• This record comes from PubMed

Flavonoids Target Human Herpesviruses That Infect the Nervous System: Mechanisms of Action and Therapeutic Insights

. 2022 Mar 13 ; 14 (3) : . [epub] 20220313

Language English Country Switzerland Media electronic

Document type Journal Article, Review

Human herpesviruses (HHVs) are large DNA viruses with highly infectious characteristics. HHVs can induce lytic and latent infections in their host, and most of these viruses are neurotropic, with the capacity to generate severe and chronic neurological diseases of the peripheral nervous system (PNS) and central nervous system (CNS). Treatment of HHV infections based on strategies that include natural products-derived drugs is one of the most rapidly developing fields of modern medicine. Therefore, in this paper, we lend insights into the recent advances that have been achieved during the past five years in utilizing flavonoids as promising natural drugs for the treatment of HHVs infections of the nervous system such as alpha-herpesviruses (herpes simplex virus type 1, type 2, and varicella-zoster virus), beta-herpesviruses (human cytomegalovirus), and gamma-herpesviruses (Epstein-Barr virus and Kaposi sarcoma-associated herpesvirus). The neurological complications associated with infections induced by the reviewed herpesviruses are emphasized. Additionally, this work covers all possible mechanisms and pathways by which flavonoids induce promising therapeutic actions against the above-mentioned herpesviruses.

See more in PubMed

Stempel M., Chan B., Brinkmann M.M. Coevolution Pays off: Herpesviruses Have the License to Escape the DNA Sensing Pathway. Med. Microbiol. Immunol. 2019;208:495–512. doi: 10.1007/s00430-019-00582-0. PubMed DOI

Bhowmik D., Zhu F. Evasion of Intracellular DNA Sensing by Human Herpesviruses. Front. Cell Infect. Microbiol. 2021;11:647992. doi: 10.3389/fcimb.2021.647992. PubMed DOI PMC

Adler B., Sattler C., Adler H. Herpesviruses and Their Host Cells: A Successful Liaison. Trends Microbiol. 2017;25:229–241. doi: 10.1016/j.tim.2016.11.009. PubMed DOI

Šudomová M., Hassan S.T.S. Nutraceutical Curcumin with Promising Protection against Herpesvirus Infections and Their Associated Inflammation: Mechanisms and Pathways. Microorganisms. 2021;9:292. doi: 10.3390/microorganisms9020292. PubMed DOI PMC

Hassan S.T.S., Šudomová M., Masarčíková R. Herpes simplex virus infection: An overview of the problem, pharmacologic therapy and dietary measures. Ceska Slov. Farm. 2017;66:95–102. PubMed

Hassan S.T.S. Shedding Light on the Effect of Natural Anti-Herpesvirus Alkaloids on SARS-CoV-2: A Treatment Option for COVID-19. Viruses. 2020;12:E476. doi: 10.3390/v12040476. PubMed DOI PMC

Sausen D.G., Reed K.M., Bhutta M.S., Gallo E.S., Borenstein R. Evasion of the Host Immune Response by Betaherpesviruses. Int. J. Mol. Sci. 2021;22:7503. doi: 10.3390/ijms22147503. PubMed DOI PMC

Wen K.W., Wang L., Menke J.R., Damania B. Cancers Associated with Human Gammaherpesviruses. FEBS J. 2021 doi: 10.1111/febs.16206. PubMed DOI PMC

Pei Y., Robertson E.S. The Crosstalk of Epigenetics and Metabolism in Herpesvirus Infection. Viruses. 2020;12:1377. doi: 10.3390/v12121377. PubMed DOI PMC

Weidner-Glunde M., Kruminis-Kaszkiel E., Savanagouder M. Herpesviral Latency-Common Themes. Pathogens. 2020;9:125. doi: 10.3390/pathogens9020125. PubMed DOI PMC

Šudomová M., Berchová-Bímová K., Marzocco S., Liskova A., Kubatka P., Hassan S.T.S. Berberine in Human Oncogenic Herpesvirus Infections and Their Linked Cancers. Viruses. 2021;13:1014. doi: 10.3390/v13061014. PubMed DOI PMC

Hassan S.T.S., Berchová-Bímová K., Petráš J., Hassan K.T.S. Cucurbitacin B Interacts Synergistically with Antibiotics against Staphylococcus Aureus Clinical Isolates and Exhibits Antiviral Activity against HSV-1. S. Afr. J. Bot. 2017;108:90–94. doi: 10.1016/j.sajb.2016.10.001. DOI

Hassan S.T.S., Šudomová M., Berchová-Bímová K., Šmejkal K., Echeverría J. Psoromic Acid, a Lichen-Derived Molecule, Inhibits the Replication of HSV-1 and HSV-2, and Inactivates HSV-1 DNA Polymerase: Shedding Light on Antiherpetic Properties. Molecules. 2019;24:2912. doi: 10.3390/molecules24162912. PubMed DOI PMC

Poole C.L., James S.H. Antiviral Therapies for Herpesviruses: Current Agents and New Directions. Clin. Ther. 2018;40:1282–1298. doi: 10.1016/j.clinthera.2018.07.006. PubMed DOI PMC

Treml J., Gazdová M., Šmejkal K., Šudomová M., Kubatka P., Hassan S.T.S. Natural Products-Derived Chemicals: Breaking Barriers to Novel Anti-HSV Drug Development. Viruses. 2020;12:154. doi: 10.3390/v12020154. PubMed DOI PMC

Brezáni V., Leláková V., Hassan S.T.S., Berchová-Bímová K., Nový P., Klouček P., Maršík P., Dall’Acqua S., Hošek J., Šmejkal K. Anti-Infectivity against Herpes Simplex Virus and Selected Microbes and Anti-Inflammatory Activities of Compounds Isolated from Eucalyptus Globulus Labill. Viruses. 2018;10:360. doi: 10.3390/v10070360. PubMed DOI PMC

Čulenová M., Sychrová A., Hassan S.T.S., Berchová-Bímová K., Svobodová P., Helclová A., Michnová H., Hošek J., Vasilev H., Suchý P., et al. Multiple In Vitro Biological Effects of Phenolic Compounds from Morus Alba Root Bark. J. Ethnopharmacol. 2020;248:112296. doi: 10.1016/j.jep.2019.112296. PubMed DOI

Hassan S.T.S., Švajdlenka E. Biological Evaluation and Molecular Docking of Protocatechuic Acid from Hibiscus Sabdariffa, L. as a Potent Urease Inhibitor by an ESI-MS Based Method. Molecules. 2017;22:1696. doi: 10.3390/molecules22101696. PubMed DOI PMC

Hassan S.T.S., Švajdlenka E., Berchová-Bímová K. Hibiscus Sabdariffa, L. and Its Bioactive Constituents Exhibit Antiviral Activity against HSV-2 and Anti-Enzymatic Properties against Urease by an ESI-MS Based Assay. Molecules. 2017;22:722. doi: 10.3390/molecules22050722. PubMed DOI PMC

Atanasov A.G., Zotchev S.B., Dirsch V.M., International Natural Product Sciences Taskforce. Supuran C.T. Natural Products in Drug Discovery: Advances and Opportunities. Nat. Rev. Drug. Discov. 2021;20:200–216. doi: 10.1038/s41573-020-00114-z. PubMed DOI PMC

Liskova A., Samec M., Koklesova L., Brockmueller A., Zhai K., Abdellatif B., Siddiqui M., Biringer K., Kudela E., Pec M., et al. Flavonoids as an Effective Sensitizer for Anti-Cancer Therapy: Insights into Multi-Faceted Mechanisms and Applicability towards Individualized Patient Profiles. EPMA J. 2021;12:1–22. doi: 10.1007/s13167-021-00242-5. PubMed DOI PMC

Bharucha T., Houlihan C.F., Breuer J. Herpesvirus Infections of the Central Nervous System. Semin. Neurol. 2019;39:369–382. doi: 10.1055/s-0039-1687837. PubMed DOI

Kawada J.-I. Neurological Disorders Associated with Human Alphaherpesviruses. Adv. Exp. Med. Biol. 2018;1045:85–102. doi: 10.1007/978-981-10-7230-7_5. PubMed DOI

Eliassen E., Hemond C.C., Santoro J.D. HHV-6-Associated Neurological Disease in Children: Epidemiologic, Clinical, Diagnostic, and Treatment Considerations. Pediatr. Neurol. 2020;105:10–20. doi: 10.1016/j.pediatrneurol.2019.10.004. PubMed DOI

Jakhmola S., Upadhyay A., Jain K., Mishra A., Jha H.C. Herpesviruses and the Hidden Links to Multiple Sclerosis Neuropathology. J. Neuroimmunol. 2021;358:577636. doi: 10.1016/j.jneuroim.2021.577636. PubMed DOI

Francis S.S., Wiemels J.L., Yang W., Shaw G.M. Herpesvirus Infection in Infants with Gastroschisis. Epidemiology. 2018;29:571–573. doi: 10.1097/EDE.0000000000000844. PubMed DOI

Jarosinski K.W. Interindividual Spread of Herpesviruses. Adv. Anat. Embryol. Cell Biol. 2017;223:195–224. doi: 10.1007/978-3-319-53168-7_9. PubMed DOI

Azab W., Osterrieder K. Initial Contact: The First Steps in Herpesvirus Entry. Adv. Anat. Embryol. Cell Biol. 2017;223:1–27. doi: 10.1007/978-3-319-53168-7_1. PubMed DOI

Connolly S.A., Jardetzky T.S., Longnecker R. The Structural Basis of Herpesvirus Entry. Nat. Rev. Microbiol. 2021;19:110–121. doi: 10.1038/s41579-020-00448-w. PubMed DOI PMC

Gilden D.H., Mahalingam R., Cohrs R.J., Tyler K.L. Herpesvirus Infections of the Nervous System. Nat. Clin. Pr. Neurol. 2007;3:82–94. doi: 10.1038/ncpneuro0401. PubMed DOI

Baldwin K.J., Cummings C.L. Herpesvirus Infections of the Nervous System. Continuum: Lifelong Learn. Neurol. 2018;24:1349–1369. doi: 10.1212/CON.0000000000000661. PubMed DOI

Reese T.A. Coinfections: Another Variable in the Herpesvirus Latency-Reactivation Dynamic. J. Virol. 2016;90:5534–5537. doi: 10.1128/JVI.01865-15. PubMed DOI PMC

Lomonte P. Herpesvirus Latency: On the Importance of Positioning Oneself. Adv. Anat. Embryol. Cell Biol. 2017;223:95–117. doi: 10.1007/978-3-319-53168-7_5. PubMed DOI

Sadeghipour S., Mathias R.A. Herpesviruses Hijack Host Exosomes for Viral Pathogenesis. Semin. Cell Dev. Biol. 2017;67:91–100. doi: 10.1016/j.semcdb.2017.03.005. PubMed DOI

Ostler J.B., Sawant L., Harrison K., Jones C. Regulation of Neurotropic Herpesvirus Productive Infection and Latency-Reactivation Cycle by Glucocorticoid Receptor and Stress-Induced Transcription Factors. Vitam. Horm. 2021;117:101–132. doi: 10.1016/bs.vh.2021.06.005. PubMed DOI PMC

Soares B.P., Provenzale J.M. Imaging of Herpesvirus Infections of the CNS. AJR Am. J. Roentgenol. 2016;206:39–48. doi: 10.2214/AJR.15.15314. PubMed DOI

Chijioke O., Azzi T., Nadal D., Münz C. Innate Immune Responses against Epstein Barr Virus Infection. J. Leukoc. Biol. 2013;94:1185–1190. doi: 10.1189/jlb.0313173. PubMed DOI PMC

Paludan S.R., Bowie A.G., Horan K.A., Fitzgerald K.A. Recognition of Herpesviruses by the Innate Immune System. Nat. Rev. Immunol. 2011;11:143–154. doi: 10.1038/nri2937. PubMed DOI PMC

Jondle C.N., Tarakanova V.L. Innate Immunity and Alpha/Gammaherpesviruses: First Impressions Last a Lifetime. Curr. Opin. Virol. 2020;44:81–89. doi: 10.1016/j.coviro.2020.07.002. PubMed DOI PMC

O’Connor C.M., Sen G.C. Innate Immune Responses to Herpesvirus Infection. Cells. 2021;10:2122. doi: 10.3390/cells10082122. PubMed DOI PMC

Glaunsinger B.A., Ganem D.E. Messenger RNA Turnover and Its Regulation in Herpesviral Infection. Adv. Virus Res. 2006;66:337–394. doi: 10.1016/S0065-3527(06)66007-7. PubMed DOI

Glaunsinger B.A. Modulation of the Translational Landscape During Herpesvirus Infection. Annu. Rev. Virol. 2015;2:311–333. doi: 10.1146/annurev-virology-100114-054839. PubMed DOI PMC

Tucker J.M., Glaunsinger B.A. Host Noncoding Retrotransposons Induced by DNA Viruses: A SINE of Infection? J. Virol. 2017;91:e00982-17. doi: 10.1128/JVI.00982-17. PubMed DOI PMC

Covarrubias S., Richner J.M., Clyde K., Lee Y.J., Glaunsinger B.A. Host Shutoff Is a Conserved Phenotype of Gammaherpesvirus Infection and Is Orchestrated Exclusively from the Cytoplasm. J. Virol. 2009;83:9554–9566. doi: 10.1128/JVI.01051-09. PubMed DOI PMC

Abernathy E., Clyde K., Yeasmin R., Krug L.T., Burlingame A., Coscoy L., Glaunsinger B. Gammaherpesviral Gene Expression and Virion Composition Are Broadly Controlled by Accelerated MRNA Degradation. PLoS Pathog. 2014;10:e1003882. doi: 10.1371/journal.ppat.1003882. PubMed DOI PMC

Asha K., Sharma-Walia N. Targeting Host Cellular Factors as a Strategy of Therapeutic Intervention for Herpesvirus Infections. Front. Cell. Infect. Microbiol. 2021;11:603309. doi: 10.3389/fcimb.2021.603309. PubMed DOI PMC

Zhang R., Zhang Y., Hu J., Wu W., Chen X., Lu Z., Yang R., Huang Y., Fan J. Specific T-Cell Receptor Gene Transfer Enhances Immune Response: A Potential Therapeutic Strategy for the Control of Human Cytomegalovirus Infection in Immunocompromised Patients. Cell Immunol. 2019;336:58–65. doi: 10.1016/j.cellimm.2018.12.011. PubMed DOI

Martínez G., Mijares M.R., De Sanctis J.B. Effects of Flavonoids and Its Derivatives on Immune Cell Responses. Recent Pat. Inflamm. Allergy Drug Discov. 2019;13:84–104. doi: 10.2174/1872213X13666190426164124. PubMed DOI

Wang K., Conlon M., Ren W., Chen B.B., Bączek T. Natural Products as Targeted Modulators of the Immune System. J. Immunol. Res. 2018;2018:7862782. doi: 10.1155/2018/7862782. PubMed DOI PMC

Ding S., Jiang H., Fang J. Regulation of Immune Function by Polyphenols. J. Immunol. Res. 2018;2018:1264074. doi: 10.1155/2018/1264074. PubMed DOI PMC

Burkard M., Leischner C., Lauer U.M., Busch C., Venturelli S., Frank J. Dietary Flavonoids and Modulation of Natural Killer Cells: Implications in Malignant and Viral Diseases. J. Nutr. Biochem. 2017;46:1–12. doi: 10.1016/j.jnutbio.2017.01.006. PubMed DOI

Rengasamy K.R.R., Khan H., Gowrishankar S., Lagoa R.J.L., Mahomoodally F.M., Khan Z., Suroowan S., Tewari D., Zengin G., Hassan S.T.S., et al. The Role of Flavonoids in Autoimmune Diseases: Therapeutic Updates. Pharmacol. Ther. 2019;194:107–131. doi: 10.1016/j.pharmthera.2018.09.009. PubMed DOI

Panche A.N., Diwan A.D., Chandra S.R. Flavonoids: An Overview. J. Nutr. Sci. 2016;5:e47. doi: 10.1017/jns.2016.41. PubMed DOI PMC

Safe S., Jayaraman A., Chapkin R.S., Howard M., Mohankumar K., Shrestha R. Flavonoids: Structure-Function and Mechanisms of Action and Opportunities for Drug Development. Toxicol. Res. 2021;37:147–162. doi: 10.1007/s43188-020-00080-z. PubMed DOI PMC

Khodzhaieva R.S., Gladkov E.S., Kyrychenko A., Roshal A.D. Progress and Achievements in Glycosylation of Flavonoids. Front. Chem. 2021;9:637994. doi: 10.3389/fchem.2021.637994. PubMed DOI PMC

Durazzo A., Lucarini M., Souto E.B., Cicala C., Caiazzo E., Izzo A.A., Novellino E., Santini A. Polyphenols: A Concise Overview on the Chemistry, Occurrence, and Human Health. Phytother. Res. 2019;33:2221–2243. doi: 10.1002/ptr.6419. PubMed DOI

Singla R.K., Dubey A.K., Garg A., Sharma R.K., Fiorino M., Ameen S.M., Haddad M.A., Al-Hiary M. Natural Polyphenols: Chemical Classification, Definition of Classes, Subcategories, and Structures. J. AOAC Int. 2019;102:1397–1400. doi: 10.5740/jaoacint.19-0133. PubMed DOI

Dias M.C., Pinto D.C.G.A., Silva A.M.S. Plant Flavonoids: Chemical Characteristics and Biological Activity. Molecules. 2021;26:5377. doi: 10.3390/molecules26175377. PubMed DOI PMC

Koklesova L., Liskova A., Samec M., Zhai K., Al-Ishaq R.K., Bugos O., Šudomová M., Biringer K., Pec M., Adamkov M., et al. Protective Effects of Flavonoids Against Mitochondriopathies and Associated Pathologies: Focus on the Predictive Approach and Personalized Prevention. Int. J. Mol. Sci. 2021;22:8649. doi: 10.3390/ijms22168649. PubMed DOI PMC

Kumar S., Pandey A.K. Chemistry and Biological Activities of Flavonoids: An Overview. Sci. World J. 2013;2013:162750. doi: 10.1155/2013/162750. PubMed DOI PMC

Zakaryan H., Arabyan E., Oo A., Zandi K. Flavonoids: Promising Natural Compounds against Viral Infections. Arch. Virol. 2017;162:2539–2551. doi: 10.1007/s00705-017-3417-y. PubMed DOI PMC

Ahmed S., Khan H., Aschner M., Hasan M.M., Hassan S.T.S. Therapeutic Potential of Naringin in Neurological Disorders. Food Chem. Toxicol. 2019;132:110646. doi: 10.1016/j.fct.2019.110646. PubMed DOI

Badshah S.L., Faisal S., Muhammad A., Poulson B.G., Emwas A.H., Jaremko M. Antiviral Activities of Flavonoids. Biomed. Pharm. 2021;140:111596. doi: 10.1016/j.biopha.2021.111596. PubMed DOI PMC

Sharma V., Sehrawat N., Sharma A., Yadav M., Verma P., Sharma A.K. Multifaceted Antiviral Therapeutic Potential of Dietary Flavonoids: Emerging Trends and Future Perspectives. Biotechnol. Appl. Biochem. 2021 doi: 10.1002/bab.2265. PubMed DOI

Hassan S.T.S., Masarčíková R., Berchová K. Bioactive Natural Products with Anti-Herpes Simplex Virus Properties. J. Pharm. Pharm. 2015;67:1325–1336. doi: 10.1111/jphp.12436. PubMed DOI

Di Lorenzo C., Colombo F., Biella S., Stockley C., Restani P. Polyphenols and Human Health: The Role of Bioavailability. Nutrients. 2021;13:273. doi: 10.3390/nu13010273. PubMed DOI PMC

Teng H., Chen L. Polyphenols and Bioavailability: An Update. Crit. Rev. Food Sci. Nutr. 2019;59:2040–2051. doi: 10.1080/10408398.2018.1437023. PubMed DOI

Hassan S.T.S., Žemlička M. Plant-Derived Urease Inhibitors as Alternative Chemotherapeutic Agents. Arch. Pharm. 2016;349:507–522. doi: 10.1002/ardp.201500019. PubMed DOI

Herpes Simplex Virus. [(accessed on 11 December 2021)]. Available online: https://www.who.int/news-room/fact-sheets/detail/herpes-simplex-virus.

Huang Y., Song Y., Li J., Lv C., Chen Z.-S., Liu Z. Receptors and Ligands for Herpes Simplex Viruses: Novel Insights for Drug Targeting. Drug Discov. Today. 2021;27:185–195. doi: 10.1016/j.drudis.2021.10.004. PubMed DOI

Zhu S., Viejo-Borbolla A. Pathogenesis and Virulence of Herpes Simplex Virus. Virulence. 2021;12:2670–2702. doi: 10.1080/21505594.2021.1982373. PubMed DOI PMC

Colombo D., Albore M., Nonno F.D., Bolino G., D’Ambrosio M., Salvi A., Cecannecchia C., Falasca L. Fatal Fulminant HSV-2 Myocarditis: A Complicated Presentation. Int. J. Infect. Dis. 2021;114:124–127. doi: 10.1016/j.ijid.2021.10.046. PubMed DOI

Hendrickx D.M., Sousa J.D., Libin P.J.K., Delva W., Liesenborgs J., Hens N., Müller V., Vandamme A.-M. Comparison of Two Simulators for Individual Based Models in HIV Epidemiology in a Population with HSV 2 in Yaoundé (Cameroon) Sci. Rep. 2021;11:14696. doi: 10.1038/s41598-021-94289-z. PubMed DOI PMC

Edwards R.J., Dolly N., Musa D., Edwards J., Boyce G. Clinical Presentation of Herpes Simplex Virus Infection Mimicking Neoplasia on the Face of Persons Living with HIV. Int. J. STD. AIDS. 2022;33:212–214. doi: 10.1177/09564624211055298. PubMed DOI

Bergström P., Trybala E., Eriksson C.E., Johansson M., Satir T.M., Widéhn S., Fruhwürth S., Michno W., Nazir F.H., Hanrieder J., et al. Herpes Simplex Virus 1 and 2 Infections during Differentiation of Human Cortical Neurons. Viruses. 2021;13:2072. doi: 10.3390/v13102072. PubMed DOI PMC

DuRaine G., Johnson D.C. Anterograde Transport of α-Herpesviruses in Neuronal Axons. Virology. 2021;559:65–73. doi: 10.1016/j.virol.2021.02.011. PubMed DOI

Hersh N., Steiner I., Siegal T., Benninger F. Herpes Simplex Encephalitis in Patients Receiving Chemotherapy and Whole-Brain Radiation Therapy. J. Neurovirol. 2021;27:774–781. doi: 10.1007/s13365-021-01018-3. PubMed DOI

Ordoñez G., Vales O., Pineda B., Rodríguez K., Pane C., Sotelo J. The Presence of Herpes Simplex-1 and Varicella Zoster Viruses Is Not Related with Clinical Outcome of Bell’s Palsy. Virology. 2020;549:85–88. doi: 10.1016/j.virol.2020.07.020. PubMed DOI

Akkaya O. Prevalence of Herpes Simplex Virus Infections in the Central Nervous System. Clin. Lab. 2021;67 doi: 10.7754/Clin.Lab.2020.201111. PubMed DOI

Rozenberg F. Herpes simplex virus and central nervous system infections: Encephalitis, meningitis, myelitis. Virologie. 2020;24:283–294. doi: 10.1684/vir.2020.0862. PubMed DOI

Gershon A.A., Breuer J., Cohen J.I., Cohrs R.J., Gershon M.D., Gilden D., Grose C., Hambleton S., Kennedy P.G.E., Oxman M.N., et al. Varicella Zoster Virus Infection. Nat. Rev. Dis. Primers. 2015;1:15016. doi: 10.1038/nrdp.2015.16. PubMed DOI PMC

Braspenning S.E., Sadaoka T., Breuer J., Verjans G.M.G.M., Ouwendijk W.J.D., Depledge D.P. Decoding the Architecture of the Varicella-Zoster Virus Transcriptome. mBio. 2020;11:e01568-20. doi: 10.1128/mBio.01568-20. PubMed DOI PMC

Kennedy P.G.E., Cohrs R.J. Varicella-Zoster Virus Human Ganglionic Latency: A Current Summary. J. Neurovirol. 2010;16:411–418. doi: 10.1007/BF03210846. PubMed DOI

Kennedy P.G.E., Mogensen T.H., Cohrs R.J. Recent Issues in Varicella-Zoster Virus Latency. Viruses. 2021;13:2018. doi: 10.3390/v13102018. PubMed DOI PMC

Kennedy P.G.E., Mogensen T.H. Varicella-Zoster Virus Infection of Neurons Derived from Neural Stem Cells. Viruses. 2021;13:485. doi: 10.3390/v13030485. PubMed DOI PMC

Kennedy P.G.E., Gershon A.A. Clinical Features of Varicella-Zoster Virus Infection. Viruses. 2018;10:609. doi: 10.3390/v10110609. PubMed DOI PMC

Kennedy P.G.E. Issues in the Treatment of Neurological Conditions Caused by Reactivation of Varicella Zoster Virus (VZV) Neurotherapeutics. 2016;13:509–513. doi: 10.1007/s13311-016-0430-x. PubMed DOI PMC

Corral C., Quereda C., Muriel A., Martínez-Ulloa P.-L., González-Gómez F.-J., Corral Í. Clinical Spectrum and Prognosis of Neurological Complications of Reactivated Varicella-Zoster Infection: The Role of Immunosuppression. J. Neurovirol. 2020;26:696–703. doi: 10.1007/s13365-020-00872-x. PubMed DOI

Abu-Rumeileh S., Mayer B., Still V., Tumani H., Otto M., Senel M. Varicella Zoster Virus-Induced Neurological Disease after COVID-19 Vaccination: A Retrospective Monocentric Study. J. Neurol. 2021:1–7. doi: 10.1007/s00415-021-10849-3. PubMed DOI PMC

Li W., Xu C., Hao C., Zhang Y., Wang Z., Wang S., Wang W. Inhibition of Herpes Simplex Virus by Myricetin through Targeting Viral GD Protein and Cellular EGFR/PI3K/Akt Pathway. Antivir. Res. 2020;177:104714. doi: 10.1016/j.antiviral.2020.104714. PubMed DOI PMC

Zhou H.-Y., Gao S.-Q., Gong Y.-S., Lin T., Tong S., Xiong W., Shi C.-Y., Wang W.-Q., Fang J.-G. Anti-HSV-1 Effect of Dihydromyricetin from Ampelopsis Grossedentata via the TLR9-Dependent Anti-Inflammatory Pathway. J. Glob. Antimicrob. Resist. 2020;23:370–376. doi: 10.1016/j.jgar.2020.10.003. PubMed DOI

Ortega J.T., Serrano M.L., Suárez A.I., Baptista J., Pujol F.H., Cavallaro L.V., Campos H.R., Rangel H.R. Antiviral Activity of Flavonoids Present in Aerial Parts of Marcetia Taxifolia against Hepatitis B Virus, Poliovirus, and Herpes Simplex Virus in Vitro. EXCLI J. 2019;18:1037–1048. doi: 10.17179/excli2019-1837. PubMed DOI PMC

Kim T.I., Kwon E.-B., Oh Y.-C., Go Y., Choi J.-G. Mori Ramulus and Its Major Component Morusin Inhibit Herpes Simplex Virus Type 1 Replication and the Virus-Induced Reactive Oxygen Species. Am. J. Chin. Med. 2021;49:163–179. doi: 10.1142/S0192415X21500099. PubMed DOI

Chu Y., Lv X., Zhang L., Fu X., Song S., Su A., Chen D., Xu L., Wang Y., Wu Z., et al. Wogonin Inhibits in Vitro Herpes Simplex Virus Type 1 and 2 Infection by Modulating Cellular NF-ΚB and MAPK Pathways. BMC Microbiol. 2020;20:227. doi: 10.1186/s12866-020-01916-2. PubMed DOI PMC

Rittà M., Marengo A., Civra A., Lembo D., Cagliero C., Kant K., Lal U.R., Rubiolo P., Ghosh M., Donalisio M. Antiviral Activity of a Arisaema Tortuosum Leaf Extract and Some of Its Constituents against Herpes Simplex Virus Type 2. Planta. Med. 2020;86:267–275. doi: 10.1055/a-1087-8303. PubMed DOI

Fahmy N.M., Al-Sayed E., Moghannem S., Azam F., El-Shazly M., Singab A.N. Breaking Down the Barriers to a Natural Antiviral Agent: Antiviral Activity and Molecular Docking of Erythrina Speciosa Extract, Fractions, and the Major Compound. Chem. Biodivers. 2020;17:e1900511. doi: 10.1002/cbdv.201900511. PubMed DOI

Li F., Song X., Su G., Wang Y., Wang Z., Jia J., Qing S., Huang L., Wang Y., Zheng K., et al. Amentoflavone Inhibits HSV-1 and ACV-Resistant Strain Infection by Suppressing Viral Early Infection. Viruses. 2019;11:466. doi: 10.3390/v11050466. PubMed DOI PMC

Lee S., Lee H.H., Shin Y.S., Kang H., Cho H. The Anti-HSV-1 Effect of Quercetin Is Dependent on the Suppression of TLR-3 in Raw 264.7 Cells. Arch. Pharm. Res. 2017;40:623–630. doi: 10.1007/s12272-017-0898-x. PubMed DOI

Pradhan P., Nguyen M.L. Herpes Simplex Virus Virucidal Activity of MST-312 and Epigallocatechin Gallate. Virus Res. 2018;249:93–98. doi: 10.1016/j.virusres.2018.03.015. PubMed DOI

Wu C.-Y., Yu Z.-Y., Chen Y.-C., Hung S.-L. Effects of Epigallocatechin-3-Gallate and Acyclovir on Herpes Simplex Virus Type 1 Infection in Oral Epithelial Cells. J. Med. Assoc. 2021;120:2136–2143. doi: 10.1016/j.jfma.2020.12.018. PubMed DOI

Wang Y.-Q., Cai L., Zhang N., Zhang J., Wang H.-H., Zhu W. Protective Effect of Total Flavonoids from Ixeris Sonchifolia on Herpes Simplex Virus Keratitis in Mice. BMC Complement. Med. 2020;20:113. doi: 10.1186/s12906-020-02911-w. PubMed DOI PMC

Kim C.H., Kim J.-E., Song Y.-J. Antiviral Activities of Quercetin and Isoquercitrin Against Human Herpesviruses. Molecules. 2020;25:2379. doi: 10.3390/molecules25102379. PubMed DOI PMC

Li T., Liu L., Wu H., Chen S., Zhu Q., Gao H., Yu X., Wang Y., Su W., Yao X., et al. Anti-Herpes Simplex Virus Type 1 Activity of Houttuynoid A, a Flavonoid from Houttuynia Cordata Thunb. Antivir. Res. 2017;144:273–280. doi: 10.1016/j.antiviral.2017.06.010. PubMed DOI

Li J.-J., Chen G.-D., Fan H.-X., Hu D., Zhou Z.-Q., Lan K.-H., Zhang H.-P., Maeda H., Yao X.-S., Gao H. Houttuynoid M, an Anti-HSV Active Houttuynoid from Houttuynia Cordata Featuring a Bis-Houttuynin Chain Tethered to a Flavonoid Core. J. Nat. Prod. 2017;80:3010–3013. doi: 10.1021/acs.jnatprod.7b00620. PubMed DOI

Griffiths P., Reeves M. Pathogenesis of Human Cytomegalovirus in the Immunocompromised Host. Nat. Rev. Microbiol. 2021;19:759–773. doi: 10.1038/s41579-021-00582-z. PubMed DOI PMC

O’Connor C.M. Cytomegalovirus (CMV) Infection and Latency. Pathogens. 2021;10:342. doi: 10.3390/pathogens10030342. PubMed DOI PMC

Prosser J.D., Holmes T.W., Seyyedi M., Choo D.I. Congenital Cytomegalovirus (CMV) for the Pediatric Otolaryngologist. Int J. Pediatr. Otorhinolaryngol. 2021;148:110809. doi: 10.1016/j.ijporl.2021.110809. PubMed DOI

Plosa E.J., Esbenshade J.C., Fuller M.P., Weitkamp J.-H. Cytomegalovirus Infection. Pediatr. Rev. 2012;33:156–163. doi: 10.1542/pir.33.4.156. PubMed DOI

Griffiths P., Baraniak I., Reeves M. The Pathogenesis of Human Cytomegalovirus. J. Pathol. 2015;235:288–297. doi: 10.1002/path.4437. PubMed DOI

Zhang X.-Y., Fang F. Congenital Human Cytomegalovirus Infection and Neurologic Diseases in Newborns. Chin. Med. J. 2019;132:2109–2118. doi: 10.1097/CM9.0000000000000404. PubMed DOI PMC

Tselis A.C. Cytomegalovirus Infections of the Adult Human Nervous System. Handb. Clin. Neurol. 2014;123:307–318. doi: 10.1016/B978-0-444-53488-0.00014-6. PubMed DOI

Ting P., Camaj A., Bienstock S., Choy A., Mitter S.S., Barghash M., Mancini D. Guillain-Barré Syndrome After Primary Cytomegalovirus Infection in a Patient With a Heart Transplant. JACC Case Rep. 2021;3:455–458. doi: 10.1016/j.jaccas.2020.12.037. PubMed DOI PMC

Guo Y., Jiang L. Cytomegalovirus Encephalitis in Immunocompetent Infants: A 15-Year Retrospective Study at a Single Center. Int. J. Infect. Dis. 2019;82:106–110. doi: 10.1016/j.ijid.2019.02.045. PubMed DOI

Nukui M., O’Connor C.M., Murphy E.A. The Natural Flavonoid Compound Deguelin Inhibits HCMV Lytic Replication within Fibroblasts. Viruses. 2018;10:614. doi: 10.3390/v10110614. PubMed DOI PMC

Akai Y., Sadanari H., Takemoto M., Uchide N., Daikoku T., Mukaida N., Murayama T. Inhibition of Human Cytomegalovirus Replication by Tricin Is Associated with Depressed CCL2 Expression. Antivir. Res. 2017;148:15–19. doi: 10.1016/j.antiviral.2017.09.018. PubMed DOI

Itoh A., Sadanari H., Takemoto M., Matsubara K., Daikoku T., Murayama T. Tricin Inhibits the CCL5 Induction Required for Efficient Growth of Human Cytomegalovirus. Microbiol. Immunol. 2018;62:341–347. doi: 10.1111/1348-0421.12590. PubMed DOI

Kapasi A.J., Clark C.L., Tran K., Spector D.H. Recruitment of Cdk9 to the Immediate-Early Viral Transcriptosomes during Human Cytomegalovirus Infection Requires Efficient Binding to Cyclin T1, a Threshold Level of IE2 86, and Active Transcription. J. Virol. 2009;83:5904–5917. doi: 10.1128/JVI.02651-08. PubMed DOI PMC

Sadanari H., Fujimoto K.J., Sugihara Y., Ishida T., Takemoto M., Daikoku T., Murayama T. The Anti-Human Cytomegalovirus Drug Tricin Inhibits Cyclin-Dependent Kinase 9. FEBS Open Bio. 2018;8:646–654. doi: 10.1002/2211-5463.12398. PubMed DOI PMC

Fujimoto K.J., Nema D., Ninomiya M., Koketsu M., Sadanari H., Takemoto M., Daikoku T., Murayama T. An in Silico-Designed Flavone Derivative, 6-Fluoro-4’-Hydroxy-3’,5’-Dimetoxyflavone, Has a Greater Anti-Human Cytomegalovirus Effect than Ganciclovir in Infected Cells. Antivir. Res. 2018;154:10–16. doi: 10.1016/j.antiviral.2018.03.006. PubMed DOI

Lange P.T., White M.C., Damania B. Activation and Evasion of Innate Immunity by Gammaherpesviruses. J. Mol. Biol. 2021:167214. doi: 10.1016/j.jmb.2021.167214. PubMed DOI PMC

Möhl B.S., Chen J., Longnecker R. Gammaherpesvirus Entry and Fusion: A Tale How Two Human Pathogenic Viruses Enter Their Host Cells. Adv. Virus. Res. 2019;104:313–343. doi: 10.1016/bs.aivir.2019.05.006. PubMed DOI

Epstein M.A., Achong B.G., Barr Y.M. Virus particles in cultured lymphoblasts from burkitt’s lymphoma. Lancet. 1964;1:702–703. doi: 10.1016/S0140-6736(64)91524-7. PubMed DOI

Epstein M.A., Henle G., Achong B.G., Barr Y.M. Morphological and biological studies on a virus in cultured lymphoblasts from burkitt’s lymphoma. J. Exp. Med. 1965;121:761–770. doi: 10.1084/jem.121.5.761. PubMed DOI PMC

Ciccarese G., Trave I., Herzum A., Parodi A., Drago F. Dermatological Manifestations of Epstein-Barr Virus Systemic Infection: A Case Report and Literature Review. Int. J. Derm. 2020;59:1202–1209. doi: 10.1111/ijd.14887. PubMed DOI

Nowalk A., Green M. Epstein-Barr Virus. Microbiol. Spectr. 2016;4:1–8. doi: 10.1128/microbiolspec.DMIH2-0011-2015. PubMed DOI

Fujimoto H., Asaoka K., Imaizumi T., Ayabe M., Shoji H., Kaji M. Epstein-Barr Virus Infections of the Central Nervous System. Intern. Med. 2003;42:33–40. doi: 10.2169/internalmedicine.42.33. PubMed DOI

Ridha M., Jones D.G., Lerner D.P., Vytopil M., Voetsch B., Burns J.D., Ramineni A., Raibagkar P. The Spectrum of Epstein-Barr Virus Infections of the Central Nervous System after Organ Transplantation. Virol. J. 2021;18:162. doi: 10.1186/s12985-021-01629-6. PubMed DOI PMC

Chatterjee S., Angelov L., Ahluwalia M.S., Yeaney G.A. Epstein-Barr Virus-Associated Primary Central Nervous System Lymphoma in a Patient with Diffuse Cutaneous Systemic Sclerosis on Long-Term Mycophenolate Mofetil. Jt. Bone Spine. 2020;87:163–166. doi: 10.1016/j.jbspin.2019.10.005. PubMed DOI

Houen G., Trier N.H., Frederiksen J.L. Epstein-Barr Virus and Multiple Sclerosis. Front. Immunol. 2020;11:587078. doi: 10.3389/fimmu.2020.587078. PubMed DOI PMC

Soldan S.S., Lieberman P.M. Epstein-Barr Virus Infection in the Development of Neurological Disorders. Drug Discov. Today Dis. Models. 2020;32:35–52. doi: 10.1016/j.ddmod.2020.01.001. PubMed DOI PMC

Weinberg A., Li S., Palmer M., Tyler K.L. Quantitative CSF PCR in Epstein-Barr Virus Infections of the Central Nervous System. Ann. Neurol. 2002;52:543–548. doi: 10.1002/ana.10321. PubMed DOI

Cheng H., Chen D., Peng X., Wu P., Jiang L., Hu Y. Clinical Characteristics of Epstein–Barr Virus Infection in the Pediatric Nervous System. BMC Infect. Dis. 2020;20:886. doi: 10.1186/s12879-020-05623-1. PubMed DOI PMC

Goncalves P.H., Ziegelbauer J., Uldrick T.S., Yarchoan R. Kaposi Sarcoma Herpesvirus-Associated Cancers and Related Diseases. Curr. Opin. HIV AIDS. 2017;12:47–56. doi: 10.1097/COH.0000000000000330. PubMed DOI PMC

Li S., Bai L., Dong J., Sun R., Lan K. Kaposi’s Sarcoma-Associated Herpesvirus: Epidemiology and Molecular Biology. Adv. Exp. Med. Biol. 2017;1018:91–127. doi: 10.1007/978-981-10-5765-6_7. PubMed DOI

Tso F.Y., Sawyer A., Kwon E.H., Mudenda V., Langford D., Zhou Y., West J., Wood C. Kaposi’s Sarcoma-Associated Herpesvirus Infection of Neurons in HIV Positive Patients. J. Infect. Dis. 2016;215:jiw545. doi: 10.1093/infdis/jiw545. PubMed DOI PMC

Jha H.C., Mehta D., Lu J., El-Naccache D., Shukla S.K., Kovacsics C., Kolson D., Robertson E.S. Gammaherpesvirus Infection of Human Neuronal Cells. mBio. 2015;6:e01844-15. doi: 10.1128/mBio.01844-15. PubMed DOI PMC

Baldini F., Baiocchini A., Schininà V., Agrati C., Giancola M.L., Alba L., Grisetti S., Del Nonno F., Capobianchi M.R., Antinori A. Brain Localization of Kaposi’s Sarcoma in a Patient Treated by Combination Antiretroviral Therapy. BMC Infect. Dis. 2013;13:600. doi: 10.1186/1471-2334-13-600. PubMed DOI PMC

Tsai Y.-C., Hohmann J., El-Shazly M., Chang L.-K., Dankó B., Kúsz N., Hsieh C.-T., Hunyadi A., Chang F.-R. Bioactive Constituents of Lindernia Crustacea and Its Anti-EBV Effect via Rta Expression Inhibition in the Viral Lytic Cycle. J. Ethnopharmacol. 2020;250:112493. doi: 10.1016/j.jep.2019.112493. PubMed DOI

Huang H.-H., Chen C.-S., Wang W.-H., Hsu S.-W., Tsai H.-H., Liu S.-T., Chang L.-K. TRIM5α Promotes Ubiquitination of Rta from Epstein–Barr Virus to Attenuate Lytic Progression. Front. Microbiol. 2017;7:1407. doi: 10.3389/fmicb.2016.02129. PubMed DOI PMC

Li H., Li Y., Hu J., Liu S., Luo X., Tang M., Bode A.M., Dong Z., Liu X., Liao W., et al. ()-Epigallocatechin-3-Gallate Inhibits EBV Lytic Replication via Targeting LMP1-Mediated MAPK Signal Axes. Oncol. Res. 2021;28:763–778. doi: 10.3727/096504021X16135618512563. PubMed DOI PMC

Vágvölgyi M., Girst G., Kúsz N., Ötvös S.B., Fülöp F., Hohmann J., Servais J.-Y., Seguin-Devaux C., Chang F.-R., Chen M.S., et al. Less Cytotoxic Protoflavones as Antiviral Agents: Protoapigenone 1’-O-Isopropyl Ether Shows Improved Selectivity Against the Epstein-Barr Virus Lytic Cycle. Int. J. Mol. Sci. 2019;20:6269. doi: 10.3390/ijms20246269. PubMed DOI PMC

Wu C.-C., Fang C.-Y., Cheng Y.-J., Hsu H.-Y., Chou S.-P., Huang S.-Y., Tsai C.-H., Chen J.-Y. Inhibition of Epstein-Barr Virus Reactivation by the Flavonoid Apigenin. J. Biomed. Sci. 2017;24:2. doi: 10.1186/s12929-016-0313-9. PubMed DOI PMC

Tsai C.-Y., Chen C.-Y., Chiou Y.-H., Shyu H.-W., Lin K.-H., Chou M.-C., Huang M.-H., Wang Y.-F. Epigallocatechin-3-Gallate Suppresses Human Herpesvirus 8 Replication and Induces ROS Leading to Apoptosis and Autophagy in Primary Effusion Lymphoma Cells. Int. J. Mol. Sci. 2017;19:16. doi: 10.3390/ijms19010016. PubMed DOI PMC

Long W.-Y., Zhao G.-H., Wu Y. Hesperetin Inhibits KSHV Reactivation and Is Reversed by HIF1α Overexpression. J. Gen. Virol. 2021;102:001686. doi: 10.1099/jgv.0.001686. PubMed DOI

Polansky H., Javaherian A., Itzkovitz E. Clinical Trial of Herbal Treatment Gene-Eden-VIR/Novirin in Oral Herpes. J. Evid. Based Integr. Med. 2018;23:2515690X18806269. doi: 10.1177/2515690X18806269. PubMed DOI PMC

Caldas Dos Santos T., Rescignano N., Boff L., Reginatto F.H., Simões C.M.O., de Campos A.M., Mijangos C. In Vitro Antiherpes Effect of C-Glycosyl Flavonoid Enriched Fraction of Cecropia Glaziovii Encapsulated in PLGA Nanoparticles. Mater. Sci. Eng. C Mater. Biol. Appl. 2017;75:1214–1220. doi: 10.1016/j.msec.2017.02.135. PubMed DOI

Brandariz-Nuñez A., Liu T., Du T., Evilevitch A. Pressure-Driven Release of Viral Genome into a Host Nucleus Is a Mechanism Leading to Herpes Infection. eLife. 2019;8:e47212. doi: 10.7554/eLife.47212. PubMed DOI PMC

Brandariz-Nuñez A., Robinson S.J., Evilevitch A. Pressurized DNA State inside Herpes Capsids-A Novel Antiviral Target. PLoS Pathog. 2020;16:e1008604. doi: 10.1371/journal.ppat.1008604. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...