Ecology and Distribution of Thaumarchaea in the Deep Hypolimnion of Lake Maggiore

. 2015 ; 2015 () : 590434. [epub] 20150825

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26379473

Ammonia-oxidizing Archaea (AOA) play an important role in the oxidation of ammonia in terrestrial, marine, and geothermal habitats, as confirmed by a number of studies specifically focused on those environments. Much less is known about the ecological role of AOA in freshwaters. In order to reach a high resolution at the Thaumarchaea community level, the probe MGI-535 was specifically designed for this study and applied to fluorescence in situ hybridization and catalyzed reporter deposition (CARD-FISH) analysis. We then applied it to a fine analysis of diversity and relative abundance of AOA in the deepest layers of the oligotrophic Lake Maggiore, confirming previous published results of AOA presence, but showing differences in abundance and distribution within the water column without significant seasonal trends with respect to Bacteria. Furthermore, phylogenetic analysis of AOA clone libraries from deep lake water and from a lake tributary, River Maggia, suggested the riverine origin of AOA of the deep hypolimnion of the lake.

Zobrazit více v PubMed

Brochier-Armanet C., Boussau B., Gribaldo S., Forterre P. Mesophilic crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nature Reviews Microbiology. 2008;6(3):245–252. doi: 10.1038/nrmicro1852. PubMed DOI

Pester M., Schleper C., Wagner M. The Thaumarchaeota: an emerging view of their phylogeny and ecophysiology. Current Opinion in Microbiology. 2011;14(3):300–306. doi: 10.1016/j.mib.2011.04.007. PubMed DOI PMC

Prosser J. I., Nicol G. W. Relative contributions of archaea and bacteria to aerobic ammonia oxidation in the environment. Environmental Microbiology. 2008;10(11):2931–2941. doi: 10.1111/j.1462-2920.2008.01775.x. PubMed DOI

Karner M. B., Delong E. F., Karl D. M. Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature. 2001;409(6819):507–510. doi: 10.1038/35054051. PubMed DOI

Nicol G. W., Schleper C. Ammonia-oxidising Crenarchaeota: important players in the nitrogen cycle? Trends in Microbiology. 2006;14(5):207–212. doi: 10.1016/j.tim.2006.03.004. PubMed DOI

Church M. J., Wai B., Karl D. M., DeLong E. F. Abundances of crenarchaeal amoA genes and transcripts in the Pacific Ocean. Environmental Microbiology. 2010;12(3):679–688. doi: 10.1111/j.1462-2920.2009.02108.x. PubMed DOI PMC

Martens-Habbena W., Berube P. M., Urakawa H., de la Torre J. R., Stahl D. A. Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. Nature. 2009;461(7266):976–979. doi: 10.1038/nature08465. PubMed DOI

Stahl D. A., de la Torre J. R. Physiology and diversity of ammonia-oxidizing archaea. Annual Review of Microbiology. 2012;66:83–101. doi: 10.1146/annurev-micro-092611-150128. PubMed DOI

Vajrala N., Martens-Habbena W., Sayavedra-Soto L. A., et al. Hydroxylamine as an intermediate in ammonia oxidation by globally abundant marine archaea. Proceedings of the National Academy of Sciences of the United States of America. 2013;110(3):1006–1011. doi: 10.1073/pnas.1214272110. PubMed DOI PMC

Merbt S. N., Stahl D. A., Casamayor E. O., Martí E., Nicol G. W., Prosser J. I. Differential photoinhibition of bacterial and archaeal ammonia oxidation. FEMS Microbiology Letters. 2012;327(1):41–46. doi: 10.1111/j.1574-6968.2011.02457.x. PubMed DOI

Sauder L. A., Engel K., Stearns J. C., Masella A. P., Pawliszyn R., Neufeld J. D. Aquarium nitrification revisited: thaumarchaeota are the dominant ammonia oxidizers in freshwater aquarium biofilters. PLoS ONE. 2011;6(8) doi: 10.1371/journal.pone.0023281.e23281 PubMed DOI PMC

Llirós M., Casamayor E. O., Borrego C. High archaeal richness in the water column of a freshwater sulfurous karstic lake along an interannual study. FEMS Microbiology Ecology. 2008;66(2):331–342. doi: 10.1111/j.1574-6941.2008.00583.x. PubMed DOI

Pouliot J., Galand P. E., Lovejoy C., Vincent W. F. Vertical structure of archaeal communities and the distribution of ammonia monooxygenase A gene variants in two meromictic High Arctic lakes. Environmental Microbiology. 2009;11(3):687–699. doi: 10.1111/j.1462-2920.2008.01846.x. PubMed DOI

Auguet J.-C., Triadó-Margarit X., Nomokonova N., Camarero L., Casamayor E. O. Vertical segregation and phylogenetic characterization of ammonia-oxidizing Archaea in a deep oligotrophic lake. The ISME Journal. 2012;6(9):1786–1797. doi: 10.1038/ismej.2012.33. PubMed DOI PMC

Vissers E. W., Blaga C. I., Bodelier P. L. E., et al. Seasonal and vertical distribution of putative ammonia-oxidizing thaumarchaeotal communities in an oligotrophic lake. FEMS Microbiology Ecology. 2013;83(2):515–526. doi: 10.1111/1574-6941.12013. PubMed DOI

Bollmann A., Bullerjahn G. S., McKay R. M. Abundance and diversity of ammonia-oxidizing archaea and bacteria in sediments of trophic end members of the Laurentian Great Lakes, Erie and Superior. PLoS ONE. 2014;9(5) doi: 10.1371/journal.pone.0097068.e97068 PubMed DOI PMC

Abreu C., Jurgens G., de Marco P., Saano A., Bordalo A. A. Crenarchaeota and euryarchaeota in temperate estuarine sediments. Journal of Applied Microbiology. 2001;90(5):713–718. doi: 10.1046/j.1365-2672.2001.01297.x. PubMed DOI

Callieri C., Corno G., Caravati E., Rasconi S., Contesini M., Bertoni R. Bacteria, Archaea, and Crenarchaeota in the epilimnion and hypolimnion of a deep holo-oligomictic lake. Applied and Environmental Microbiology. 2009;75(22):7298–7300. doi: 10.1128/aem.01231-09. PubMed DOI PMC

Callieri C., Bertoni R., Contesini M., Bertoni F. Lake level fluctuations boost toxic cyanobacterial ‘oligotrophic blooms’. PLoS ONE. 2014;9(10) doi: 10.1371/journal.pone.0109526.e109526 PubMed DOI PMC

Auguet J.-C., Barberan A., Casamayor E. O. Global ecological patterns in uncultured Archaea. ISME Journal. 2010;4(2):182–190. doi: 10.1038/ismej.2009.109. PubMed DOI

Calderoni A., Mosello R. L'eutrofizzazione del Lago Maggiore e il suo risanamento. Documenta dell'Istituto Italiano di Idrobiologia. 1996;56:5–20.

Bertoni R., Callieri C., Corno G., Rasconi S., Caravati E., Contesini M. Long-term trends of epilimnetic and hypolimnetic bacteria and organic carbon in a deep holo-oligomictic lake. Hydrobiologia. 2010;644(1):279–287. doi: 10.1007/s10750-010-0150-x. DOI

Ambrosetti W., Barbanti L., Rolla A., Castellano L., Sala N. Hydraulic paths and estimation of the real residence time of the water in Lago Maggiore (N. Italy): application of massless markers transported in 3D motion fields. Journal of Limnology. 2012;71(1):p. e2. doi: 10.3274/jl12-71-1-07. DOI

Stahl D. A., Amann R. Development and application of nucleic acid probes. In: Goodfellow M., Stackebrandt E., editors. Nucleic Acid Techniques in Bacterial Systematics. John Wiley & Sons; 1991.

Daims H., Brühl A., Amann R., Schleifer K.-H., Wagner M. The domain-specific probe EUB338 is insufficient for the detection of all bacteria: development and evaluation of a more comprehensive probe set. Systematic and Applied Microbiology. 1999;22(3):434–444. doi: 10.1016/s0723-2020(99)80053-8. PubMed DOI

Pernthaler A., Pernthaler J., Amann R. Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Applied and Environmental Microbiology. 2002;68(6):3094–3101. doi: 10.1128/aem.68.6.3094-3101.2002. PubMed DOI PMC

Sekar R., Pernthaler A., Pernthaler J., Warnecke F., Posch T., Amann R. An improved protocol for quantification of freshwater Actinobacteria by fluorescence in situ hybridization. Applied and Environmental Microbiology. 2003;69(5):2928–2935. doi: 10.1128/aem.69.5.2928-2935.2003. PubMed DOI PMC

Eckert E. M., Salcher M. M., Posch T., Eugster B., Pernthaler J. Rapid successions affect microbial N-acetyl-glucosamine uptake patterns during a lacustrine spring phytoplankton bloom. Environmental Microbiology. 2012;14(3):794–806. doi: 10.1111/j.1462-2920.2011.02639.x. PubMed DOI

Zeder M., Kohler E., Pernthaler J. Automated quality assessment of autonomously acquired microscopic images of fluorescently stained bacteria. Cytometry Part A. 2010;77(1):76–85. doi: 10.1002/cyto.a.20810. PubMed DOI

Coci M., Nicol G. W., Pilloni G. N., et al. Quantitative assessment of ammonia-oxidizing bacterial communities in the epiphyton of submerged macrophytes in shallow lakes. Applied and Environmental Microbiology. 2010;76(6):1813–1821. doi: 10.1128/AEM.01917-09. PubMed DOI PMC

Muyzer G., Smalla K. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie van Leeuwenhoek. 1998;73(1):127–141. doi: 10.1023/a:1000669317571. PubMed DOI

DeLong E. F. Archaea in coastal marine environments. Proceedings of the National Academy of Sciences of the United States of America. 1992;89(12):5685–5689. doi: 10.1073/pnas.89.12.5685. PubMed DOI PMC

Kowalchuk G. A., Stephen J. R., De Boer W., Prosser J. I., Embley T. M., Woldendorp J. W. Analysis of ammonia-oxidizing bacteria of the beta subdivision of the class Proteobacteria in coastal sand dunes by denaturing gradient gel electrophoresis and sequencing of PCR-amplified 16S ribosomal DNA fragments. Applied and Environmental Microbiology. 1997;63(4):1489–1497. PubMed PMC

Rotthauwe J.-H., Witzel K.-P., Liesack W. The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Applied and Environmental Microbiology. 1997;63(12):4704–4712. PubMed PMC

Francis C. A., Roberts K. J., Beman J. M., Santoro A. E., Oakley B. B. Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proceedings of the National Academy of Sciences of the United States of America. 2005;102(41):14683–14688. doi: 10.1073/pnas.0506625102. PubMed DOI PMC

Abramoff M. D., Magalhaes P. J., Ram S. J. Image processing with ImageJ. Biophotonics Internationa. 2004;11(7):36–42.

Coci M., Riechmann D., Bodelier P. L. E., Stefani S., Zwart G., Laanbroek H. J. Effect of salinity on temporal and spatial dynamics of ammonia-oxidising bacteria from intertidal freshwater sediment. FEMS Microbiology Ecology. 2005;53(3):359–368. doi: 10.1016/j.femsec.2005.01.016. PubMed DOI

Ludwig W., Strunk O., Westram R., et al. ARB: a software environment for sequence data. Nucleic Acids Research. 2004;32(4):1363–1371. doi: 10.1093/nar/gkh293. PubMed DOI PMC

Pruesse E., Peplies J., Glöckner F. O. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics. 2012;28(14):1823–1829. doi: 10.1093/bioinformatics/bts252. PubMed DOI PMC

Stamatakis A., Ludwig T., Meier H. RAxML-II: a program for sequential, parallel and distributed inference of large phylogenetic trees. Concurrency and Computation: Practice and Experience. 2005;17(14):1705–1723. doi: 10.1002/cpe.954. DOI

Salcher M. M., Pernthaler J., Posch T. Seasonal bloom dynamics and ecophysiology of the freshwater sister clade of SAR11 bacteria that ‘rule the waves’ (LD12) ISME Journal. 2011;5(8):1242–1252. doi: 10.1038/ismej.2011.8. PubMed DOI PMC

Yilmaz L. S., Parnerkar S., Noguera D. R. MathFISH, a web tool that uses thermodynamics-based mathematical models for in silico evaluation of oligonucleotide probes for fluorescence in situ hybridization. Applied and Environmental Microbiology. 2011;77(3):1118–1122. doi: 10.1128/AEM.01733-10. PubMed DOI PMC

Roelfsema J., Peters D. M. Denaturing gradient gel electrophoresis (DGGE) In: Walker J., Rapley R., editors. Molecular Biomethods Handbook. Humana Press; 2008. pp. 107–115.

Callieri C., Coci M., Eckert E. M., Salcher M. M., Bertoni R. Archaea and bacteria in deep lake hypolimnion: in situ dark inorganic carbon uptake. Journal of Limnology. 2014;73(1):31–38. doi: 10.4081/jlimnol.2014.937. DOI

Herndl G. J., Reinthaler T., Teira E., et al. Contribution of Archaea to total prokaryotic production in the deep atlantic ocean. Applied and Environmental Microbiology. 2005;71(5):2303–2309. doi: 10.1128/aem.71.5.2303-2309.2005. PubMed DOI PMC

Belmar L., Molina V., Ulloa O. Abundance and phylogenetic identity of archaeoplankton in the permanent oxygen minimum zone of the eastern tropical South Pacific. FEMS Microbiology Ecology. 2011;78(2):314–326. doi: 10.1111/j.1574-6941.2011.01159.x. PubMed DOI

Rysgaard S., Risgaard-Petersen N., Nielsen L. P., Revsbech N. P. Nitrification and denitrification in lake and estuarine sediments measured by the 15N dilution technique and isotope pairing. Applied and Environmental Microbiology. 1993;59(7):2093–2098. PubMed PMC

Santoro A. E., Francis C. A., de Sieyes N. R., Boehm A. B. Shifts in the relative abundance of ammonia-oxidizing bacteria and archaea across physicochemical gradients in a subterranean estuary. Environmental Microbiology. 2008;10(4):1068–1079. doi: 10.1111/j.1462-2920.2007.01547.x. PubMed DOI

Hayden C. J., Beman J. M. High abundances of potentially active ammonia-oxidizing bacteria and archaea in oligotrophic, high-altitude lakes of the Sierra Nevada, California, USA. PLoS ONE. 2014;9(11) doi: 10.1371/journal.pone.0111560.0111560 PubMed DOI PMC

Schleper C. Ammonia oxidation: different niches for bacteria and archaea. ISME Journal. 2010;4(9):1092–1094. doi: 10.1038/ismej.2010.111. PubMed DOI

Coolen M. J. L., Abbas B., Van Bleijswijk J., et al. Putative ammonia-oxidizing Crenarchaeota in suboxic waters of the Black Sea: a basin-wide ecological study using 16S ribosomal and functional genes and membrane lipids. Environmental Microbiology. 2007;9(4):1001–1016. doi: 10.1111/j.1462-2920.2006.01227.x. PubMed DOI

Berdjeb L., Pollet T., Chardon C., Jacquet S. Spatio-temporal changes in the structure of archaeal communities in two deep freshwater lakes. FEMS Microbiology Ecology. 2013;86(2):215–230. doi: 10.1111/1574-6941.12154. PubMed DOI

Takai K., Moser D. P., DeFlaun M., Onstott T. C., Fredrickson J. K. Archaeal diversity in waters from deep south African gold mines. Applied and Environmental Microbiology. 2001;67(12):5750–5760. doi: 10.1128/aem.67.21.5750-5760.2001. PubMed DOI PMC

Auguet J.-C., Nomokonova N., Camarero L., Casamayor E. O. Seasonal changes of freshwater ammonia-oxidizing archaeal assemblages and nitrogen species in oligotrophic alpine lakes. Applied and Environmental Microbiology. 2011;77(6):1937–1945. doi: 10.1128/AEM.01213-10. PubMed DOI PMC

Shimizu S., Akiyama M., Naganuma T., Fujioka M., Nako M., Ishijima Y. Molecular characterization of microbial communities in deep coal seam groundwater of northern Japan. Geobiology. 2007;5(4):423–433. doi: 10.1111/j.1472-4669.2007.00123.x. DOI

Shabarova T., Widmer F., Pernthaler J. Mass effects meet species sorting: transformations of microbial assemblages in epiphreatic subsurface karst water pools. Environmental Microbiology. 2013;15(9):2476–2488. doi: 10.1111/1462-2920.12124. PubMed DOI

Langenheder S., Székely A. J. Species sorting and neutral processes are both important during the initial assembly of bacterial communities. ISME Journal. 2011;5(7):1086–1094. doi: 10.1038/ismej.2010.207. PubMed DOI PMC

Zobrazit více v PubMed

GENBANK
KP866330, KP866331, KP866332, KP866333, KP866334, KP866335, KP866336, KP866337, KP866338, KP866339, KP866340, KP866341, KP866342, KP866343, KP866344, KP866345, KP866346, KP866347, KP866348, KP866349, KP866350, KP866351, KP866352, KP866353, KP866354, KP866355, KP866356, KP866357, KP866358, KP866359, KP866360, KP866361, KP866362, KP866363, KP866364, KP866365, KP866366, KP866367, KP866368, KP866369, KP866370, KP866371, KP866372, KP866373, KP866374, KP866375, KP866376, KP866377, KP866378, KP866379, KP866380, KP866381, KP866382, KP866383, KP866384, KP866385, KP866386, KP866387, KP866388, KP866389, KP866390, KP866391, KP866392, KP866393, KP866394, KP866395, KP866396, KP866397, KP866398, KP866399, KP866400, KP866401, KP866402, KP866403, KP866404

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...