Flavonoids with Anti-Herpes Simplex Virus Properties: Deciphering Their Mechanisms in Disrupting the Viral Life Cycle
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
38140581
PubMed Central
PMC10748012
DOI
10.3390/v15122340
PII: v15122340
Knihovny.cz E-zdroje
- Klíčová slova
- HSV life cycle, HSV-1, HSV-2, antiviral properties, cellular pathways, drug resistance, flavonoids, herpes simplex virus, host–virus interaction, natural antivirals, natural products,
- MeSH
- antivirové látky farmakologie terapeutické užití MeSH
- flavonoidy farmakologie terapeutické užití MeSH
- herpes simplex * farmakoterapie MeSH
- lidé MeSH
- lidský herpesvirus 1 * fyziologie MeSH
- stadia vývoje MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- antivirové látky MeSH
- flavonoidy MeSH
The herpes simplex virus (HSV) is a double-stranded DNA human virus that causes persistent infections with recurrent outbreaks. HSV exists in two forms: HSV-1, responsible for oral herpes, and HSV-2, primarily causing genital herpes. Both types can lead to significant complications, including neurological issues. Conventional treatment, involving acyclovir and its derivatives, faces challenges due to drug resistance. This underscores the imperative for continual research and development of new drugs, with a particular emphasis on exploring the potential of natural antivirals. Flavonoids have demonstrated promise in combating various viruses, including those within the herpesvirus family. This review, delving into recent studies, reveals the intricate mechanisms by which flavonoids decode their antiviral capabilities against HSV. By disrupting key stages of the viral life cycle, such as attachment to host cells, entry, DNA replication, latency, and reactivation, flavonoids emerge as formidable contenders in the ongoing battle against HSV infections.
Zobrazit více v PubMed
Tognarelli E.I., Palomino T.F., Corrales N., Bueno S.M., Kalergis A.M., González P.A. Herpes Simplex Virus Evasion of Early Host Antiviral Responses. Front. Cell. Infect. Microbiol. 2019;9:127. doi: 10.3389/fcimb.2019.00127. PubMed DOI PMC
Brezáni V., Leláková V., Hassan S.T.S., Berchová-Bímová K., Nový P., Klouček P., Maršík P., Dall’Acqua S., Hošek J., Šmejkal K. Anti-Infectivity against Herpes Simplex Virus and Selected Microbes and Anti-Inflammatory Activities of Compounds Isolated from Eucalyptus globulus Labill. Viruses. 2018;10:360. doi: 10.3390/v10070360. PubMed DOI PMC
Omarova S., Cannon A., Weiss W., Bruccoleri A., Puccio J. Genital Herpes Simplex Virus—An Updated Review. Adv. Pediatr. 2022;69:149–162. doi: 10.1016/j.yapd.2022.03.010. PubMed DOI
Petti S., Lodi G. The Controversial Natural History of Oral Herpes Simplex Virus Type 1 Infection. Oral Dis. 2019;25:1850–1865. doi: 10.1111/odi.13234. PubMed DOI
Hendrickx D.M., Sousa J.D., Libin P.J.K., Delva W., Liesenborgs J., Hens N., Müller V., Vandamme A.-M. Comparison of Two Simulators for Individual Based Models in HIV Epidemiology in a Population with HSV 2 in Yaoundé (Cameroon) Sci. Rep. 2021;11:14696. doi: 10.1038/s41598-021-94289-z. PubMed DOI PMC
Desai D.V., Kulkarni S.S. Herpes Simplex Virus: The Interplay Between HSV, Host, and HIV-1. Viral Immunol. 2015;28:546–555. doi: 10.1089/vim.2015.0012. PubMed DOI
Pinninti S.G., Kimberlin D.W. Neonatal Herpes Simplex Virus Infections. Semin. Perinatol. 2018;42:168–175. doi: 10.1053/j.semperi.2018.02.004. PubMed DOI
Herpes Simplex Virus. [(accessed on 5 November 2023)]. Available online: https://www.who.int/news-room/fact-sheets/detail/herpes-simplex-virus.
Alareeki A., Osman A.M.M., Khandakji M.N., Looker K.J., Harfouche M., Abu-Raddad L.J. Epidemiology of Herpes Simplex Virus Type 2 in Europe: Systematic Review, Meta-Analyses, and Meta-Regressions. Lancet Reg. Health—Eur. 2023;25:100558. doi: 10.1016/j.lanepe.2022.100558. PubMed DOI PMC
Samies N.L., James S.H. Prevention and Treatment of Neonatal Herpes Simplex Virus Infection. Antiviral Res. 2020;176:104721. doi: 10.1016/j.antiviral.2020.104721. PubMed DOI PMC
Fatahzadeh M., Schwartz R.A. Human Herpes Simplex Virus Infections: Epidemiology, Pathogenesis, Symptomatology, Diagnosis, and Management. J. Am. Acad. Dermatol. 2007;57:737–763. doi: 10.1016/j.jaad.2007.06.027. quiz 764–766. PubMed DOI
Kurt-Jones E.A., Orzalli M.H., Knipe D.M. Innate Immune Mechanisms and Herpes Simplex Virus Infection and Disease. Adv. Anat. Embryol. Cell Biol. 2017;223:49–75. doi: 10.1007/978-3-319-53168-7_3. PubMed DOI PMC
Poole C.L., James S.H. Antiviral Therapies for Herpesviruses: Current Agents and New Directions. Clin. Ther. 2018;40:1282–1298. doi: 10.1016/j.clinthera.2018.07.006. PubMed DOI PMC
Schalkwijk H.H., Snoeck R., Andrei G. Acyclovir Resistance in Herpes Simplex Viruses: Prevalence and Therapeutic Alternatives. Biochem. Pharmacol. 2022;206:115322. doi: 10.1016/j.bcp.2022.115322. PubMed DOI
Piret J., Boivin G. Resistance of Herpes Simplex Viruses to Nucleoside Analogues: Mechanisms, Prevalence, and Management. Antimicrob. Agents Chemother. 2011;55:459–472. doi: 10.1128/AAC.00615-10. PubMed DOI PMC
Hassan S.T.S., Šudomová M., Berchová-Bímová K., Šmejkal K., Echeverría J. Psoromic Acid, a Lichen-Derived Molecule, Inhibits the Replication of HSV-1 and HSV-2, and Inactivates HSV-1 DNA Polymerase: Shedding Light on Antiherpetic Properties. Molecules. 2019;24:2912. doi: 10.3390/molecules24162912. PubMed DOI PMC
Jiang Y.-C., Feng H., Lin Y.-C., Guo X.-R. New Strategies against Drug Resistance to Herpes Simplex Virus. Int. J. Oral Sci. 2016;8:1–6. doi: 10.1038/ijos.2016.3. PubMed DOI PMC
Ruchawapol C., Yuan M., Wang S.-M., Fu W.-W., Xu H.-X. Natural Products and Their Derivatives against Human Herpesvirus Infection. Molecules. 2021;26:6290. doi: 10.3390/molecules26206290. PubMed DOI PMC
Cairns T.M., Connolly S.A. Entry of Alphaherpesviruses. Curr. Issues Mol. Biol. 2021;41:63–124. doi: 10.21775/cimb.041.063. PubMed DOI
Agelidis A.M., Shukla D. Cell Entry Mechanisms of HSV: What We Have Learned in Recent Years. Future Virol. 2015;10:1145–1154. doi: 10.2217/fvl.15.85. PubMed DOI PMC
Zhu S., Viejo-Borbolla A. Pathogenesis and Virulence of Herpes Simplex Virus. Virulence. 2021;12:2670–2702. doi: 10.1080/21505594.2021.1982373. PubMed DOI PMC
Azab W., Osterrieder K. Initial Contact: The First Steps in Herpesvirus Entry. Adv. Anat. Embryol. Cell Biol. 2017;223:1–27. doi: 10.1007/978-3-319-53168-7_1. PubMed DOI
Connolly S.A., Jardetzky T.S., Longnecker R. The Structural Basis of Herpesvirus Entry. Nat. Rev. Microbiol. 2021;19:110–121. doi: 10.1038/s41579-020-00448-w. PubMed DOI PMC
Arii J., Kawaguchi Y. The Role of HSV Glycoproteins in Mediating Cell Entry. Adv. Exp. Med. Biol. 2018;1045:3–21. doi: 10.1007/978-981-10-7230-7_1. PubMed DOI
Heming J.D., Conway J.F., Homa F.L. Herpesvirus Capsid Assembly and DNA Packaging. Adv. Anat. Embryol. Cell Biol. 2017;223:119–142. doi: 10.1007/978-3-319-53168-7_6. PubMed DOI PMC
Adlakha M., Livingston C.M., Bezsonova I., Weller S.K. The Herpes Simplex Virus 1 Immediate Early Protein ICP22 Is a Functional Mimic of a Cellular J Protein. J. Virol. 2020;94:e01564-19. doi: 10.1128/JVI.01564-19. PubMed DOI PMC
Adler B., Sattler C., Adler H. Herpesviruses and Their Host Cells: A Successful Liaison. Trends Microbiol. 2017;25:229–241. doi: 10.1016/j.tim.2016.11.009. PubMed DOI
Krawczyk E., Kangas C., He B. HSV Replication: Triggering and Repressing STING Functionality. Viruses. 2023;15:226. doi: 10.3390/v15010226. PubMed DOI PMC
Rice S.A. Release of HSV-1 Cell-Free Virions: Mechanisms, Regulation, and Likely Role in Human-Human Transmission. Viruses. 2021;13:2395. doi: 10.3390/v13122395. PubMed DOI PMC
Cohen J.I. Herpesvirus Latency. J. Clin. Investig. 2020;130:3361–3369. doi: 10.1172/JCI136225. PubMed DOI PMC
Lomonte P. Herpesvirus Latency: On the Importance of Positioning Oneself. Adv. Anat. Embryol. Cell Biol. 2017;223:95–117. doi: 10.1007/978-3-319-53168-7_5. PubMed DOI
Ostler J.B., Sawant L., Harrison K., Jones C. Regulation of Neurotropic Herpesvirus Productive Infection and Latency-Reactivation Cycle by Glucocorticoid Receptor and Stress-Induced Transcription Factors. Vitam. Horm. 2021;117:101–132. doi: 10.1016/bs.vh.2021.06.005. PubMed DOI PMC
Reese T.A. Coinfections: Another Variable in the Herpesvirus Latency-Reactivation Dynamic. J. Virol. 2016;90:5534–5537. doi: 10.1128/JVI.01865-15. PubMed DOI PMC
Harrison K.S., Jones C. Regulation of Herpes Simplex Virus Type 1 Latency-Reactivation Cycle and Ocular Disease by Cellular Signaling Pathways. Exp. Eye Res. 2022;218:109017. doi: 10.1016/j.exer.2022.109017. PubMed DOI PMC
Asha K., Sharma-Walia N. Targeting Host Cellular Factors as a Strategy of Therapeutic Intervention for Herpesvirus Infections. Front. Cell. Infect. Microbiol. 2021;11:603309. doi: 10.3389/fcimb.2021.603309. PubMed DOI PMC
Kukhanova M.K., Korovina A.N., Kochetkov S.N. Human Herpes Simplex Virus: Life Cycle and Development of Inhibitors. Biochemistry. 2014;79:1635–1652. doi: 10.1134/S0006297914130124. PubMed DOI
Packard J.E., Dembowski J.A. HSV-1 DNA Replication-Coordinated Regulation by Viral and Cellular Factors. Viruses. 2021;13:2015. doi: 10.3390/v13102015. PubMed DOI PMC
Wen L., Jiang Y., Yang J., Zhao Y., Tian M., Yang B. Structure, Bioactivity, and Synthesis of Methylated Flavonoids. Ann. N. Y. Acad. Sci. 2017;1398:120–129. doi: 10.1111/nyas.13350. PubMed DOI
Chen L., Cao H., Huang Q., Xiao J., Teng H. Absorption, Metabolism and Bioavailability of Flavonoids: A Review. Crit. Rev. Food Sci. Nutr. 2022;62:7730–7742. doi: 10.1080/10408398.2021.1917508. PubMed DOI
Safe S., Jayaraman A., Chapkin R.S., Howard M., Mohankumar K., Shrestha R. Flavonoids: Structure-Function and Mechanisms of Action and Opportunities for Drug Development. Toxicol. Res. 2021;37:147–162. doi: 10.1007/s43188-020-00080-z. PubMed DOI PMC
Liu W., Feng Y., Yu S., Fan Z., Li X., Li J., Yin H. The Flavonoid Biosynthesis Network in Plants. Int. J. Mol. Sci. 2021;22:12824. doi: 10.3390/ijms222312824. PubMed DOI PMC
Petrussa E., Braidot E., Zancani M., Peresson C., Bertolini A., Patui S., Vianello A. Plant Flavonoids--Biosynthesis, Transport and Involvement in Stress Responses. Int. J. Mol. Sci. 2013;14:14950–14973. doi: 10.3390/ijms140714950. PubMed DOI PMC
Šamec D., Karalija E., Šola I., Vujčić Bok V., Salopek-Sondi B. The Role of Polyphenols in Abiotic Stress Response: The Influence of Molecular Structure. Plants. 2021;10:118. doi: 10.3390/plants10010118. PubMed DOI PMC
Teng H., Chen L. Polyphenols and Bioavailability: An Update. Crit. Rev. Food Sci. Nutr. 2019;59:2040–2051. doi: 10.1080/10408398.2018.1437023. PubMed DOI
Hassan S.T.S., Šudomová M. Molecular Mechanisms of Flavonoids against Tumor Gamma-Herpesviruses and Their Correlated Cancers—A Focus on EBV and KSHV Life Cycles and Carcinogenesis. Int. J. Mol. Sci. 2022;24:247. doi: 10.3390/ijms24010247. PubMed DOI PMC
Singh B., Kumar A., Malik A.K. Flavonoids Biosynthesis in Plants and Its Further Analysis by Capillary Electrophoresis. Electrophoresis. 2017;38:820–832. doi: 10.1002/elps.201600334. PubMed DOI
Wen K., Fang X., Yang J., Yao Y., Nandakumar K.S., Salem M.L., Cheng K. Recent Research on Flavonoids and Their Biomedical Applications. Curr. Med. Chem. 2021;28:1042–1066. doi: 10.2174/0929867327666200713184138. PubMed DOI
Šudomová M., Berchová-Bímová K., Mazurakova A., Šamec D., Kubatka P., Hassan S.T.S. Flavonoids Target Human Herpesviruses That Infect the Nervous System: Mechanisms of Action and Therapeutic Insights. Viruses. 2022;14:592. doi: 10.3390/v14030592. PubMed DOI PMC
Russo M., Moccia S., Spagnuolo C., Tedesco I., Russo G.L. Roles of Flavonoids against Coronavirus Infection. Chem. Biol. Interact. 2020;328:109211. doi: 10.1016/j.cbi.2020.109211. PubMed DOI PMC
Sharma V., Sehrawat N., Sharma A., Yadav M., Verma P., Sharma A.K. Multifaceted Antiviral Therapeutic Potential of Dietary Flavonoids: Emerging Trends and Future Perspectives. Biotechnol. Appl. Biochem. 2021;69:2028–2045. doi: 10.1002/bab.2265. PubMed DOI
Ninfali P., Antonelli A., Magnani M., Scarpa E.S. Antiviral Properties of Flavonoids and Delivery Strategies. Nutrients. 2020;12:2534. doi: 10.3390/nu12092534. PubMed DOI PMC
Hassan S.T.S., Masarčíková R., Berchová K. Bioactive Natural Products with Anti-Herpes Simplex Virus Properties. J. Pharm. Pharmacol. 2015;67:1325–1336. doi: 10.1111/jphp.12436. PubMed DOI
Zakaryan H., Arabyan E., Oo A., Zandi K. Flavonoids: Promising Natural Compounds against Viral Infections. Arch. Virol. 2017;162:2539–2551. doi: 10.1007/s00705-017-3417-y. PubMed DOI PMC
Ortega J.T., Serrano M.L., Suárez A.I., Baptista J., Pujol F.H., Cavallaro L.V., Campos H.R., Rangel H.R. Antiviral Activity of Flavonoids Present in Aerial Parts of Marcetia Taxifolia against Hepatitis B Virus, Poliovirus, and Herpes Simplex Virus in Vitro. EXCLI J. 2019;18:1037–1048. doi: 10.17179/excli2019-1837. PubMed DOI PMC
Kim T.I., Kwon E.-B., Oh Y.-C., Go Y., Choi J.-G. Mori Ramulus and Its Major Component Morusin Inhibit Herpes Simplex Virus Type 1 Replication and the Virus-Induced Reactive Oxygen Species. Am. J. Chin. Med. 2021;49:163–179. doi: 10.1142/S0192415X21500099. PubMed DOI
Čulenová M., Sychrová A., Hassan S.T.S., Berchová-Bímová K., Svobodová P., Helclová A., Michnová H., Hošek J., Vasilev H., Suchý P., et al. Multiple In Vitro Biological Effects of Phenolic Compounds from Morus alba Root Bark. J. Ethnopharmacol. 2020;248:112296. doi: 10.1016/j.jep.2019.112296. PubMed DOI
Chu Y., Lv X., Zhang L., Fu X., Song S., Su A., Chen D., Xu L., Wang Y., Wu Z., et al. Wogonin Inhibits in Vitro Herpes Simplex Virus Type 1 and 2 Infection by Modulating Cellular NF-κB and MAPK Pathways. BMC Microbiol. 2020;20:227. doi: 10.1186/s12866-020-01916-2. PubMed DOI PMC
Luo Z., Kuang X.-P., Zhou Q.-Q., Yan C.-Y., Li W., Gong H.-B., Kurihara H., Li W.-X., Li Y.-F., He R.-R. Inhibitory Effects of Baicalein against Herpes Simplex Virus Type 1. Acta Pharm. Sin. B. 2020;10:2323–2338. doi: 10.1016/j.apsb.2020.06.008. PubMed DOI PMC
Fahmy N.M., Al-Sayed E., Moghannem S., Azam F., El-Shazly M., Singab A.N. Breaking Down the Barriers to a Natural Antiviral Agent: Antiviral Activity and Molecular Docking of Erythrina Speciosa Extract, Fractions, and the Major Compound. Chem. Biodivers. 2020;17:e1900511. doi: 10.1002/cbdv.201900511. PubMed DOI
Wang Y., Li F., Wang Z., Song X., Ren Z., Wang X., Wang Y., Zheng K. Luteolin Inhibits Herpes Simplex Virus 1 Infection by Activating Cyclic Guanosine Monophosphate-Adenosine Monophosphate Synthase-Mediated Antiviral Innate Immunity. Phytomedicine. 2023;120:155020. doi: 10.1016/j.phymed.2023.155020. PubMed DOI
Li F., Song X., Su G., Wang Y., Wang Z., Jia J., Qing S., Huang L., Wang Y., Zheng K., et al. Amentoflavone Inhibits HSV-1 and ACV-Resistant Strain Infection by Suppressing Viral Early Infection. Viruses. 2019;11:466. doi: 10.3390/v11050466. PubMed DOI PMC
Li W., Xu C., Hao C., Zhang Y., Wang Z., Wang S., Wang W. Inhibition of Herpes Simplex Virus by Myricetin through Targeting Viral gD Protein and Cellular EGFR/PI3K/Akt Pathway. Antivir. Res. 2020;177:104714. doi: 10.1016/j.antiviral.2020.104714. PubMed DOI PMC
Yarmolinsky L., Nakonechny F., Budovsky A., Zeigerman H., Khalfin B., Sharon E., Yarmolinsky L., Ben-Shabat S., Nisnevitch M. Antimicrobial and Antiviral Compounds of Phlomis Viscosa Poiret. Biomedicines. 2023;11:441. doi: 10.3390/biomedicines11020441. PubMed DOI PMC
Tarbeeva D.V., Krylova N.V., Iunikhina O.V., Likhatskaya G.N., Kalinovskiy A.I., Grigorchuk V.P., Shchelkanov M.Y., Fedoreyev S.A. Biologically Active Polyphenolic Compounds from Lespedeza bicolor. Fitoterapia. 2022;157:105121. doi: 10.1016/j.fitote.2021.105121. PubMed DOI
Zhao C., Wang F., Tang B., Han J., Li X., Lian G., Li X., Hao S. Anti-Inflammatory Effects of Kaempferol-3-O-Rhamnoside on HSV-1 Encephalitis in Vivo and in Vitro. Neurosci. Lett. 2021;765:136172. doi: 10.1016/j.neulet.2021.136172. PubMed DOI
Sochocka M., Sobczyński M., Ochnik M., Zwolińska K., Leszek J. Hampering Herpesviruses HHV-1 and HHV-2 Infection by Extract of Ginkgo Biloba (EGb) and Its Phytochemical Constituents. Front. Microbiol. 2019;10:2367. doi: 10.3389/fmicb.2019.02367. PubMed DOI PMC
Zhou H.-Y., Gao S.-Q., Gong Y.-S., Lin T., Tong S., Xiong W., Shi C.-Y., Wang W.-Q., Fang J.-G. Anti-HSV-1 Effect of Dihydromyricetin from Ampelopsis grossedentata via the TLR9-Dependent Anti-Inflammatory Pathway. J. Glob. Antimicrob. Resist. 2020;23:370–376. doi: 10.1016/j.jgar.2020.10.003. PubMed DOI
Zhou N., Zheng D., You Q., Chen T., Jiang J., Shen W., Zhang D., Liu J., Chen D., Hu K. Therapeutic Potential of Biochanin A in Herpes Simplex Keratitis. Pharmaceuticals. 2023;16:1240. doi: 10.3390/ph16091240. PubMed DOI PMC
Pradhan P., Nguyen M.L. Herpes Simplex Virus Virucidal Activity of MST-312 and Epigallocatechin Gallate. Virus Res. 2018;249:93–98. doi: 10.1016/j.virusres.2018.03.015. PubMed DOI
Wu C.-Y., Yu Z.-Y., Chen Y.-C., Hung S.-L. Effects of Epigallocatechin-3-Gallate and Acyclovir on Herpes Simplex Virus Type 1 Infection in Oral Epithelial Cells. J. Formos. Med. Assoc. 2021;120:2136–2143. doi: 10.1016/j.jfma.2020.12.018. PubMed DOI
Wang H., Jia X., Zhang M., Cheng C., Liang X., Wang X., Xie F., Wang J., Yu Y., He Y., et al. Isoliquiritigenin Inhibits Virus Replication and Virus-Mediated Inflammation via NRF2 Signaling. Phytomedicine. 2023;114:154786. doi: 10.1016/j.phymed.2023.154786. PubMed DOI
Vicente J., Benedetti M., Martelliti P., Vázquez L., Gentilini M.V., Peñaranda Figueredo F.A., Nabaes Jodar M.S., Viegas M., Barquero A.A., Bueno C.A. The Flavonoid Cyanidin Shows Immunomodulatory and Broad-Spectrum Antiviral Properties, Including SARS-CoV-2. Viruses. 2023;15:989. doi: 10.3390/v15040989. PubMed DOI PMC
Sivarajan R., Oberwinkler H., Roll V., König E.-M., Steinke M., Bodem J. A Defined Anthocyanin Mixture Sourced from Bilberry and Black Currant Inhibits Measles Virus and Various Herpesviruses. BMC Complement. Med. Ther. 2022;22:181. doi: 10.1186/s12906-022-03661-7. PubMed DOI PMC
Guo H., Wan X., Niu F., Sun J., Shi C., Ye J.M., Zhou C. Evaluation of Antiviral Effect and Toxicity of Total Flavonoids Extracted from Robinia pseudoacacia Cv. Idaho. Biomed. Pharmacother. 2019;118:109335. doi: 10.1016/j.biopha.2019.109335. PubMed DOI
Wang Y.-Q., Cai L., Zhang N., Zhang J., Wang H.-H., Zhu W. Protective Effect of Total Flavonoids from Ixeris Sonchifolia on Herpes Simplex Virus Keratitis in Mice. BMC Complement. Med. Ther. 2020;20:113. doi: 10.1186/s12906-020-02911-w. PubMed DOI PMC
Rittà M., Marengo A., Civra A., Lembo D., Cagliero C., Kant K., Lal U.R., Rubiolo P., Ghosh M., Donalisio M. Antiviral Activity of a Arisaema tortuosum Leaf Extract and Some of Its Constituents against Herpes Simplex Virus Type 2. Planta Med. 2020;86:267–275. doi: 10.1055/a-1087-8303. PubMed DOI
Stamos J.D., Lee L.H., Taylor C., Elias T., Adams S.D. In Vitro and In Silico Analysis of the Inhibitory Activity of EGCG-Stearate against Herpes Simplex Virus-2. Microorganisms. 2022;10:1462. doi: 10.3390/microorganisms10071462. PubMed DOI PMC
Obisesan O., Katata-Seru L., Mufamadi S., Mufhandu H. Applications of Nanoparticles for Herpes Simplex Virus (HSV) and Human Immunodeficiency Virus (HIV) Treatment. J. Biomed. Nanotechnol. 2021;17:793–808. doi: 10.1166/jbn.2021.3074. PubMed DOI
Treml J., Gazdová M., Šmejkal K., Šudomová M., Kubatka P., Hassan S.T.S. Natural Products-Derived Chemicals: Breaking Barriers to Novel Anti-HSV Drug Development. Viruses. 2020;12:154. doi: 10.3390/v12020154. PubMed DOI PMC
Tomaszewska E., Ranoszek-Soliwoda K., Bednarczyk K., Lech A., Janicka M., Chodkowski M., Psarski M., Celichowski G., Krzyzowska M., Grobelny J. Anti-HSV Activity of Metallic Nanoparticles Functionalized with Sulfonates vs. Polyphenols. Int. J. Mol. Sci. 2022;23:13104. doi: 10.3390/ijms232113104. PubMed DOI PMC
Paradowska E., Studzińska M., Jabłońska A., Lozovski V., Rusinchuk N., Mukha I., Vitiuk N., Leśnikowski Z.J. Antiviral Effect of Nonfunctionalized Gold Nanoparticles against Herpes Simplex Virus Type-1 (HSV-1) and Possible Contribution of Near-Field Interaction Mechanism. Molecules. 2021;26:5960. doi: 10.3390/molecules26195960. PubMed DOI PMC
Elste J., Kumari S., Sharma N., Razo E.P., Azhar E., Gao F., Nunez M.C., Anwar W., Mitchell J.C., Tiwari V., et al. Plant Cell-Engineered Gold Nanoparticles Conjugated to Quercetin Inhibit SARS-CoV-2 and HSV-1 Entry. Int. J. Mol. Sci. 2023;24:14792. doi: 10.3390/ijms241914792. PubMed DOI PMC
Krzyzowska M., Janicka M., Chodkowski M., Patrycy M., Obuch-Woszczatyńska O., Tomaszewska E., Ranoszek-Soliwoda K., Celichowski G., Grobelny J. Epigallocatechin Gallate-Modified Silver Nanoparticles Show Antiviral Activity against Herpes Simplex Type 1 and 2. Viruses. 2023;15:2024. doi: 10.3390/v15102024. PubMed DOI PMC
Caldas Dos Santos T., Rescignano N., Boff L., Reginatto F.H., Simões C.M.O., de Campos A.M., Mijangos C. In Vitro Antiherpes Effect of C-Glycosyl Flavonoid Enriched Fraction of Cecropia glaziovii Encapsulated in PLGA Nanoparticles. Mater. Sci. Eng. C Mater. Biol. Appl. 2017;75:1214–1220. doi: 10.1016/j.msec.2017.02.135. PubMed DOI
Sicurella M., Sguizzato M., Mariani P., Pepe A., Baldisserotto A., Buzzi R., Huang N., Simelière F., Burholt S., Marconi P., et al. Natural Polyphenol-Containing Gels against HSV-1 Infection: A Comparative Study. Nanomaterials. 2022;12:227. doi: 10.3390/nano12020227. PubMed DOI PMC
Dickinson D., Marsh B., Shao X., Liu E., Sampath L., Yao B., Jiang X., Hsu S. Virucidal Activities of Novel Hand Hygiene and Surface Disinfectant Formulations Containing EGCG-Palmitates (EC16) Am. J. Infect. Control. 2022;50:1212–1219. doi: 10.1016/j.ajic.2022.05.027. PubMed DOI PMC
Brandariz-Nuñez A., Liu T., Du T., Evilevitch A. Pressure-Driven Release of Viral Genome into a Host Nucleus Is a Mechanism Leading to Herpes Infection. Elife. 2019;8:e47212. doi: 10.7554/eLife.47212. PubMed DOI PMC
Bauer D.W., Huffman J.B., Homa F.L., Evilevitch A. Herpes Virus Genome, the Pressure Is on. J. Am. Chem. Soc. 2013;135:11216–11221. doi: 10.1021/ja404008r. PubMed DOI PMC
Brandariz-Nuñez A., Robinson S.J., Evilevitch A. Pressurized DNA State inside Herpes Capsids—A Novel Antiviral Target. PLoS Pathog. 2020;16:e1008604. doi: 10.1371/journal.ppat.1008604. PubMed DOI PMC
Šudomová M., Hassan S.T.S. Nutraceutical Curcumin with Promising Protection against Herpesvirus Infections and Their Associated Inflammation: Mechanisms and Pathways. Microorganisms. 2021;9:292. doi: 10.3390/microorganisms9020292. PubMed DOI PMC
Polansky H., Javaherian A., Itzkovitz E. Clinical Trial of Herbal Treatment Gene-Eden-VIR/Novirin in Oral Herpes. J. Evid. Based Integr. Med. 2018;23:2515690X18806269. doi: 10.1177/2515690X18806269. PubMed DOI PMC
Polansky H., Javaherian A., Itzkovitz E. Clinical Study in Genital Herpes: Natural Gene-Eden-VIR/Novirin versus Acyclovir, Valacyclovir, and Famciclovir. Drug Des. Devel Ther. 2016;10:2713–2722. doi: 10.2147/DDDT.S112852. PubMed DOI PMC
Polansky H., Itzkovitz E., Javaherian A. Clinical Study of Gene-Eden-VIR/Novirin in Genital Herpes: Suppressive Treatment Safely Decreases the Duration of Outbreaks in Both Severe and Mild Cases. Clin. Transl. Med. 2016;5:40. doi: 10.1186/s40169-016-0121-6. PubMed DOI PMC