1, 44–53 (2016). DOI
Woolway, R. I. et al. Northern hemisphere atmospheric stilling accelerates lake thermal responses to a warming world. Geophys. Res. Lett. 46, 11983–11992 (2019). DOI
Carpenter, S. R., Stanley, E. H. & Vander Zanden, M. J. State of the world’s freshwater ecosystems: physical, chemical, and biological changes. Annu. Rev. Environ. Resour. 36, 75–99 (2011). DOI
R Core Team. R: A Language and Environment for Statistical Computing. http://www.R-project.org/ (R Foundation for Statistical Computing, Vienna, 2017).
Borchers, H. W. pracma: Practical Numerical Math Functions. R package version 2.1.5 https://CRAN.R-project.org/package=pracma (2018).
Winslow, L. A. et al. rLakeAnalyzer: Lake Physics Tools. R package version 1.11.4. https://CRAN.R-project.org/package=rLakeAnalyzer (2017).
Winslow, L. A. et al. LakeMetabolizer: an R package for estimating lake metabolism from free-water oxygen using diverse statistical models. Inland Waters 6, 622–636 (2016). DOI
Carslaw, D. C. & Ropkins, K. Openair – an R package for air quality data analysis. Environ. Model. Softw. 27-28, 52–61 (2012). DOI
Moran, P. A. P. The interpretation of statistical maps. J. R. Stat. Soc. B 10, 243–251 (1948).
Kalogirou, S. lctools: Local Correlation, Spatial Inequalities, Geographically Weighted Regression and Other Tools. R package version 0.2-7. https://CRAN.R-project.org/package=lctools (2019).
Copernicus Climate Change Service (C3S). ERA5: Climate Data Store (CDS) https://cds.climate.copernicus.eu/cdsapp#!/home (accessed 1 October 2019).
Gelman, G. & Hill, J. Data Analysis Using Regression and Multilevel/Hierarchical Models (Cambridge Univ. Press, 2007).
Quinn, G. P. & Keough, M. J. Experimental Design and Data Analysis for Biologists (Cambridge Univ. Press, 2002).
Lumley, T. leaps: Regression Subset Selection. R package version 3.1. https://CRAN.R-project.org/package=leaps (2020).
Wood, S. N. Generalized Additive Models: An Introduction with R 2nd edn (CRC Press, 2017). DOI
Wood, S. & Scheipl, F. gamm4: Generalized Additive Mixed Models using ‘mgcv’ and ‘lme4’. R package version 0.2-5. https://CRAN.R-project.org/package=gamm4 (2017).
Pinheiro, J. C. & Bates, D. M. Mixed Effects Models in S and S-Plus (Springer, 2000).
Burnham, K. P., Anderson, D. R. & Huyvaert, K. P. AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behav. Ecol. Sociobiol. 65, 23–35 (2011). DOI
Hosmer, D. W. & Lemeshow, S. Applied Logistic Regression 2nd edn (John Wiley and Sons, Inc., 2000).
Homer, C. G. et al. Completion of the 2011 National Land Cover Database for the conterminous United States – Representing a decade of land cover change information. Photogramm. Eng. Remote Sensing 81, 345–354 (2015).
Lele, S. R., Keim, J. L. & Solymos, P. ResourceSelection: Resource Selection (Probability) Functions for Use-Availability Data. R package version 0.3-2. https://CRAN.R-project.org/package=ResourceSelection (2017).
Cutler, D. R. et al. Random forests for classification in ecology. Ecology 88, 2783–2792 (2007). DOI
Liaw, A. & Wiener, M. Classification and regression by randomForest. R News 2, 18–22 (2002).
Messager, M. L., Lehner, B., Grill, G., Nedeva, I. & Schmitt, O. Estimating the volume and age of water stored in global lakes using a geo-statistical approach. Nat. Commun. 7, 13603 (2016). DOI
Stetler, J. T., Jane, S. F., Mincer, J. L., Sanders, M. N. & Rose, K. C. Long-term lake dissolved oxygen and temperature data, 1941–2018 ver 2. Environmental Data Initiative https://doi.org/10.6073/pasta/841f0472e19853b0676729221aedfb56 (2021).
Adrian, R., Jane, S. F., & Rose, K. C. Widespread deoxygenation of temperate lakes – Müggelsee data. IGB Leibniz-Institute of Freshwater Ecology and Inland Fisheries dataset. https://doi.org/10.18728/568.0 (2021).
Jenny, J.-P. Time series dataset of dissolved oxygen, water temperature and Secchi depths profiles in Lakes Annecy and Geneva. Portail Data INRAE V1, https://doi.org/10.15454/BUJUSX (2021).