Reconstruction of Diverse Verrucomicrobial Genomes from Metagenome Datasets of Freshwater Reservoirs

. 2017 ; 8 () : 2131. [epub] 20171102

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29163419

The phylum Verrucomicrobia contains freshwater representatives which remain poorly studied at the genomic, taxonomic, and ecological levels. In this work we present eighteen new reconstructed verrucomicrobial genomes from two freshwater reservoirs located close to each other (Tous and Amadorio, Spain). These metagenome-assembled genomes (MAGs) display a remarkable taxonomic diversity inside the phylum and comprise wide ranges of estimated genome sizes (from 1.8 to 6 Mb). Among all Verrucomicrobia studied we found some of the smallest genomes of the Spartobacteria and Opitutae classes described so far. Some of the Opitutae family MAGs were small, cosmopolitan, with a general heterotrophic metabolism with preference for carbohydrates, and capable of xylan, chitin, or cellulose degradation. Besides, we assembled large copiotroph genomes, which contain a higher number of transporters, polysaccharide degrading pathways and in general more strategies for the uptake of nutrients and carbohydrate-based metabolic pathways in comparison with the representatives with the smaller genomes. The diverse genomes revealed interesting features like green-light absorbing rhodopsins and a complete set of genes involved in nitrogen fixation. The large diversity in genome sizes and physiological properties emphasize the diversity of this clade in freshwaters enlarging even further the already broad eco-physiological range of these microbes.

Zobrazit více v PubMed

Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., et al. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25 3389–3402. 10.1093/nar/25.17.3389 PubMed DOI PMC

Arnds J., Knittel K., Buck U., Winkel M., Amann R. (2010). Development of a 16S rRNA-targeted probe set for Verrucomicrobia and its application for fluorescence in situ hybridization in a humic lake. Syst. Appl. Microbiol. 33 139–148. 10.1016/j.syapm.2009.12.005 PubMed DOI

Bergmann G. T., Bates S. T., Eilers K. G., Lauber C. L., Caporaso J. G., Walters W. A., et al. (2011). The under-recognized dominance of Verrucomicrobia in soil bacterial communities. Soil Biol. Biochem. 43 1450–1455. 10.1016/j.soilbio.2011.03.012 PubMed DOI PMC

Bishop P. E., Jarlenski D., Hetherington D. R. (1980). Evidence for an alternative nitrogen fixation system in Azotobacter vinelandii. Proc. Natl. Acad. Sci. U.S.A. 77 7342–7346. 10.1073/pnas.77.12.7342 PubMed DOI PMC

Boyd E., Peters J. W. (2013). New insights into the evolutionary history of biological nitrogen fixation. Front. Microbiol. 4:201 10.3389/fmicb.2013.00201 PubMed DOI PMC

Boyd E. S., Costas A. M. G., Hamilton T. L., Mus F., Peters J. W. (2015). Evolution of molybdenum nitrogenase during the transition from anaerobic to aerobic metabolism. J. Bacteriol. 197 1690–1699. 10.1128/JB.02611-14 PubMed DOI PMC

Boyd E. S., Hamilton T. L., Peters J. W. (2011). An alternative path for the evolution of biological nitrogen fixation. Front. Microbiol. 2:205. 10.3389/fmicb.2011.00205 PubMed DOI PMC

Boyd R. (2000). Herbicides and herbicide degradates in shallow groundwater and the Cedar River near a municipal well field, Cedar Rapids, Iowa. Sci. Total Environ. 248 241–253. 10.1016/S0048-9697(99)00546-X PubMed DOI

Briée C., Moreira D., López-García P. (2007). Archaeal and bacterial community composition of sediment and plankton from a suboxic freshwater pond. Res. Microbiol. 158 213–227. 10.1016/j.resmic.2006.12.012 PubMed DOI

Brown A. M., Howe D. K., Wasala S. K., Peetz A. B., Zasada I. A., Denver D. R. (2015). Comparative genomics of a plant-parasitic nematode endosymbiont suggest a role in nutritional symbiosis. Genome Biol. Evol. 7 2727–2746. 10.1093/gbe/evv176 PubMed DOI PMC

Cabello-Yeves P. J., Haro-Moreno J. M., Martin-Cuadrado A.-B., Ghai R., Picazo A., Camacho A., et al. (2017). Novel Synechococcus genomes reconstructed from freshwater reservoirs. Front. Microbiol. 8:1151 10.3389/fmicb.2017.01151 PubMed DOI PMC

Chin K.-J., Liesack W., Janssen P. H. (2001). Opitutus terrae gen. nov., sp. nov., to accommodate novel strains of the division ’Verrucomicrobia’ isolated from rice paddy soil. Int. J. Syst. Evol. Microbiol. 51 1965–1968. 10.1099/00207713-51-6-1965 PubMed DOI

Cole J. R., Wang Q., Cardenas E., Fish J., Chai B., Farris R. J., et al. (2009). The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 37(suppl 1), D141–D145. 10.1093/nar/gkn879 PubMed DOI PMC

Correa-Aragunde N., Foresi N., Lamattina L. (2013). Structure diversity of nitric oxide synthases (NOS): the emergence of new forms in photosynthetic organisms. Front. Plant Sci. 4:232. 10.3389/fpls.2013.00232 PubMed DOI PMC

Daims H., Brühl A., Amann R., Schleifer K.-H., Wagner M. (1999). The domain-specific probe EUB338 is insufficient for the detection of all Bacteria: development and evaluation of a more comprehensive probe set. Syst. Appl. Microbiol. 22 434–444. 10.1016/S0723-2020(99)80053-8 PubMed DOI

Dang H., Lovell C. R. (2016). Microbial surface colonization and biofilm development in marine environments. Microbiol. Mol. Biol. Rev. 80 91–138. 10.1128/MMBR.00037-15 PubMed DOI PMC

De Wever A., Van der Gucht K., Muylaert K., Cousin S., Vyverman W. (2008). Clone library analysis reveals an unusual composition and strong habitat partitioning of pelagic bacterial communities in Lake Tanganyika. Aquat. Microb. Ecol. 50 113–122. 10.3354/ame01157 DOI

Derrien M., Vaughan E. E., Plugge C. M., de Vos W. M. (2004). Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int. J. Syst. Evol. Microbiol. 54 1469–1476. 10.1099/ijs.0.02873-0 PubMed DOI

Devos D. P., Reynaud E. G. (2010). Intermediate steps. Science 330 1187–1188. 10.1126/science.1196720 PubMed DOI

Dos Santos P. C., Fang Z., Mason S. W., Setubal J. C., Dixon R. (2012). Distribution of nitrogen fixation and nitrogenase-like sequences amongst microbial genomes. BMC Genomics 13:162. 10.1186/1471-2164-13-162 PubMed DOI PMC

Dunfield P. F., Yuryev A., Senin P., Smirnova A. V., Stott M. B., Hou S., et al. (2007). Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia. Nature 450 879–882. 10.1038/nature06411 PubMed DOI

Edgar R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32 1792–1797. 10.1093/nar/gkh340 PubMed DOI PMC

Edgar R. C. (2010). Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26 2460–2461. 10.1093/bioinformatics/btq461 PubMed DOI

Eiler A., Bertilsson S. (2004). Composition of freshwater bacterial communities associated with cyanobacterial blooms in four Swedish lakes. Environ. Microbiol. 6 1228–1243. 10.1111/j.1462-2920.2004.00657.x PubMed DOI

Eiler A., Zaremba-Niedzwiedzka K., Martínez-García M., McMahon K. D., Stepanauskas R., Andersson S. G., et al. (2014). Productivity and salinity structuring of the microplankton revealed by comparative freshwater metagenomics. Environ. Microbiol. 16 2682–2698. 10.1111/1462-2920.12301 PubMed DOI PMC

Erikstad H.-A., Birkeland N. -K. (2015). Draft genome sequence of “Candidatus Methylacidiphilum kamchatkense” strain Kam1, a thermoacidophilic methanotrophic Verrucomicrobium. Genome Announc. 3:e00065-15. 10.1128/genomeA.00065-15 PubMed DOI PMC

Esteves-Ferreira A. A., Cavalcanti J. H. F., Vaz M. G. M. V., Alvarenga L. V., Nunes-Nesi A., Araújo W. L. (2017). Cyanobacterial nitrogenases: phylogenetic diversity, regulation and functional predictions. Genet. Mol. Biol. 40(1 Suppl. 1), 261–275. 10.1590/1678-4685-gmb-2016-0050 PubMed DOI PMC

Forterre P., Gribaldo S. (2010). Bacteria with a eukaryotic touch: a glimpse of ancient evolution? Proc. Natl. Acad. Sci. U.S.A. 107 12739–12740. 10.1073/pnas.1007720107 PubMed DOI PMC

Freitas S., Hatosy S., Fuhrman J. A., Huse S. M., Welch D. B. M., Sogin M. L., et al. (2012). Global distribution and diversity of marine Verrucomicrobia. ISME J. 6 1499–1505. 10.1038/ismej.2012.3 PubMed DOI PMC

Ghai R., Mizuno C. M., Picazo A., Camacho A., Rodriguez-Valera F. (2014). Key roles for freshwater Actinobacteria revealed by deep metagenomic sequencing. Mol. Ecol. 23 6073–6090. 10.1111/mec.12985 PubMed DOI

Goris J., Konstantinidis K. T., Klappenbach J. A., Coenye T., Vandamme P., Tiedje J. M. (2007). DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int. J. Syst. Evol. Microbiol. 57 81–91. 10.1099/ijs.0.64483-0 PubMed DOI

Griepenburg U., Ward-Rainey N., Mohamed S., Schlesner H., Marxsen H., Rainey F. A., et al. (1999). Phylogenetic diversity, polyamine pattern and DNA base composition of members of the order Planctomycetales. Int. J. Syst. Evol. Microbiol. 49 689–696. 10.1099/00207713-49-2-689 PubMed DOI

Gupta R. S., Bhandari V., Naushad H. S. (2012). Molecular signatures for the PVC clade (Planctomycetes, Verrucomicrobia, Chlamydiae, and Lentisphaerae) of bacteria provide insights into their evolutionary relationships. Front. Microbiol. 3:327. 10.3389/fmicb.2012.00327 PubMed DOI PMC

Gushchin I., Chervakov P., Kuzmichev P., Popov A. N., Round E., Borshchevskiy V., et al. (2013). Structural insights into the proton pumping by unusual proteorhodopsin from nonmarine bacteria. Proc. Natl. Acad. Sci. U.S.A. 110 12631–12636. 10.1073/pnas.1221629110 PubMed DOI PMC

Haft D. H., Loftus B. J., Richardson D. L., Yang F., Eisen J. A., Paulsen I. T., et al. (2001). TIGRFAMs: a protein family resource for the functional identification of proteins. Nucleic Acids Res. 29 41–43. 10.1093/nar/29.1.41 PubMed DOI PMC

Henrici A. T., Johnson D. E. (1935). Studies of freshwater bacteria II. Stalked bacteria, a new order of schizomycetes 1. J. Bacteriol. 30 61–93. PubMed PMC

Herlemann D. P., Lundin D., Labrenz M., Jürgens K., Zheng Z., Aspeborg H., et al. (2013). Metagenomic de novo assembly of an aquatic representative of the verrucomicrobial class Spartobacteria. mBio 4:e00569-12. 10.1128/mBio.00569-12 PubMed DOI PMC

Hou S., Makarova K. S., Saw J. H., Senin P., Ly B. V., Zhou Z., et al. (2008). Complete genome sequence of the extremely acidophilic methanotroph isolate V4, Methylacidiphilum infernorum, a representative of the bacterial phylum Verrucomicrobia. Biol. Dir. 3:26. 10.1186/1745-6150-3-26 PubMed DOI PMC

Huang Y., Gilna P., Li W. (2009). Identification of ribosomal RNA genes in metagenomic fragments. Bioinformatics 25 1338–1340. 10.1093/bioinformatics/btp161 PubMed DOI PMC

Hyatt D., Chen G.-L., LoCascio P. F., Land M. L., Larimer F. W., Hauser L. J. (2010). Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11:119. 10.1186/1471-2105-11-119 PubMed DOI PMC

Isanapong J., Goodwin L., Bruce D., Chen A., Detter C., Han J., et al. (2012). High-quality draft genome sequence of the Opitutaceae bacterium strain TAV1, a symbiont of the wood-feeding termite Reticulitermes flavipes. J. Bacteriol. 194 2744–2745. 10.1128/JB.00264-12 PubMed DOI PMC

Islam T., Jensen S., Reigstad L. J., Larsen Ø., Birkeland N.-K. (2008). Methane oxidation at 55°C and pH 2 by a thermoacidophilic bacterium belonging to the Verrucomicrobia phylum. Proc. Natl. Acad. Sci. U.S.A. 105 300–304. 10.1073/pnas.0704162105 PubMed DOI PMC

Kanehisa M., Sato Y., Morishima K. (2016). BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J. Mol. Biol. 428 726–731. 10.1016/j.jmb.2015.11.006 PubMed DOI

Kang I., Kim S., Islam M. R., Cho J.-C. (2017). The first complete genome sequences of the acI lineage, the most abundant freshwater Actinobacteria, obtained by whole-genome-amplification of dilution-to-extinction cultures. Sci. Rep. 7:42252 10.1038/srep42252 PubMed DOI PMC

Kant R., Van Passel M. W., Palva A., Lucas S., Lapidus A., del Rio T. G., et al. (2011a). Genome sequence of Chthoniobacter flavus Ellin428, an aerobic heterotrophic soil bacterium. J. Bacteriol. 193 2902–2903. 10.1128/JB.00295-11 PubMed DOI PMC

Kant R., Van Passel M. W., Sangwan P., Palva A., Lucas S., Copeland A., et al. (2011b). Genome sequence of “Pedosphaera parvula” Ellin514, an aerobic verrucomicrobial isolate from pasture soil. J. Bacteriol. 193 2900–2901. 10.1128/JB.00299-11 PubMed DOI PMC

Katoh K., Misawa K., Kuma K. I., Miyata T. (2002). MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30 3059–3066. 10.1093/nar/gkf436 PubMed DOI PMC

Kers J. A., Wach M. J., Krasnoff S. B., Widom J. (2004). Nitration of a peptide phytotoxin by bacterial nitric oxide synthase. Nature 429 79–82. 10.1038/nature02504 PubMed DOI

Khadem A. F., Pol A., Jetten M. S., den Camp H. J. O. (2010). Nitrogen fixation by the verrucomicrobial methanotroph ‘Methylacidiphilum fumariolicum’ SolV. Microbiology 156 1052–1059. 10.1099/mic.0.036061-0 PubMed DOI

Khadem A. F., van Teeseling M. C., van Niftrik L., Jetten M. S., den Camp H. J. O., Pol A. (2012a). Genomic and physiological analysis of carbon storage in the verrucomicrobial methanotroph “Ca. Methylacidiphilum fumariolicum” SolV. Front. Microbiol. 3:345. 10.3389/fmicb.2012.00345 PubMed DOI PMC

Khadem A. F., Wieczorek A. S., Pol A., Vuilleumier S., Harhangi H. R., Dunfield P. F., et al. (2012b). Draft genome sequence of the volcano-inhabiting thermoacidophilic methanotroph Methylacidiphilum fumariolicum strain SolV. J. Bacteriol. 194 3729–3730. 10.1128/JB.00501-12 PubMed DOI PMC

Kim S., Oh D.-B., Kang H. A., Kwon O. (2011). Features and applications of bacterial sialidases. Appl. Microbiol. Biotechnol. 91 1–15. 10.1007/s00253-011-3307-2 PubMed DOI

Lê S., Josse J., Husson F. (2008). FactoMineR: an R package for multivariate analysis. J. Stat. Softw. 25 1–18. 10.18637/jss.v025.i01 DOI

Lee K.-C., Webb R. I., Janssen P. H., Sangwan P., Romeo T., Staley J. T., et al. (2009). Phylum Verrucomicrobia representatives share a compartmentalized cell plan with members of bacterial phylum Planctomycetes. BMC Microbiol. 9:5. 10.1186/1471-2180-9-5 PubMed DOI PMC

Lin J. Y., Russell J. A., Sanders J. G., Wertz J. T. (2016). Cephaloticoccus gen. nov., a new genus of ‘Verrucomicrobia’ containing two novel species isolated from Cephalotes ant guts. Int. J. Syst. Evol. Microbiol. 66 3034–3040. 10.1099/ijsem.0.001141 PubMed DOI

Lombard V., Golaconda Ramulu H., Drula E., Coutinho P. M., Henrissat B. (2013). The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 42 D490–D495. 10.1093/nar/gkt1178 PubMed DOI PMC

Lonhienne T. G., Sagulenko E., Webb R. I., Lee K.-C., Franke J., Devos D. P., et al. (2010). Endocytosis-like protein uptake in the bacterium Gemmata obscuriglobus. Proc. Natl. Acad. Sci. U.S.A. 107 12883–12888. 10.1073/pnas.1001085107 PubMed DOI PMC

Lowe T. M., Eddy S. R. (1997). tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25 955–964. 10.1093/nar/25.5.0955 PubMed DOI PMC

MacIsaac E., Stockner J. G. (1993). “Enumeration of phototrophic picoplankton by autofluorescence microscopy,” in Handbook of Methods in Aquatic Microbial Ecology, eds Kemp P. F., Sherr B. F., Sherr E. B., Cole J. J. (Boca Raton, FL: Lewis Publishers; ) 187–197.

Man D., Wang W., Sabehi G., Aravind L., Post A. F., Massana R., et al. (2003). Diversification and spectral tuning in marine proteorhodopsins. EMBO J. 22 1725–1731. 10.1093/emboj/cdg183 PubMed DOI PMC

Marchler-Bauer A., Bo Y., Han L., He J., Lanczycki C. J., Lu S., et al. (2016). CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Res. 45 D200–D203. 10.1093/nar/gkw1129 PubMed DOI PMC

Marie D., Partensky F., Jacquet S., Vaulot D. (1997). Enumeration and cell cycle analysis of natural populations of marine picoplankton by flow cytometry using the nucleic acid stain SYBR Green I. Appl. Environ. Microbiol. 63 186–193. PubMed PMC

Martinez-Garcia M., Brazel D. M., Swan B. K., Arnosti C., Chain P. S., Reitenga K. G., et al. (2012a). Capturing single cell genomes of active polysaccharide degraders: an unexpected contribution of Verrucomicrobia. PLOS ONE 7:e35314. 10.1371/journal.pone.0035314 PubMed DOI PMC

Martinez-Garcia M., Swan B. K., Poulton N. J., Gomez M. L., Masland D., Sieracki M. E., et al. (2012b). High-throughput single-cell sequencing identifies photoheterotrophs and chemoautotrophs in freshwater bacterioplankton. ISME J. 6 113–123. 10.1038/ismej.2011.84 PubMed DOI PMC

McGlynn S. E., Boyd E. S., Peters J. W., Orphan V. J. (2013). Classifying the metal dependence of uncharacterized nitrogenases. Front. Microbiol. 3:419. 10.3389/fmicb.2012.00419 PubMed DOI PMC

McInerney J. O., Martin W. F., Koonin E. V., Allen J. F., Galperin M. Y., Lane N., et al. (2011). Planctomycetes and eukaryotes: a case of analogy not homology. Bioessays 33 810–817. 10.1002/bies.201100045 PubMed DOI PMC

Moncla B., Braham P., Hillier S. (1990). Sialidase (neuraminidase) activity among gram-negative anaerobic and capnophilic bacteria. J. Clin. Microbiol. 28 422–425. PubMed PMC

Nawrocki E. P., Eddy S. R. (2010). ssu-align : A Tool for Structural Alignment of SSU rRNA Sequences. Available at: http://eddylab.org/software/ssu-align/

Neuenschwander S. M., Ghai R., Pernthaler J., Salcher M. M. (2017). Microdiversification in genome-streamlined ubiquitous freshwater Actinobacteria. ISME J. 10.1038/ismej.2017.156 [Epub ahead of print]. PubMed DOI PMC

Oh S., Caro-Quintero A., Tsementzi D., DeLeon-Rodriguez N., Luo C., Poretsky R., et al. (2011). Metagenomic insights into the evolution, function, and complexity of the planktonic microbial community of Lake Lanier, a temperate freshwater ecosystem. Appl. Environ. Microbiol. 77 6000–6011. 10.1128/AEM.00107-11 PubMed DOI PMC

Okazaki K., Iino T., Kuroda Y., Taguchi K., Takahashi H., Ohwada T., et al. (2014). An assessment of the diversity of culturable bacteria from main root of sugar beet. Microbes Environ. 29 220–223. 10.1264/jsme2.ME13182 PubMed DOI PMC

Op den Camp H. J., Islam T., Stott M. B., Harhangi H. R., Hynes A., Schouten S., et al. (2009). Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia. Environ. Microbiol. Rep. 1 293–306. 10.1111/j.1758-2229.2009.00022.x PubMed DOI

Overbeek R., Olson R., Pusch G. D., Olsen G. J., Davis J. J., Disz T., et al. (2013). The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res. 42 D206–D214. 10.1093/nar/gkt1226 PubMed DOI PMC

Parks D. H., Imelfort M., Skennerton C. T., Hugenholtz P., Tyson G. W. (2015). CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25 1043–1055. 10.1101/gr.186072.114 PubMed DOI PMC

Peng Y., Leung H. C., Yiu S.-M., Chin F. Y. (2012). IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 28 1420–1428. 10.1093/bioinformatics/bts174 PubMed DOI

Pol A., Heijmans K., Harhangi H. R., Tedesco D., Jetten M. S., Den Camp H. J. O. (2007). Methanotrophy below pH 1 by a new Verrucomicrobia species. Nature 450 874–878. 10.1038/nature06222 PubMed DOI

Porter K., Feig Y. (1980). The use of DAPI for identification and enumeration of bacteria and blue-green algae. Limnol. Oceanogr. 25 943–948. 10.4319/lo.1980.25.5.0943 DOI

Price M. N., Dehal P. S., Arkin A. P. (2010). FastTree 2–approximately maximum-likelihood trees for large alignments. PLOS ONE 5:e9490. 10.1371/journal.pone.0009490 PubMed DOI PMC

Rice P., Longden I., Bleasby A. (2000). EMBOSS: the European molecular biology open software suite. Trends Genet. 16 276–277. 10.1016/S0168-9525(00)02024-2 PubMed DOI

Rozen S., Skaletsky H. (1999). Primer3 on the WWW for general users and for biologist programmers. Methods Mol. Biol. 132 365–386 10.1385/1-59259-192-2:365 PubMed DOI

Sangwan P., Chen X., Hugenholtz P., Janssen P. H. (2004). Chthoniobacter flavus gen. nov., sp. nov., the first pure-culture representative of subdivision two, Spartobacteria classis nov., of the phylum Verrucomicrobia. Appl. Environ. Microbiol. 70 5875–5881. 10.1128/AEM.70.10.5875-5881.2004 PubMed DOI PMC

Santarella-Mellwig R., Franke J., Jaedicke A., Gorjanacz M., Bauer U., Budd A., et al. (2010). The compartmentalized bacteria of the planctomycetes-verrucomicrobia-chlamydiae superphylum have membrane coat-like proteins. PLOS Biol. 8:e1000281. 10.1371/journal.pbio.1000281 PubMed DOI PMC

Scheuermayer M., Gulder T. A., Bringmann G., Hentschel U. (2006). Rubritalea marina gen. nov., sp. nov., a marine representative of the phylum ‘Verrucomicrobia’, isolated from a sponge (Porifera). Int. J. Syst. Evol. Microbiol. 56 2119–2124. 10.1099/ijs.0.64360-0 PubMed DOI

Schlesner H. (1987). Verrucomicrobium spinosum gen. nov., sp. nov.: a fimbriated prosthecate bacterium. Syst. Appl. Microbiol. 10 54–56. 10.1016/S0723-2020(87)80010-3 DOI

Segata N., Börnigen D., Morgan X. C., Huttenhower C. (2013). PhyloPhlAn is a new method for improved phylogenetic and taxonomic placement of microbes. Nat. Commun. 4:2304. 10.1038/ncomms3304 PubMed DOI PMC

Sekar R., Pernthaler A., Pernthaler J., Warnecke F., Posch T., Amann R. (2003). An improved protocol for quantification of freshwater Actinobacteria by fluorescence in situ hybridization. Appl. Environ. Microbiol. 69 2928–2935. 10.1128/AEM.69.5.2928-2935.2003 PubMed DOI PMC

Shimodaira H., Hasegawa M. (1999). Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol. Biol. Evol. 16 1114–1114. 10.1093/oxfordjournals.molbev.a026201 DOI

Spring S., Bunk B., Spröer C., Schumann P., Rohde M., Tindall B. J., et al. (2016). Characterization of the first cultured representative of Verrucomicrobia subdivision 5 indicates the proposal of a novel phylum. ISME J. 10 2801–2816. 10.1038/ismej.2016.84 PubMed DOI PMC

Sukovich D. J., Seffernick J. L., Richman J. E., Gralnick J. A., Wackett L. P. (2010). Widespread head-to-head hydrocarbon biosynthesis in bacteria and role of OleA. Appl. Environ. Microbiol. 76 3850–3862. 10.1128/AEM.00436-10 PubMed DOI PMC

Tamagnini P., Axelsson R., Lindberg P., Oxelfelt F., Wünschiers R., Lindblad P. (2002). Hydrogenases and hydrogen metabolism of cyanobacteria. Microbiol. Mol. Biol. Rev. 66 1–20. 10.1128/MMBR.66.1.1-20.2002 PubMed DOI PMC

Tang K., Jiao N., Liu K., Zhang Y., Li S. (2012). Distribution and functions of TonB-dependent transporters in marine bacteria and environments: implications for dissolved organic matter utilization. PLOS ONE 7:e41204. 10.1371/journal.pone.0041204 PubMed DOI PMC

Tatusov R. L., Natale D. A., Garkavtsev I. V., Tatusova T. A., Shankavaram U. T., Rao B. S., et al. (2001). The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Res. 29 22–28. 10.1093/nar/29.1.22 PubMed DOI PMC

Toyama D., Kishi L. T., Santos-Júnior C. D., Soares-Costa A., de Oliveira T. C. S., de Miranda F. P., et al. (2016). Metagenomics analysis of microorganisms in freshwater lakes of the Amazon Basin. Genome Announc. 4:e01440-16. 10.1128/genomeA.01440-16 PubMed DOI PMC

Van Teeseling M. C., Neumann S., Van Niftrik L. (2013). The anammoxosome organelle is crucial for the energy metabolism of anaerobic ammonium oxidizing bacteria. J. Mol. Microbiol. Biotechnol. 23 104–117. 10.1159/000346547 PubMed DOI

van Teeseling M. C., Pol A., Harhangi H. R., van der Zwart S., Jetten M. S., den Camp H. J. O., et al. (2014). Expanding the verrucomicrobial methanotrophic world: description of three novel species of Methylacidimicrobium gen. nov. Appl. Environ. Microbiol. 80 6782–6791. 10.1128/AEM.01838-14 PubMed DOI PMC

Wagner M., Horn M. (2006). The Planctomycetes, Verrucomicrobia, Chlamydiae and sister phyla comprise a superphylum with biotechnological and medical relevance. Curr. Opin. Biotechnol. 17 241–249. 10.1016/j.copbio.2006.05.005 PubMed DOI

Wertz J. T., Kim E., Breznak J. A., Schmidt T. M., Rodrigues J. L. (2012). Genomic and physiological characterization of the Verrucomicrobia isolate Diplosphaera colitermitum gen. nov., sp. nov., reveals microaerophily and nitrogen fixation genes. Appl. Environ. Microbiol. 78 1544–1555. 10.1128/AEM.06466-11 PubMed DOI PMC

Yin Y., Mao X., Yang J., Chen X., Mao F., Xu Y. (2012). dbCAN: a web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 40 W445–W451. 10.1093/nar/gks479 PubMed DOI PMC

Yoon J., Matsuo Y., Katsuta A., Jang J. -H., Matsuda S., Adachi K., et al. (2008). Haloferula rosea gen. nov., sp. nov., Haloferula harenae sp. nov., Haloferula phyci sp. nov., Haloferula helveola sp. nov. and Haloferula sargassicola sp. nov., five marine representatives of the family Verrucomicrobiaceae within the phylum ‘Verrucomicrobia’. Int. J. Syst. Evol. Microbiol. 58 2491–2500. 10.1099/ijs.0.2008/000711-0 PubMed DOI

Yoon J., Yasumoto-Hirose M., Katsuta A., Sekiguchi H., Matsuda S., Kasai H., et al. (2007). Coraliomargarita akajimensis gen. nov., sp. nov., a novel member of the phylum ‘Verrucomicrobia’ isolated from seawater in Japan. Int. J. Syst. Evol. Microbiol. 57 959–963. 10.1099/ijs.0.64755-0 PubMed DOI

Zaremba-Niedzwiedzka K., Viklund J., Zhao W., Ast J., Sczyrba A., Woyke T., et al. (2013). Single-cell genomics reveal low recombination frequencies in freshwater bacteria of the SAR11 clade. Genome. Biol. 14:R130. 10.1186/gb-2013-14-11-r130 PubMed DOI PMC

Zhang J., Zhang X., Liu Y., Xie S., Liu Y. (2014). Bacterioplankton communities in a high-altitude freshwater wetland. Ann. Microbiol. 64 1405–1411. 10.1007/s13213-013-0785-8 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...