Complete ecological isolation and cryptic diversity in Polynucleobacter bacteria not resolved by 16S rRNA gene sequences
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
I 482
Austrian Science Fund FWF - Austria
PubMed
26943621
PubMed Central
PMC4913878
DOI
10.1038/ismej.2015.237
PII: ismej2015237
Knihovny.cz E-zdroje
- MeSH
- Burkholderiaceae genetika izolace a purifikace MeSH
- DNA bakterií genetika MeSH
- ekologie MeSH
- ekosystém MeSH
- fylogeneze MeSH
- genomika * MeSH
- plankton genetika izolace a purifikace MeSH
- RNA ribozomální 16S genetika MeSH
- sekvenční analýza DNA MeSH
- sladká voda mikrobiologie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA bakterií MeSH
- RNA ribozomální 16S MeSH
Transplantation experiments and genome comparisons were used to determine if lineages of planktonic Polynucleobacter almost indistinguishable by their 16S ribosomal RNA (rRNA) sequences differ distinctively in their ecophysiological and genomic traits. The results of three transplantation experiments differing in complexity of biotic interactions revealed complete ecological isolation between some of the lineages. This pattern fits well to the previously detected environmental distribution of lineages along chemical gradients, as well as to differences in gene content putatively providing adaptation to chemically distinct habitats. Patterns of distribution of iron transporter genes across 209 Polynucleobacter strains obtained from freshwater systems and representing a broad pH spectrum further emphasize differences in habitat-specific adaptations. Genome comparisons of six strains sharing ⩾99% 16S rRNA similarities suggested that each strain represents a distinct species. Comparison of sequence diversity among genomes with sequence diversity among 240 cultivated Polynucleobacter strains indicated a large cryptic species complex not resolvable by 16S rRNA sequences. The revealed ecological isolation and cryptic diversity in Polynucleobacter bacteria is crucial in the interpretation of diversity studies on freshwater bacterioplankton based on ribosomal sequences.
Biology Centre of the ASCR v v i Institute of Hydrobiology České Budějovice Czech Republic
Research Institute for Limnology University of Innsbruck Mondsee Austria
Zobrazit více v PubMed
Auch AF, von Jan M, Klenk HP, Goker M. (2010). Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2: 117–134. PubMed PMC
Besemer K, Peter H, Logue JB, Langenheder S, Lindstrom ES, Tranvik LJ et al. (2012). Unraveling assembly of stream biofilm communities. ISME J 6: 1459–1468. PubMed PMC
Boscaro V, Felletti M, Vannini C, Ackerman MS, Chain PSG, Malfatti S et al. (2013). Polynucleobacter necessarius, a model for genome reduction in both free-living and symbiotic bacteria. Proc Natl Acad Sci USA 110: 18590–18595. PubMed PMC
Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K et al. (2009). BLAST+: architecture and applications. BMC Bioinformatics 10: 421. PubMed PMC
Claesson MJ, Jeffery IB, Conde S, Power SE, O'Connor EM, Cusack S et al. (2012). Gut microbiota composition correlates with diet and health in the elderly. Nature 488: 178–184. PubMed
Cordero OX, Polz MF. (2014). Explaining microbial genomic diversity in light of evolutionary ecology. Nat Rev Micro 12: 263–273. PubMed
Fraser C, Hanage WP, Spratt BG. (2007). Recombination and the nature of bacterial speciation. Science 315: 476–480. PubMed PMC
Freilich S, Zarecki R, Eilam O, Segal ES, Henry CS, Kupiec M et al. (2011). Competitive and cooperative metabolic interactions in bacterial communities. Nat Commun 2: 589. PubMed
Garcia SL, Buck M, McMahon KD, Grossart HP, Eiler A, Warnecke F. (2015). Auxotrophy and intrapopulation complementary in the 'interactome' of a cultivated freshwater model community. Mol Ecol 24: 4449–4459. PubMed
Ghai R, Rodriguez-Valera F, McMahon KD, Toyama D, Rinke R, Souza de Oliveira TC et al. (2011). Metagenomics of the water column in the pristine upper course of the Amazon River. Plos One 6: e23785. PubMed PMC
Grossart HP. (2010). Ecological consequences of bacterioplankton lifestyles: changes in concepts are needed. Environ Microbiol Rep 2: 706–714. PubMed
Hahn MW. (2003). Isolation of strains belonging to the cosmopolitan Polynucleobacter necessarius cluster from freshwater habitats located in three climatic zones. Appl Environ Microbiol 69: 5248–5254. PubMed PMC
Hahn MW, Stadler P, Wu QL, Pockl M. (2004). The filtration-acclimatization method for isolation of an important fraction of the not readily cultivable bacteria. J Microbiol Methods 57: 379–390. PubMed
Hahn MW, Pockl M. (2005). Ecotypes of planktonic Actinobacteria with identical 16S rRNA genes adapted to thermal niches in temperate, subtropical, and tropical freshwater habitats. Appl Environ Microbiol 71: 766–773. PubMed PMC
Hahn MW, Pockl M, Wu QL. (2005). Low intraspecific diversity in a Polynucleobacter subcluster population numerically dominating bacterioplankton of a freshwater pond. Appl Environ Microbiol 71: 4539–4547. PubMed PMC
Hahn MW, Lang E, Brandt U, Wu QL, Scheuerl T. (2009). Emended description of the genus Polynucleobacter and the species Polynucleobacter necessarius and proposal of two subspecies, P. necessarius subsp. necessarius subsp nov and P. necessarius subsp asymbioticus subsp nov. Int J Syst Evol Microbiol 59: 2002–2009. PubMed PMC
Hahn MW, Scheuerl T, Jezberova J, Koll U, Jezbera J, Simek K et al. (2012). The passive yet successful way of planktonic life: Genomic and experimental analysis of the ecology of a free-living Polynucleobacter population. Plos One 7: e32772. PubMed PMC
Hahn MW, Koll U, Jezberova J, Camacho A. (2015). Global phylogeography of pelagic Polynucleobacter bacteria: Restricted geographic distribution of subgroups, isolation by distance, and influence of climate. Environ Microbiol 17: 829–840. PubMed PMC
Hao Z, Li L, Liu J, Ren Y, Wang L, Bartlam M et al. (2013). Genome sequence of a freshwater low-nucleic-acid-content bacterium, Betaproteobacterium strain CB. Genome Announcements 1: e0013513. PubMed PMC
Ivars-Martinez E, Martin-Cuadrado A-B, D'Auria G, Mira A, Ferriera S, Johnson J et al. (2008). Comparative genomics of two ecotypes of the marine planktonic copiotroph Alteromonas macleodii suggests alternative lifestyles associated with different kinds of particulate organic matter. ISME J 2: 1194–1212. PubMed
Jaspers E, Overmann J. (2004). Ecological significance of microdiversity: Identical 16S rRNA gene sequences can be found in bacteria with highly divergent genomes and ecophysiologies. Appl Environ Microbiol 70: 4831–4839. PubMed PMC
Jezbera J, Jezberova J, Brandt U, Hahn MW. (2011). Ubiquity of Polynucleobacter necessarius subspecies asymbioticus results from ecological diversification. Environ Microbiol 13: 922–931. PubMed PMC
Jezberova J, Jezbera J, Brandt U, Lindstrom ES, Langenheder S, Hahn MW. (2010). Ubiquity of Polynucleobacter necessarius ssp. asymbioticus in lentic freshwater habitats of a heterogenous 2000 km2 area. Environ Microbiol 12: 658–669. PubMed PMC
Kim M, Oh H-S, Park S-C, Chun J. (2014). Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 64: 346–351. PubMed
Konstantinidis K, Tiedje J. (2005). Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci USA 102: 2567–2572. PubMed PMC
Konstantinidis KT, Ramette A, Tiedje JM. (2006). The bacterial species definition in the genomic era. Philos Trans R Soc B Biol Sci 361: 1929–1940. PubMed PMC
Livermore JA, Jones SE. (2015). Local-global overlap in diversity informs mechanisms of bacterial biogeography. ISME J. 9: 2413–2422. PubMed PMC
López-López A, Bartual SG, Stal L, Onyshchenko O, Rodríguez-Valera F. (2005). Genetic analysis of housekeeping genes reveals a deep-sea ecotype of Alteromonas macleodii in the Mediterranean Sea. Environ Microbiol 7: 649–659. PubMed
Markowitz VM, Chen IMA, Palaniappan K, Chu K, Szeto E, Grechkin Y et al. (2012). IMG: the integrated microbial genomes database and comparative analysis system. Nucleic Acids Res 40: D115–D122. PubMed PMC
Martinez-Garcia M, Swan BK, Poulton NJ, Gomez ML, Masland D, Sieracki ME et al. (2012). High-throughput single-cell sequencing identifies photoheterotrophs and chemoautotrophs in freshwater bacterioplankton. ISME J 6: 113–123. PubMed PMC
Meincke L, Copeland A, Lapidus A, Lucas S, Berry KW, Del Rio TG et al. (2012). Complete genome sequence of Polynucleobacter necessarius subsp. asymbioticus type strain (QLW-P1DMWA-1T. Stand Genomic Sci 6: 74–83. PubMed PMC
Morris JJ, Kirkegaard R, Szul MJ, Johnson ZI, Zinser ER. (2008). Facilitation of robust growth of Prochlorococcus colonies and dilute liquid cultures by “helper” heterotrophic bacteria. Appl Environ Microbiol 74: 4530–4534. PubMed PMC
Newton RJ, Jones SE, Eiler A, McMahon KD, Bertilsson S. (2011). A guide to the natural history of freshwater lake bacteria. Microbiol Mol Biol Rev 75: 14–49. PubMed PMC
Percent SF, Frischer ME, Vescio PA, Duffy EB, Milano V, McLellan M et al. (2008). Bacterial community structure of acid-impacted lakes: What controls diversity? Appl Environ Microbiol 74: 1856–1868. PubMed PMC
Pinto AJ, Xi C, Raskin L. (2012). Bacterial community structure in the drinking water microbiome is governed by filtration processes. Environ Sci Technol 46: 8851–8859. PubMed
Richter M, Rosselló-Móra R. (2009). Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 106: 19126–19131. PubMed PMC
Salcher MM. (2014). Same same but different: ecological niche partitioning of planktonic freshwater prokaryotes. J Limnol 73: 74–87.
Schauer M, Hahn MW. (2005). Diversity and phylogenetic affiliations of morphologically conspicuous large filamentous bacteria occurring in the pelagic zones of a broad spectrum of freshwater habitats. Appl Environ Microbiol 71: 1931–1940. PubMed PMC
Schwalbach MS, Tripp HJ, Steindler L, Smith DP, Giovannoni SJ. (2010). The presence of the glycolysis operon in SAR11 genomes is positively correlated with ocean productivity. Environ Microbiol 12: 490–500. PubMed
Seth EC, Taga ME. (2014). Nutrient cross-feeding in the microbial world. Front Microbiol 5: 350. PubMed PMC
Sikorski J, Nevo E. (2007). Patterns of thermal adaptation of Bacillus simplex to the microclimatically contrasting slopes of 'Evolution Canyons' I and II, Israel. Environ Microbiol 9: 716–726. PubMed
Stackebrandt E, Ebers J. (2006). Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 33: 152–155.
Stumm W. (2007) Chemical processes regulating the composition of lake waters. The Lakes Handbook Volume 1. Blackwell Science Ltd, Malden, CA, pp 79–106.
Van der Gucht K, Cottenie K, Muylaert K, Vloemans N, Cousin S, Declerck S et al. (2007). The power of species sorting: Local factors drive bacterial community composition over a wide range of spatial scales. Proc Natl Acad Sci USA 104: 20404–20409. PubMed PMC
Vannini C, Poeckl M, Petroni G, Wu QL, Lang E, Stackebrandt E et al. (2007). Endosymbiosis in statu nascendi: close phylogenetic relationship between obligately endosymbiotic and obligately free-living Polynucleobacter strains (Betaproteobacteria. Environ Microbiol 9: 347–359. PubMed
Varghese NJ, Mukherjee S, Ivanova N, Konstantinidis KT, Mavrommatis K, Kyrpides NC et al. (2015). Microbial species delineation using whole genome sequences. Nucleic Acids Res 43: 6761–6771. PubMed PMC
Watanabe K, Komatsu N, Ishii Y, Negishi M. (2009). Effective isolation of bacterioplankton genus Polynucleobacter from freshwater environments grown on photochemically degraded dissolved organic matter. FEMS Microbiol Ecol 67: 57–68. PubMed
Wetzel RG. (2001) 14 - Iron, sulfur, and silica cycles. In: Wetzel RG (ed). Limnology, 3rd edn. Academic Press: San Diego, pp 289–330.
Wu QL, Hahn MW. (2006). Differences in structure and dynamics of Polynucleobacter communities in a temperate and a subtropical lake, revealed at three phylogenetic levels. FEMS Microbiol Ecol 57: 67–79. PubMed
Zane HK, Butler A. (2013) 3.01 - Fe acquisition. In: Poeppelmeier JR (ed). Comprehensive Inorganic Chemistry II, 2nd edn. Elsevier: Amsterdam, pp 1–20.