• This record comes from PubMed

FISHing for ciliates: Catalyzed reporter deposition fluorescence in situ hybridization for the detection of planktonic freshwater ciliates

. 2022 ; 13 () : 1070232. [epub] 20221212

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection

Document type Journal Article

Planktonic ciliate species form multiple trophic guilds and are central components of freshwater food webs. Progress in molecular analytical tools has opened new insight into ciliate assemblages. However, high and variable 18S rDNA copy numbers, typical for ciliates, make reliable quantification by amplicon sequencing extremely difficult. For an exact determination of abundances, the classical morphology-based quantitative protargol staining is still the method of choice. Morphotype analyses, however, are time consuming and need specific taxonomic expertise. Catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH) may represent a promising tool for the analysis of planktonic ciliates by combining molecular identification with microscopic quantification. We tested the applicability of CARD-FISH using nine cultured ciliate species. Eight species- and three genus-specific oligonucleotide probes were designed based on their 18S rRNA genes. The CARD-FISH protocol was adapted and the specificity of probes was established. We subsequently examined the precision of quantitation by CARD-FISH on single cultures and mock assemblages. Successful tests on lake water samples proved that planktonic ciliates could be identified and quantified in field samples by CARD-FISH. Double hybridizations allowed studying interspecific predator prey interactions between two ciliate species. In summary, we demonstrate that CARD-FISH with species-specific probes can facilitate studies on the population dynamics of closely related, small sized or cryptic species at high sampling frequencies.

See more in PubMed

Abraham J. S., Sripoorna S., Maurya S., Makhija S., Gupta R., Toteja R. (2019). Techniques and tools for species identification in ciliates: a review. Int. J. Syst. Evol. Microbiol. 69, 877–894. doi: 10.1099/ijsem.0.003176 PubMed DOI

Agasild H., Zingel P., Karus K., Kangro K., Salujõe J., Nõges T. (2012). Does metazooplankton regulate the ciliate community in a shallow eutrophic lake? Freshw. Biol. 58, 183–191. doi: 10.1111/fwb.12049 DOI

Amann R., Fuchs B. M. (2008). Single-cell identification in microbial communities by improved fluorescence PubMed DOI

Ballen-Segura M., Felip M., Catalan J. (2017). Some mixotrophic flagellate species selectively graze on archaea. Appl. Environ. Microbiol. 83, e02317–e02316. doi: 10.1128/AEM.02317-16 PubMed DOI PMC

Bandelt H.-J., Forster P., Röhl A. (1999). Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16, 37–48. doi: 10.1093/oxfordjournals.molbev.a026036 PubMed DOI

Benjamini Y., Hochberg Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc., B: Stat. Methodol. 57, 289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x DOI

Biegala I. C., Not F., Vaulot D., Simon N. (2003). Quantitative assessment of picoeukaryotes in the natural environment by using taxon-specific oligonucleotide probes in association with tyramide signal amplification-fluorescence PubMed DOI PMC

Bühler D. (2020). PubMed DOI PMC

Chambouvet A., Morin P., Marie D., Guillou L. (2008). Control of toxic marine dinoflagellate blooms by serial parasitic killers. Science 322, 1254–1257. doi: 10.1126/science.1164387 PubMed DOI

Dirren S., Posch T. (2016). Promiscuous and specific bacterial symbiont acquisition in the amoeboid genus PubMed DOI

Dziallas C., Allgaier M., Monaghan M., Grossart H.-P. (2012). Act together – implications of symbioses in aquatic ciliates. Front. Microbiol. 3:288. doi: 10.3389/fmicb.2012.00288 PubMed DOI PMC

Foissner W. (2014). An update of 'basic light and scanning electron microscopic methods for taxonomic studies of ciliated protozoa. Int. J. Syst. Evol. Microbiol. 64, 271–292. doi: 10.1099/ijs.0.057893-0 PubMed DOI

Foissner W., Berger H., Schaumburg J. (1999). Identification and ecology of limnetic plankton ciliates. Informationsberichte des Bayer. Landesamtes Wasserwirtschaft 3:793.

Foissner W., Blatterer H., Berger H., Kohmann F. (1994). Taxonomische und ökologische Revision der Ciliaten des Saprobiensystems. Band III: Hymenostomata, Prostomatida, Nassulida. Informationsberichte des Bayer. Landesamtes Wasserwirtschaft 1:548.

Forster D., Qu Z., Pitsch G., Bruni E. P., Kammerlander B., Pröschold T., et al. (2021). Lake ecosystem robustness and resilience inferred from a climate-stressed protistan plankton network. Microorganisms 9:549. doi: 10.3390/microorganisms9030549 PubMed DOI PMC

Frantal D., Agatha S., Beisser D., Boenigk J., Darienko T., Dirren-Pitsch G., et al. (2022). Molecular data reveal a cryptic diversity in the genus PubMed DOI PMC

Fried J., Foissner W. (2007). Differentiation of two very similar glaucomid ciliate morphospecies (Ciliophora, Tetrahymenida) by fluorescence PubMed DOI

Fried J., Ludwig W., Psenner R., Schleifer K. H. (2002). Improvement of ciliate identification and quantification: a new protocol for fluorescence PubMed DOI

Fu R., Gong J. (2017). Single cell analysis linking ribosomal (r)DNA and rRNA copy numbers to cell size and growth rate provides insights into molecular protistan ecology. J. Eukaryot. Microbiol. 64, 885–896. doi: 10.1111/jeu.12425 PubMed DOI PMC

Gong J., Dong J., Liu X., Massana R. (2013). Extremely high copy numbers and polymorphisms of the rDNA operon estimated from single cell analysis of oligotrich and peritrich ciliates. Protist 164, 369–379. doi: 10.1016/j.protis.2012.11.006 PubMed DOI

Grujcic V., Nuy J. K., Salcher M. M., Shabarova T., Kasalicky V., Boenigk J., et al. (2018). Cryptophyta as major bacterivores in freshwater summer plankton. ISME J. 12, 1668–1681. doi: 10.1038/s41396-018-0057-5 PubMed DOI PMC

Hoshino T., Yilmaz L. S., Noguera D. R., Daims H., Wagner M. (2008). Quantification of target molecules needed to detect microorganisms by fluorescence PubMed DOI PMC

Kammerlander B., Koinig K. A., Rott E., Sommaruga R., Tartarotti B., Trattner F., et al. (2016). Ciliate community structure and interactions within the planktonic food web in two alpine lakes of contrasting transparency. Freshw. Biol. 61, 1950–1965. doi: 10.1111/fwb.12828 PubMed DOI PMC

Karayanni H., Christaki U., Van Wambeke F., Dalby A. P. (2004). Evaluation of double formalin-Lugol's fixation in assessing number and biomass of ciliates: an example of estimations at mesoscale in NE Atlantic. J. Microbiol. Methods 56, 349–358. doi: 10.1016/j.mimet.2003.11.002 PubMed DOI

Lepère C., Ostrowski M., Hartmann M., Zubkov M. V., Scanlan D. J. (2016). PubMed DOI

Levsky J. M., Singer R. H. (2003). Fluorescence PubMed DOI

Li J., Chen F., Liu Z., Xu K., Zhao B. (2013). Compositional differences among planktonic ciliate communities in four subtropical eutrophic lakes in China. Limnology 14, 105–116. doi: 10.1007/s10201-012-0379-3 DOI

Lim E. L., Amaral L. A., Caron D. A., Delong E. F. (1993). Application of rRNA-based probes for observing marine nanoplanktonic protists. Appl. Environ. Microbiol. 59, 1647–1655. doi: 10.1128/aem.59.5.1647-1655.1993 PubMed DOI PMC

Lim E. L., Caron D. A., Delong E. F. (1996). Development and field application of a quantitative method for examining natural assemblages of protists with oligonucleotide probes. Appl. Environ. Microbiol. 62, 1416–1423. doi: 10.1128/aem.62.4.1416-1423.1996 PubMed DOI PMC

Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, et al. (2004). ARB: a software environment for sequence data. Nucleic Acids Res. 32, 1363–1371. doi: 10.1093/nar/gkh293 PubMed DOI PMC

Lynn D. (2008). The Ciliated Protozoa: Characterization, Classification, and Guide to the Literature. 3rd

Macek M., Šimek K., Pernthaler J., Vyhnálek V., Psenner R. (1996). Growth rates of dominant planktonic ciliates in two freshwater bodies of different trophic degree. J. Plankton Res. 18, 463–481. doi: 10.1093/plankt/18.4.463 DOI

Massana R., Unrein F., Rodríguez-Martínez R., Forn I., Lefort T., Pinhassi J., et al. (2009). Grazing rates and functional diversity of uncultured heterotrophic flagellates. ISME J. 3, 588–596. doi: 10.1038/ismej.2008.130 PubMed DOI

Melekhin M., Yakovleva Y., Lebedeva N., Nekrasova I., Nikitashina L., Castelli M., et al. (2022). Cryptic diversity in PubMed DOI PMC

Modenutti B., Pérez G. (2001). Planktonic ciliates from an oligotrophic south Andean lake, Morenito lake (Patagonia, Argentina). Braz. J. Biol. 61, 389–395. doi: 10.1590/S1519-69842001000300007 PubMed DOI

Modigh M., Castaldo S. (2005). Effects of fixatives on ciliates as related to cell size. J. Plankton Res. 27, 845–849. doi: 10.1093/plankt/fbi053 DOI

Montagnes D. J. S., Lynn D. H. (1987). A quantitative protargol stain (QPS) for ciliates: method description and test of its quantitative nature. Mar. Microb. Food Webs 2, 83–93.

Müller H. (1989). The relative importance of different ciliate taxa in the pelagic food web of Lake Constance. Microb. Ecol. 18, 261–273. doi: 10.1007/bf02075813 PubMed DOI

Müller H. (1991). DOI

Müller H., Geller W., Schöne A. (1991a). Pelagic ciliates in Lake Constance: comparison of epilimnion and hypolimnion. Verh. Internat. Verein Limnol. 24, 846–849. doi: 10.1080/03680770.1989.11898863 DOI

Müller H., Schöne A., Pinto-Coelho R. M., Schweizer A., Weisse T. (1991b). Seasonal succession of ciliates in Lake Constance. Microb. Ecol. 21, 119–138. doi: 10.1007/bf02539148 PubMed DOI

Munawar M., Lynn D. H. (2002). Planktonic ciliates of the north American Great Lakes: lakes superior, Huron, Erie, and Ontario. Aquat. Ecosyst. Health Manag. 5, 345–354. doi: 10.1080/14634980290032027 DOI

Pernthaler A., Pernthaler J. (2007). “Fluorescence i

Pernthaler A., Pernthaler J., Amann R. (2004). "Sensitive multi-color fluorescence

Petroni G., Rosati G., Vannini C., Modeo L., Dini F., Verni F. (2003). PubMed DOI

Pfister G., Sonntag B., Posch T. (1999). Comparison of a direct live count and an improved quantitative protargol stain (QPS) in determining abundance and cell volumes of pelagic freshwater protozoa. Aquat. Microb. Ecol. 18, 95–103. doi: 10.3354/ame018095 DOI

Pitsch G., Bruni E. P., Forster D., Qu Z., Sonntag B., Stoeck T., et al. (2019). Seasonality of planktonic freshwater ciliates: are analyses based on V9 regions of the 18S rRNA gene correlated with morphospecies counts? Front. Microbiol. 10:248. doi: 10.3389/fmicb.2019.00248 PubMed DOI PMC

Piwosz K., Mukherjee I., Salcher M. M., Grujčić V., Šimek K. (2021). CARD-FISH in the sequencing era: opening a new universe of protistan ecology. Front. Microbiol. 12:397. doi: 10.3389/fmicb.2021.640066 PubMed DOI PMC

Piwosz K., Pernthaler J. (2010). Seasonal population dynamics and trophic role of planktonic nanoflagellates in coastal surface waters of the southern Baltic Sea. Environ. Microbiol. 12, 364–377. doi: 10.1111/j.1462-2920.2009.02074.x PubMed DOI

Porter K. G., Feig Y. S. (1980). The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr. 25, 943–948. doi: 10.4319/lo.1980.25.5.0943 DOI

Posch T., Eugster B., Pomati F., Pernthaler J., Pitsch G., Eckert E. M. (2015). Network of interactions between ciliates and phytoplankton during spring. Front. Microbiol. 6:1289. doi: 10.3389/fmicb.2015.01289 PubMed DOI PMC

Posch T., Pitsch G., Bruni E. P. (2021). “Protists: ciliates,” in Encyclopedia of Inland Waters. eds. Mehner T., Tockner K. (Oxford, UK: Elsevier; ), 639–649.

Pruesse E., Peplies J., Glöckner F. O. (2012). SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28, 1823–1829. doi: 10.1093/bioinformatics/bts252 PubMed DOI PMC

Pruesse E., Quast C., Knittel K., Fuchs B. M., Ludwig W., Peplies J., et al. (2007). SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 35, 7188–7196. doi: 10.1093/nar/gkm864 PubMed DOI PMC

Qu Z., Forster D., Bruni E. P., Frantal D., Kammerlander B., Nachbaur L., et al. (2021). Aquatic food webs in deep temperate lakes: key species establish through their autecological versatility. Mol. Ecol. 30, 1053–1071. doi: 10.1111/mec.15776 PubMed DOI

Santoferrara L. F. (2019). Current practice in plankton metabarcoding: optimization and error management. J. Plankton Res. 41, 571–582. doi: 10.1093/plankt/fbz041 DOI

Schmidt S. L., Bernhard D., Schlegel M., Fried J. (2006). Fluorescence PubMed DOI

Sekar R., Pernthaler A., Pernthaler J., Warnecke F., Posch T., Amann R. (2003). An improved protocol for quantification of freshwater PubMed DOI PMC

Šimek K., Grujčić V., Mukherjee I., Kasalický V., Nedoma J., Posch T., et al. (2020). Cascading effects in freshwater microbial food webs by predatory Cercozoa, Katablepharidacea and ciliates feeding on aplastidic bacterivorous cryptophytes. FEMS Microbiol. Ecol. 96:fiaa121. doi: 10.1093/femsec/fiaa121 PubMed DOI PMC

Šimek K., Grujčić V., Nedoma J., Jezberová J., Šorf M., Matoušů A., et al. (2019). Microbial food webs in hypertrophic fishponds: omnivorous ciliate taxa are major protistan bacterivores. Limnol. Oceanogr. 64, 2295–2309. doi: 10.1002/lno.11260 DOI

Šimek K., Mukherjee I., Nedoma J., de Paula C. C. P., Jezberová J., Sirová D., et al. (2021). CARD-FISH and prey tracer techniques reveal the role of overlooked flagellate groups as major bacterivores in freshwater hypertrophic shallow lakes. Environ. Microbiol. 24, 4256–4273. doi: 10.1111/1462-2920.15846 PubMed DOI PMC

Skibbe O. (1994). An improved quantitative protargol stain for ciliates and other planktonic protists. Arch. Hydrobiol. 130, 339–347.

Sonntag B., Frantal D., Kammerlander B., Darienko T., Filker S., Stoeck T., et al. (2022). Widespread occurrence of two planktonic ciliate species ( DOI

Sonntag B., Posch T., Klammer S., Teubner K., Psenner R. (2006). Phagotrophic ciliates and flagellates in an oligotrophic, deep, alpine lake: contrasting variability with seasons and depths. Aquat. Microb. Ecol. 43, 193–207. doi: 10.3354/ame043193 DOI

Stamatakis A., Ludwig T., Meier H. (2005). RAxML-II: a program for sequential, parallel and distributed inference of large phylogenetic trees. Concurr. Comput. 17, 1705–1723. doi: 10.1002/cpe.954 DOI

Stoecker D. K., Gifford D. J., Putt M. (1994). Preservation of marine planktonic ciliates: losses and cell shrinkage during fixation. Mar. Ecol. Prog. Ser. 110, 293–299.

Weisse T. (2017). Functional diversity of aquatic ciliates. Eur. J. Protistol. 61, 331–358. doi: 10.1016/j.ejop.2017.04.001 PubMed DOI

Weisse T., Strüder-Kypke M. C., Berger H., Foissner W. (2008). Genetic, morphological, and ecological diversity of spatially separated clones of PubMed DOI

Wickham S. A. (1998). The direct and indirect impact of DOI

Yilmaz L. S., Parnerkar S., Noguera D. R. (2011). mathFISH, a web tool that uses thermodynamics-based mathematical models for PubMed DOI PMC

Zhan Z., Li J., Xu K. (2018). Detection and quantification of two parasitic ciliates PubMed DOI

Zhan Z., Stoeck T., Dunthorn M., Xu K. (2014). Identification of the pathogenic ciliate PubMed DOI

Zhan Z., Xu K. (2020). Detection of two pathogenic marine ciliates DOI

Find record

Citation metrics

Logged in users only

Archiving options

Loading data ...