Synchrony of Eukaryotic and Prokaryotic Planktonic Communities in Three Seasonally Sampled Austrian Lakes
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
29963032
PubMed Central
PMC6014231
DOI
10.3389/fmicb.2018.01290
Knihovny.cz E-zdroje
- Klíčová slova
- Seasonality, diversity, eukaryotic plankton, freshwater, prokaryotic plankton, protist,
- Publikační typ
- časopisecké články MeSH
Freshwater systems are characterized by an enormous diversity of eukaryotic protists and prokaryotic taxa. The community structures in different lakes are thereby influenced by factors such as habitat size, lake chemistry, biotic interactions, and seasonality. In our study, we used high throughput 454 sequencing to study the diversity and temporal changes of prokaryotic and eukaryotic planktonic communities in three Austrian lakes during the ice-free season. In the following year, one lake was sampled again with a reduced set of sampling dates to observe reoccurring patterns. Cluster analyses (based on SSU V9 (eukaryotic) and V4 (prokaryotic) OTU composition) grouped samples according to their origin followed by separation into seasonal clusters, indicating that each lake has a unique signature based on OTU composition. These results suggest a strong habitat-specificity of microbial communities and in particular of community patterns at the OTU level. A comparison of the prokaryotic and eukaryotic datasets via co-inertia analysis (CIA) showed a consistent clustering of prokaryotic and eukaryotic samples, probably reacting to the same environmental forces (e.g., pH, conductivity). In addition, the shifts in eukaryotic and bacterioplanktonic communities generally occurred at the same time and on the same scale. Regression analyses revealed a linear relationship between an increase in Bray-Curtis dissimilarities and elapsed time. Our study shows a pronounced coupling between bacteria and eukaryotes in seasonal samplings of the three analyzed lakes. However, our temporal resolution (biweekly sampling) and data on abiotic factors were insufficient to determine if this was caused by direct biotic interactions or by reacting to the same seasonally changing environmental forces.
Biodiversity Faculty of Biology University of Duisburg Essen Essen Germany
Institut für Populationsgenetik Veterinärmedizinische Universität Wien Vienna Austria
Institute of Hydrobiology Biology Centre CAS České Budějovice Czechia
Zobrazit více v PubMed
Abell J. M., Ozkundakci D., Hamilton D. P. (2010). Nitrogen and phosphorus limitation of phytoplankton growth in New Zealand lakes: implications for eutrophication control. Ecosystems 13 966–977. 10.1007/s10021-010-9367-9 DOI
Allgaier M., Grossart H. (2006). Diversity and seasonal dynamics of Actinobacteria populations in four lakes in northeastern Germany. Appl. Environ. Microbiol. 72 3489–3497. 10.1128/AEM.72.5.3489-3497.2006 PubMed DOI PMC
Amend A. S., Seifert K. A., Bruns T. D. (2010). Quantifying microbial communities with 454 pyrosequencing: does read abundance count? Mol. Ecol. 19 5555–5565. 10.1111/j.1365-294X.2010.04898.x PubMed DOI
Andersson A., Samuelsson K., Haecky P., Albertsson J. (2006). Changes in the pelagic microbial food web due to artificial eutrophication. Aquat. Ecol. 40 299–313. 10.1007/s10452-006-9041-7 DOI
Anneville O., Ginot V., Druart J. C., Angeli N. (2002). Long-term study (1974-1998) of seasonal changes in the phytoplankton in Lake Geneva: a multi-table approach. J. Plankton Res. 24 993–1007. 10.1093/plankt/24.10.993 DOI
Azam F., Fenchel T., Field J., Gray J., Meyer-Reil L., Thingstad T. (1983). The ecological role of water-column microbes in the Sea. Mar. Ecol. Prog. Ser. 10 257–263. 10.3354/meps010257 DOI
Baker B. J., Hugenholtz P., Dawson S. C., Banfield J. F. (2003). Extremely acidophilic protists from acid mine drainage host rickettsiales-lineage endosymbionts that have intervening sequences in their 16s rRNA genes. Appl. Environ. Microbiol. 69 5512–5518. 10.1128/AEM.69.9.5512-5518.2003 PubMed DOI PMC
Bass D., Cavalier-Smith T. (2004). Phylum-specific environmental DNA analysis reveals remarkably high global biodiversity of Cercozoa (Protozoa). Int. J. Syst. Evol. Microbiol. 54 2393–2404. 10.1099/ijs.0.63229-0 PubMed DOI
Bell W., Mitchell R. (1972). Chemotactic and growth response of marine bacteria to algal extracellular products. Biol. Bull. 143:265 10.2307/1540052 DOI
Berman T., Yacobi Y. Z., Pollingher U. (1992). Lake Kinneret phytoplankton - stability and variability during 20 years (1970-1989). Aquat. Sci. 54 104–127. 10.1007/BF00880278 DOI
Bižić-Ionescu M., Amann R., Grossart H.-P. (2014). Massive regime shifts and high activity of heterotrophic bacteria in an ice-covered lake. PLoS One 9:e113611. 10.1371/journal.pone.0113611 PubMed DOI PMC
Blackburn N., Zweifel U. L., Hagstrom A. (1996). Cycling of marine dissolved organic matter. 2. A model analysis. Aquat. Microb. Ecol. 11 79–90. 10.3354/ame011079 DOI
Bock C., Medinger R., Jost S., Psenner R., Boenigk J. (2014). Seasonal variation of planktonic chrysophytes with special focus on Dinobryon. Fottea 14 179–190. 10.5507/fot.2014.014 DOI
Boenigk J., Arndt H. (2002). Bacterivory by heterotrophic flagellates: community structure and feeding strategies. Antonie Van Leeuwenhoek 81 465–480. 10.1023/A:1020509305868 PubMed DOI
Boenigk J., Beisser D., Zimmermann S., Bock C., Jakobi J., Grabner D., et al. (2014). Effects of silver nitrate and silver nanoparticles on a planktonic community: general trends after short-term exposure. PLoS One 9:e95340. 10.1371/journal.pone.0095340 PubMed DOI PMC
Boenigk J., Wodniok S., Bock C., Beisser D., Hempel C., Grossmann L., et al. (2018). Geographic distance and mountain ranges structure freshwater protist communities on a European scalå. Metabarcoding Metagenomics 2:e21519.
Borcard D., Gillet F., Legendre P. (2011). Numerical Ecology with R. New York, NY: Springer; 10.1007/978-1-4419-7976-6 DOI
Bryant J. A., Lamanna C., Morlon H., Kerkhoff A. J., Enquist B. J., Green J. L. (2008). Microbes on mountainsides: contrasting elevational patterns of bacterial and plant diversity. Proc. Natl. Acad. Sci. U.S.A. 105 11505–11511. 10.1073/pnas.0801920105 PubMed DOI PMC
Carlsson P., Caron D. A. (2001). Seasonal variation of phosphorus limitation of bacterial growth in a small lake. Limnol. Oceanogr. 46 108–120. 10.4319/lo.2001.46.1.0108 DOI
Carlsson P., Graneli E., Graneli W., Rodriguez E. G., De Carvalho W. F., Brutemark A., et al. (2012). Bacterial and phytoplankton nutrient limitation in tropical marine waters, and a coastal lake in Brazil. J. Exp. Mar. Biol. Ecol. 418 37–45. 10.1016/j.jembe.2012.03.012 DOI
Caron D. A., Dam H. G., Kremer P., Lessard E. J., Madin L. P., Malone T. C., et al. (1995). The contribution of microorganisms to particulate carbon and nitrogen in surface waters of the Sargasso Sea near Bermuda. Deep Sea Res. Part I Oceanogr. Res. Pap. 42 943–972. 10.1016/0967-0637(95)00027-4 DOI
Cho B. C., Azam F. (1990). Biogeochemical significance of bacterial biomass in the oceans euphotic zone. Mar. Ecol. Prog. Ser. 63 253–259. 10.3354/meps063253 DOI
Coci M., Odermatt N., Salcher M. M., Pernthaler J., Corno G. (2015). Ecology and distribution of Thaumarchaea in the deep hypolimnion of Lake Maggiore. Archaea 2015:590434. 10.1155/2015/590434 PubMed DOI PMC
Cole B. E., Thompson J. K., Cloern J. E. (1992). Measurement of filtration rates by infaunal bivalves in a recirculating flume. Mar. Biol. Berlin 113 219–225.
Cole J. J. (1982). Interactions between Bacteria and algae in aquatic ecosystems. Annu. Rev. Ecol. Syst. 13 291–314. 10.1146/annurev.es.13.110182.001451 DOI
Countway P. D., Gast R. J., Savai P., Caron D. A. (2005). Protistan diversity estimates based on 18S rDNA from seawater incubations in the western North Atlantic. J. Eukaryot. Microbiol. 52 95–106. 10.1111/j.1550-7408.2005.05202006.x PubMed DOI
Denef V. J., Fujimoto M., Berry M. A., Schmidt M. L. (2016). Seasonal succession leads to habitat-dependent differentiation in ribosomal RNA:DNA ratios among freshwater lake bacteria. Front. Microbiol. 7:606. 10.3389/fmicb.2016.00606 PubMed DOI PMC
Dray S., Dufour A. B. (2007). The ade4 package: implementing the duality diagram for ecologists. J. Stat. Softw. 22 1–20. 10.18637/jss.v022.i04 DOI
Dupont A. (2016). Predator Control of Diversity: Case Studies Using Microcosms. Ph.D. thesis, University College London, London.
Eckert E. M., Salcher M. M., Posch T., Eugster B., Pernthaler J. (2012). Rapid successions affect microbial N-acetyl-glucosamine uptake patterns during a lacustrine spring phytoplankton bloom. Environ. Microbiol. 14 794–806. 10.1111/j.1462-2920.2011.02639.x PubMed DOI
Edgar R. C., Haas B. J., Clemente J. C., Quince C., Knight R. (2011). UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27 2194–2200. 10.1093/bioinformatics/btr381 PubMed DOI PMC
Eiler A., Heinrich F., Bertilsson S. (2012). Coherent dynamics and association networks among lake bacterioplankton taxa. ISME J. 6 330–342. 10.1038/ismej.2011.113 PubMed DOI PMC
Eiler A., Mondav R., Sinclair L., Fernandez-Vidal L., Scofield D. G., Schwientek P., et al. (2016). Tuning fresh: radiation through rewiring of central metabolism in streamlined bacteria. ISME J. 10 1902–1914. 10.1038/ismej.2015.260 PubMed DOI PMC
Elser J. J., Marzolf E. R., Goldman C. R. (1990). Phosphorus and nitrogen limitation of phytoplankton growth in the freshwaters of North America: a review and critique of experimental enrichments. Can. J. Fish. Aquat. Sci. 47 1468–1477. 10.1139/f90-165 DOI
Falkowski P. G., Barber R. T., Smetacek V. (1998). Biogeochemical controls and feedbacks on ocean primary production. Science 281 200–206. 10.1126/science.281.5374.200 PubMed DOI
Falkowski P. G., Katz M. E., Knoll A. H., Quigg A., Raven J. A., Schofield O., et al. (2004). The evolution of modern eukaryotic phytoplankton. Review 305 354–360. 10.1126/science.1095964 PubMed DOI
Field C. B., Behrenfeld M. J., Randerson J. T., Falkowski P. (1998). Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281 237–240. 10.1126/science.281.5374.237 PubMed DOI
Filker S., Sommaruga R., Vila I., Stoeck T. (2016). Microbial eukaryote plankton communities of high-mountain lakes from three continents exhibit strong biogeographic patterns. Mol. Ecol. 25 2286–2301. 10.1111/mec.13633 PubMed DOI PMC
Fisher M. M., Klug J. L., Lauster G., Newton M., Triplett E. W. (2000). Effects of resources and trophic interactions on freshwater bacterioplankton diversity. Microb. Ecol. 40 125–138. PubMed
Greisen K., Loeffelholz M., Purohit A., Leong D. (1994). PCR primers and probes for the 16S rRNA gene of most species of pathogenic bacteria, including bacteria found in cerebrospinal fluid. J. Clin. Microbiol. 32 335–351. PubMed PMC
Grossart H. P., Jezbera J., Horòák K., Hutalle K. M. L., Buck U., Šimek K. (2008). Top-down and bottom-up induced shifts in bacterial abundance, production and community composition in an experimentally divided humic lake. Environ. Microbiol. 10 635–652. 10.1111/j.1462-2920.2007.01487.x PubMed DOI
Grossmann L., Jensen M., Heider D., Jost S., Glucksman E., Hartikainen H., et al. (2016). Protistan community analysis: key findings of a large-scale molecular sampling. ISME J. 10 2269–2279. 10.1038/ismej.2016.10 PubMed DOI PMC
Grujcic V., Nuy J. K., Salcher M. M., Shabarova T., Kasalicky V., Boenigk J., et al. (2018). Cryptophyta as major bacterivores in freshwater summer plankton. ISME J. 10.1038/s41396-018-0057-5 [Epub ahead of print]. PubMed DOI PMC
Guillou L., Bachar D., Audic S., Bass D., Berney C., Bittner L., et al. (2013). The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote Small Sub-Unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 41 D597–D604. 10.1093/nar/gks1160 PubMed DOI PMC
Hahn M. W., Jezberova J., Koll U., Saueressig-Beck T., Schmidt J. (2016). Complete ecological isolation and cryptic diversity in Polynucleobacter bacteria not resolved by 16S rRNA gene sequences. ISME J. 10 1642–1655. 10.1038/ismej.2015.237 PubMed DOI PMC
Hahn M. W., Schmidt J., Taipale S. J., Doolittle W. F., Koll U. (2014). Rhodoluna lacicola gen. nov., sp. nov., a planktonic freshwater bacterium with stream-lined genome. Int. J. Syst. Evol. Microbiol. 64 3254–3263. 10.1099/ijs.0.065292-0 PubMed DOI PMC
Hama T., Handa N. (1987). Pattern of organic-matter production by natural phytoplankton population in a eutrophic lake. 2. Extracellular products. Arch. Hydrobiol. 109 227–243.
Hayden C. J., Beman J. M. (2016). Microbial diversity and community structure along a lake elevation gradient in Yosemite National Park, California, USA. Environ. Microbiol. 18 1782–1791. 10.1111/1462-2920.12938 PubMed DOI
Horňák K., Kasalickı V., Šimek K., Grossart H.-P. (2017). Strain-specific consumption and transformation of alga-derived dissolved organic matter by members of the Limnohabitans-C and Polynucleobacter-B clusters of Betaproteobacteria. Environ. Microbiol. 19 4519–4535. 10.1111/1462-2920.13900 PubMed DOI
Kent A. D., Yannarell A. C., Rusak J. A., Triplett E. W., Mcmahon K. D. (2007). Synchrony in aquatic microbial community dynamics. ISME J. 1 38–47. 10.1038/ismej.2007.6 PubMed DOI
Landesregierung A. D. O. (2009). Gewässerschutzberich 43, seenaufsicht in Oberösterreich. Gewässerschtzberichte Oberösterreich 43 1–287.
Lee Z. M. P., Bussema C., Schmidt T. M. (2009). rrnDB: documenting the number of rRNA and tRNA genes in bacteria and archaea. Nucleic Acids Res. 37 D489–D493. 10.1093/nar/gkn689 PubMed DOI PMC
Li J., Zhang J., Liu L., Fan Y., Li L., Yang Y., et al. (2015). Annual periodicity in planktonic bacterial and archaeal community composition of eutrophic Lake Taihu. Sci. Rep. 5:15488. 10.1038/srep15488 PubMed DOI PMC
Lindstrom E. S., Langenheder S. (2012). Local and regional factors influencing bacterial community assembly. Environ. Microbiol. Rep. 4 1–9. 10.1111/j.1758-2229.2011.00257.x PubMed DOI
Linz A. M., Crary B. C., Shade A., Owens S., Gilbert J. A., Knight R., et al. (2017). Bacterial community composition and dynamics spanning five years in freshwater bog lakes. mSphere 2:e00169-17. PubMed PMC
Liu L. M., Yang J., Lv H., Yu X. Q., Wilkinson D. M. (2015). Phytoplankton communities exhibit a stronger response to environmental changes than bacterioplankton in three subtropical reservoirs. Environ. Sci. Technol. 49 10850–10858. 10.1021/acs.est.5b02637 PubMed DOI
Llirós M., Inceoǧlu Ö., García-Armisen T., Anzil A., Leporcq B., Pigneur L.-M., et al. (2014). Bacterial community composition in three freshwater reservoirs of different alkalinity and trophic status. PLoS One 9:e116145. 10.1371/journal.pone.0116145 PubMed DOI PMC
Mahé F., Rognes T., Quince C., De Vargas C., Dunthorn M. (2014). Swarm: robust and fast clustering method for amplicon-based studies. PeerJ 2:e593. 10.7717/peerj.593 PubMed DOI PMC
Martiny J. B. H., Bohannan B. J. M., Brown J. H., Colwell R. K., Fuhrman J. A., Green J. L., et al. (2006). Microbial biogeography: putting microorganisms on the map. Nat. Rev. Microbiol. 4 102–112. 10.1038/nrmicro1341 PubMed DOI
Medinger R., Nolte V., Pandey R. V., Jost S., Ottenwaelder B., Schloetterer C., et al. (2010). Diversity in a hidden world: potential and limitation of next-generation sequencing for surveys of molecular diversity of eukaryotic microorganisms. Mol. Ecol. 19 32–40. 10.1111/j.1365-294X.2009.04478.x PubMed DOI PMC
Medlin L., Elwood H. J., Stickel S., Sogin M. L. (1988). The characterization of enzymatically amplified eukaryotic 16s-like rRNA-coding regions. Gene 71 491–499. 10.1016/0378-1119(88)90066-2 PubMed DOI
Moreira D., López-Garciá P. (2002). The molecular ecology of microbial eukaryotes unveils a hidden world. Trends Microbiol. 10 31–38. 10.1016/S0966-842X(01)02257-0 PubMed DOI
Nelson C. E., Carlson C. A. (2011). Differential response of high-elevation planktonic bacterial community structure and metabolism to experimental nutrient enrichment. PLoS One 6:e18320. 10.1371/journal.pone.0018320 PubMed DOI PMC
Neuenschwander S. M., Ghai R., Pernthaler J., Salcher M. M. (2018). Microdiversification in genome-streamlined ubiquitous freshwater Actinobacteria. ISME J. 12 185–198. 10.1038/ismej.2017.156 PubMed DOI PMC
Neuenschwander S. M., Pernthaler J., Posch T., Salcher M. M. (2015). Seasonal growth potential of rare lake water bacteria suggest their disproportional contribution to carbon fluxes. Environ. Microbiol. 17 781–795. 10.1111/1462-2920.12520 PubMed DOI
Newton R. J., Jones S. E., Eiler A., Mcmahon K. D., Bertilsson S. (2011). A guide to the natural history of freshwater lake bacteria. Microbiol. Mol. Biol. Rev. 75 14–49. 10.1128/MMBR.00028-10 PubMed DOI PMC
Nolte V., Pandey R. V., Jost S., Medinger R., Ottenwaelder B., Boenigk J., et al. (2010). Contrasting seasonal niche separation between rare and abundant taxa conceals the extent of protist diversity. Mol. Ecol. 19 2908–2915. 10.1111/j.1365-294X.2010.04669.x PubMed DOI PMC
Okazaki Y., Hodoki Y., Nakano S.-I. (2013). Seasonal dominance of CL500-11 bacterioplankton (Phylum Chloroflexi) in the oxygenated hypolimnion of Lake Biwa, Japan. FEMS Microbiol. Ecol. 83 82–92. 10.1111/j.1574-6941.2012.01451.x PubMed DOI
Okazaki Y., Nakano S.-I. (2016). Vertical partitioning of freshwater bacterioplankton community in a deep mesotrophic lake with a fully oxygenated hypolimnion (Lake Biwa, Japan). Environ. Microbiol. Rep. 10.1111/1758-2229.12439 [Epub ahead of print]. PubMed DOI
Oksanen J. (2015). Multivariate Analysis of Ecological Communities in R: Vegan Tutorial. Available at: http://cc.oulu.fi/∼jarioksa/opetus/metodi/vegantutor.pdf
Oksanen J., Blanchet F. G., Kindt R., Legendre P., O’hara R. B., Simpson G. L., et al. (2011). ”Vegan: Community Ecology Package.” R Package Version 1.17-6. Available at: http://cran.r-project.org
Pandey R. V., Nolte V., Schlotterer C. (2010). CANGS: a user-friendly utility for processing and analyzing 454 GS-FLX data in biodiversity studies. BMC Res. Notes 3:3. 10.1186/1756-0500-3-3 PubMed DOI PMC
Paver S. F., Hayek K. R., Gano K. A., Fagen J. R., Brown C. T., Davis-Richardson A. G., et al. (2013). Interactions between specific phytoplankton and bacteria affect lake bacterial community succession. Environ. Microbiol. 15 2489–2504. 10.1111/1462-2920.12131 PubMed DOI
Paver S. F., Youngblut N. D., Whitaker R. J., Kent A. D. (2015). Phytoplankton succession affects the composition of Polynucleobacter subtypes in humic lakes. Environ. Microbiol. 17 816–828. 10.1111/1462-2920.12529 PubMed DOI
Pawlowski J., Audic S., Adl S., Bass D., Belbahri L., Berney C., et al. (2012). CBOL protist working group: barcoding eukaryotic richness beyond the animal, plant, and fungal kingdoms. PLoS Biol. 10:e1001419. 10.1371/journal.pbio.1001419 PubMed DOI PMC
Pernthaler J. (2005). Predation on prokaryotes in the water column and its ecological implications. Nat. Rev. Microbiol. 3 537–546. 10.1038/nrmicro1180 PubMed DOI
Pernthaler J. (2017). Competition and niche separation of pelagic bacteria in freshwater habitats. Environ. Microbiol. 19 2133–2150. 10.1111/1462-2920.13742 PubMed DOI
Pernthaler J., Posch T. (2009). “Microbial food webs,” in Encyclopedia of Inland Waters, ed. Likens G. E. (Oxford: Elsevier; ), 244–251. 10.1016/B978-012370626-3.00130-7 DOI
Peter H., Sommaruga R. (2016). Shifts in diversity and function of lake bacterial communities upon glacier retreat. ISME J. 10 1545–1554. 10.1038/ismej.2015.245 PubMed DOI PMC
Peura S., Eiler A., Hiltunen M., Nykänen H., Tiirola M., Jones R. I. (2012). Bacterial and phytoplankton responses to nutrient amendments in a boreal lake differ according to season and to taxonomic resolution. PLoS One 7:e38552. 10.1371/journal.pone.0038552 PubMed DOI PMC
Pomeroy L. R. (1974). Oceans food web, a changing paradigm. Bioscience 24 499–504. 10.2307/1296885 DOI
Posch T., Koster O., Salcher M. M., Pernthaler J. (2012). Harmful filamentous cyanobacteria favoured by reduced water turnover with lake warming. Nat. Clim. Change 2 809–813. 10.1038/nclimate1581 DOI
Roesch L. F., Fulthorpe R. R., Riva A., Casella G., Hadwin A. K. M., Kent A. D., et al. (2007). Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J. 1 283–290. 10.1038/ismej.2007.53 PubMed DOI PMC
Rofner C., Sommaruga R., Teresa Pérez M. (2016). Phosphate and ATP uptake by lake bacteria: does taxonomical identity matter? Environ. Microbiol. 18 4782–4793. 10.1111/1462-2920.13368 PubMed DOI PMC
Salcher M. M. (2014). Same same but different: ecological niche partitioning of planktonic freshwater prokaryotes. J. Limnol. 73 74–87.
Salcher M. M., Neuenschwander S. M., Posch T., Pernthaler J. (2015). The ecology of pelagic freshwater methylotrophs assessed by a high-resolution monitoring and isolation campaign. ISME J. 9 2442–2453. 10.1038/ismej.2015.55 PubMed DOI PMC
Salcher M. M., Pernthaler J., Posch T. (2011). Seasonal bloom dynamics and ecophysiology of the freshwater sister clade of SAR11 bacteria ’that rule the waves’ (LD12). ISME J. 5 1242–1252. 10.1038/ismej.2011.8 PubMed DOI PMC
Salcher M. M., Pernthaler J., Zeder M., Psenner R., Posch T. (2008). Spatio-temporal niche separation of planktonic Betaproteobacteria in an oligo-mesotrophic lake. Environ. Microbiol. 10 2074–2086. 10.1111/j.1462-2920.2008.01628.x PubMed DOI
Salmaso N. (2010). Long-term phytoplankton community changes in a deep subalpine lake: responses to nutrient availability and climatic fluctuations. Freshw. Biol. 55 825–846. 10.1111/j.1365-2427.2009.02325.x DOI
Salmaso N., Padisak J. (2007). Morpho-functional groups and phytoplankton development in two deep lakes (Lake Garda, Italy and Lake Stechlin, Germany). Hydrobiologia 578 97–112. 10.1007/s10750-006-0437-0 DOI
Schindler D. W. (1977). Evolution of phosphorous limitation in lakes. Science 195 260–262. 10.1126/science.195.4275.260 PubMed DOI
Shabarova T., Kasalickı V., Šimek K., Nedoma J., Znachor P., Posch T., et al. (2017). Distribution and ecological preferences of the freshwater lineage LimA (genus Limnohabitans) revealed by a new double hybridisation approach. Environ. Microbiol. 19 1296–1309. 10.1111/1462-2920.13663 PubMed DOI
Šimek K., Bobkova J., Macek M., Nedoma J., Psenner R. (1995). Ciliate grazing on picoplankton in a eutrophic reservoir during the summer phytoplankton maximum: a study at the species and community level. Limnol. Oceanogr. 40 1077–1090. 10.4319/lo.1995.40.6.1077 DOI
Šimek K., Horòák K., Jezbera J., Nedoma J., Vrba J., Straskrabová V., et al. (2006). Maximum growth rates and possible life strategies of different bacterioplankton groups in relation to phosphorus availability in a freshwater reservoir. Environ. Microbiol. 8 1613–1624. 10.1111/j.1462-2920.2006.01053.x PubMed DOI
Šimek K., Horòák K., Jezbera J., Nedoma J., Znachor P., Hejzlar J., et al. (2008). Spatio-temporal patterns of bacterioplankton production and community composition related to phytoplankton composition and protistan bacterivory in a dam reservoir. Aquat. Microb. Ecol. 51 249–262. 10.3354/ame01193 DOI
Šimek K., Kasalickı V., Jezbera J., Horòák K., Nedoma J., Hahn M. W., et al. (2013). Differential freshwater flagellate community response to bacterial food quality with a focus on Limnohabitans bacteria. ISME J. 7 1519–1530. 10.1038/ismej.2013.57 PubMed DOI PMC
Šimek K., Kasalickı V., Zapomelova E., Horòák K. (2011). Alga-derived substrates select for distinct betaproteobacterial lineages and contribute to niche separation in Limnohabitans strains. Appl. Environ. Microbiol. 77 7307–7315. 10.1128/AEM.05107-11 PubMed DOI PMC
Šimek K., Nedoma J., Znachor P., Kasalickı V., Jezbera J., Horòák K., et al. (2014). A finely tuned symphony of factors modulates the microbial food web of a freshwater reservoir in spring. Limnol. Oceanogr. 59 1477–1492. 10.4319/lo.2014.59.5.1477 DOI
Sommaruga R., Casamayor E. O. (2009). Bacterial ‘cosmopolitanism’ and importance of local environmental factors for community composition in remote high-altitude lakes. Freshw. Biol. 54 994–1005. 10.1111/j.1365-2427.2008.02146.x PubMed DOI PMC
Sommer U., Adrian R., Domis L. D., Elser J. J., Gaedke U., Ibelings B., et al. (2012). Beyond the plankton ecology group (PEG) model: mechanisms driving plankton succession. Annu. Rev. Ecol. Evol. Syst. 43 429–448. 10.1146/annurev-ecolsys-110411-160251 DOI
Sommer U. (ed.) (1989). Plankton Ecology. Heidelberg: Springer; 10.1007/978-3-642-74890-5 DOI
Sommer U., Gliwicz Z. M., Lampert W., Duncan A. (1986). The PEG-Model of seasonal succession of planktonic events in fresh waters. Arch. Hydrobiol. 106 433–471.
Stocker R. (2012). Marine microbes see a sea of gradients. Science 338 628–633. 10.1126/science.1208929 PubMed DOI
Stoeck T., Bass D., Nebel M., Christen R., Jones M. D. M., Breiner H. W., et al. (2010). Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol. Ecol. 19 21–31. 10.1111/j.1365-294X.2009.04480.x PubMed DOI
Stoeck T., Epstein S. (2003). Novel eukaryotic lineages inferred from small-subunit rRNA analyses of oxygen-depleted marine environments. Appl. Environ. Microbiol. 69 2657–2663. 10.1128/AEM.69.5.2657-2663.2003 PubMed DOI PMC
Tammert H., Tsertova N., Kiprovskaja J., Baty F., Noges T., Kisand V. (2015). Contrasting seasonal and interannual environmental drivers in bacterial communities within a large shallow lake: evidence from a seven year survey. Aquat. Microb. Ecol. 75 43–54. 10.3354/ame01744 DOI
Teeling H., Fuchs B. M., Becher D., Klockow C., Gardebrecht A., Bennke C. M., et al. (2012). Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science 336 608–611. 10.1126/science.1218344 PubMed DOI
Teira E., Martínez-Garcia S., Calvo-Díaz A., Morán X. (2010). Effects of inorganic and organic nutrient inputs on bacterioplankton community composition along a latitudinal transect in the Atlantic Ocean. Aquat. Microb. Ecol. 60 299–313. 10.3354/ame01435 DOI
Thioulouse J., Dray S. (2007). Interactive multivariate data analysis in R with the ade4 and ade4TkGUI packages. J. Stat. Softw. 22 1–14. 10.18637/jss.v022.i05 DOI
Urbach E., Vergin K., Larson G., Giovannoni S. (2007). Bacterioplankton communities of Crater Lake, OR: dynamic changes with euphotic zone food web structure and stable deep water populations. Hydrobiologia 574 161–177. 10.1007/s10750-006-0351-5 DOI
Williams T. J., Wilkins D., Long E., Evans F., Demaere M. Z., Raftery M. J., et al. (2013). The role of planktonic Flavobacteria in processing algal organic matter in coastal East Antarctica revealed using metagenomics and metaproteomics. Environ. Microbiol. 15 1302–1317. 10.1111/1462-2920.12017 PubMed DOI
Woodhouse J. N., Kinsela A. S., Collins R. N., Bowling L. C., Honeyman G. L., Holliday J. K., et al. (2016). Microbial communities reflect temporal changes in cyanobacterial composition in a shallow ephemeral freshwater lake. ISME J. 10 1337–1351. 10.1038/ismej.2015.218 PubMed DOI PMC
Wu L., Yu Y. H., Zhang T. L., Feng W. S., Zhang X., Li W. (2009). PCR-DGGE fingerprinting analysis of plankton communities and its relationship to lake trophic status. Int. Rev. Hydrobiol. 94 528–541. 10.1002/iroh.200911129 DOI
Xing P., Hahn M. W., Wu Q. L. (2009). Low taxon richness of bacterioplankton in high-altitude lakes of the Eastern Tibetan Plateau, with a predominance of Bacteroidetes and Synechococcus spp. Appl. Environ. Microbiol. 75 7017–7025. 10.1128/AEM.01544-09 PubMed DOI PMC
Yankova Y., Neuenschwander S., Köster O., Posch T. (2017). Abrupt stop of deep water turnover with lake warming: drastic consequences for algal primary producers. Sci. Rep. 7:13770. 10.1038/s41598-017-13159-9 PubMed DOI PMC
Yannarell A. C., Triplett E. W. (2005). Geographic and environmental sources of variation in lake bacterial community composition. Appl. Environ. Microbiol. 71 227–239. 10.1128/AEM.71.1.227-239.2005 PubMed DOI PMC
Zeder M., Peter S., Shabarova T., Pernthaler J. (2009). A small population of planktonic Flavobacteria with disproportionally high growth during the spring phytoplankton bloom in a prealpine lake. Environ. Microbiol. 11 2676–2686. 10.1111/j.1462-2920.2009.01994.x PubMed DOI
Zhu F., Massana R., Not F., Marie D., Vaulot D. (2005). Mapping of picoeucaryotes in marine ecosystems with quantitative PCR of the 18S rRNA gene. FEMS Microbiol. Ecol. 52 79–92. 10.1016/j.femsec.2004.10.006 PubMed DOI
Zohary T. (2004). Changes to the phytoplankton assemblage of Lake Kinneret after decades of a predictable, repetitive pattern. Freshw. Biol. 49 1355–1371. 10.1111/j.1365-2427.2004.01271.x DOI
Cryptic and ubiquitous aplastidic cryptophytes are key freshwater flagellated bacterivores