Flavonoids with Anti-Herpes Simplex Virus Properties: Deciphering Their Mechanisms in Disrupting the Viral Life Cycle

. 2023 Nov 29 ; 15 (12) : . [epub] 20231129

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid38140581

The herpes simplex virus (HSV) is a double-stranded DNA human virus that causes persistent infections with recurrent outbreaks. HSV exists in two forms: HSV-1, responsible for oral herpes, and HSV-2, primarily causing genital herpes. Both types can lead to significant complications, including neurological issues. Conventional treatment, involving acyclovir and its derivatives, faces challenges due to drug resistance. This underscores the imperative for continual research and development of new drugs, with a particular emphasis on exploring the potential of natural antivirals. Flavonoids have demonstrated promise in combating various viruses, including those within the herpesvirus family. This review, delving into recent studies, reveals the intricate mechanisms by which flavonoids decode their antiviral capabilities against HSV. By disrupting key stages of the viral life cycle, such as attachment to host cells, entry, DNA replication, latency, and reactivation, flavonoids emerge as formidable contenders in the ongoing battle against HSV infections.

Zobrazit více v PubMed

Tognarelli E.I., Palomino T.F., Corrales N., Bueno S.M., Kalergis A.M., González P.A. Herpes Simplex Virus Evasion of Early Host Antiviral Responses. Front. Cell. Infect. Microbiol. 2019;9:127. doi: 10.3389/fcimb.2019.00127. PubMed DOI PMC

Brezáni V., Leláková V., Hassan S.T.S., Berchová-Bímová K., Nový P., Klouček P., Maršík P., Dall’Acqua S., Hošek J., Šmejkal K. Anti-Infectivity against Herpes Simplex Virus and Selected Microbes and Anti-Inflammatory Activities of Compounds Isolated from Eucalyptus globulus Labill. Viruses. 2018;10:360. doi: 10.3390/v10070360. PubMed DOI PMC

Omarova S., Cannon A., Weiss W., Bruccoleri A., Puccio J. Genital Herpes Simplex Virus—An Updated Review. Adv. Pediatr. 2022;69:149–162. doi: 10.1016/j.yapd.2022.03.010. PubMed DOI

Petti S., Lodi G. The Controversial Natural History of Oral Herpes Simplex Virus Type 1 Infection. Oral Dis. 2019;25:1850–1865. doi: 10.1111/odi.13234. PubMed DOI

Hendrickx D.M., Sousa J.D., Libin P.J.K., Delva W., Liesenborgs J., Hens N., Müller V., Vandamme A.-M. Comparison of Two Simulators for Individual Based Models in HIV Epidemiology in a Population with HSV 2 in Yaoundé (Cameroon) Sci. Rep. 2021;11:14696. doi: 10.1038/s41598-021-94289-z. PubMed DOI PMC

Desai D.V., Kulkarni S.S. Herpes Simplex Virus: The Interplay Between HSV, Host, and HIV-1. Viral Immunol. 2015;28:546–555. doi: 10.1089/vim.2015.0012. PubMed DOI

Pinninti S.G., Kimberlin D.W. Neonatal Herpes Simplex Virus Infections. Semin. Perinatol. 2018;42:168–175. doi: 10.1053/j.semperi.2018.02.004. PubMed DOI

Herpes Simplex Virus. [(accessed on 5 November 2023)]. Available online: https://www.who.int/news-room/fact-sheets/detail/herpes-simplex-virus.

Alareeki A., Osman A.M.M., Khandakji M.N., Looker K.J., Harfouche M., Abu-Raddad L.J. Epidemiology of Herpes Simplex Virus Type 2 in Europe: Systematic Review, Meta-Analyses, and Meta-Regressions. Lancet Reg. Health—Eur. 2023;25:100558. doi: 10.1016/j.lanepe.2022.100558. PubMed DOI PMC

Samies N.L., James S.H. Prevention and Treatment of Neonatal Herpes Simplex Virus Infection. Antiviral Res. 2020;176:104721. doi: 10.1016/j.antiviral.2020.104721. PubMed DOI PMC

Fatahzadeh M., Schwartz R.A. Human Herpes Simplex Virus Infections: Epidemiology, Pathogenesis, Symptomatology, Diagnosis, and Management. J. Am. Acad. Dermatol. 2007;57:737–763. doi: 10.1016/j.jaad.2007.06.027. quiz 764–766. PubMed DOI

Kurt-Jones E.A., Orzalli M.H., Knipe D.M. Innate Immune Mechanisms and Herpes Simplex Virus Infection and Disease. Adv. Anat. Embryol. Cell Biol. 2017;223:49–75. doi: 10.1007/978-3-319-53168-7_3. PubMed DOI PMC

Poole C.L., James S.H. Antiviral Therapies for Herpesviruses: Current Agents and New Directions. Clin. Ther. 2018;40:1282–1298. doi: 10.1016/j.clinthera.2018.07.006. PubMed DOI PMC

Schalkwijk H.H., Snoeck R., Andrei G. Acyclovir Resistance in Herpes Simplex Viruses: Prevalence and Therapeutic Alternatives. Biochem. Pharmacol. 2022;206:115322. doi: 10.1016/j.bcp.2022.115322. PubMed DOI

Piret J., Boivin G. Resistance of Herpes Simplex Viruses to Nucleoside Analogues: Mechanisms, Prevalence, and Management. Antimicrob. Agents Chemother. 2011;55:459–472. doi: 10.1128/AAC.00615-10. PubMed DOI PMC

Hassan S.T.S., Šudomová M., Berchová-Bímová K., Šmejkal K., Echeverría J. Psoromic Acid, a Lichen-Derived Molecule, Inhibits the Replication of HSV-1 and HSV-2, and Inactivates HSV-1 DNA Polymerase: Shedding Light on Antiherpetic Properties. Molecules. 2019;24:2912. doi: 10.3390/molecules24162912. PubMed DOI PMC

Jiang Y.-C., Feng H., Lin Y.-C., Guo X.-R. New Strategies against Drug Resistance to Herpes Simplex Virus. Int. J. Oral Sci. 2016;8:1–6. doi: 10.1038/ijos.2016.3. PubMed DOI PMC

Ruchawapol C., Yuan M., Wang S.-M., Fu W.-W., Xu H.-X. Natural Products and Their Derivatives against Human Herpesvirus Infection. Molecules. 2021;26:6290. doi: 10.3390/molecules26206290. PubMed DOI PMC

Cairns T.M., Connolly S.A. Entry of Alphaherpesviruses. Curr. Issues Mol. Biol. 2021;41:63–124. doi: 10.21775/cimb.041.063. PubMed DOI

Agelidis A.M., Shukla D. Cell Entry Mechanisms of HSV: What We Have Learned in Recent Years. Future Virol. 2015;10:1145–1154. doi: 10.2217/fvl.15.85. PubMed DOI PMC

Zhu S., Viejo-Borbolla A. Pathogenesis and Virulence of Herpes Simplex Virus. Virulence. 2021;12:2670–2702. doi: 10.1080/21505594.2021.1982373. PubMed DOI PMC

Azab W., Osterrieder K. Initial Contact: The First Steps in Herpesvirus Entry. Adv. Anat. Embryol. Cell Biol. 2017;223:1–27. doi: 10.1007/978-3-319-53168-7_1. PubMed DOI

Connolly S.A., Jardetzky T.S., Longnecker R. The Structural Basis of Herpesvirus Entry. Nat. Rev. Microbiol. 2021;19:110–121. doi: 10.1038/s41579-020-00448-w. PubMed DOI PMC

Arii J., Kawaguchi Y. The Role of HSV Glycoproteins in Mediating Cell Entry. Adv. Exp. Med. Biol. 2018;1045:3–21. doi: 10.1007/978-981-10-7230-7_1. PubMed DOI

Heming J.D., Conway J.F., Homa F.L. Herpesvirus Capsid Assembly and DNA Packaging. Adv. Anat. Embryol. Cell Biol. 2017;223:119–142. doi: 10.1007/978-3-319-53168-7_6. PubMed DOI PMC

Adlakha M., Livingston C.M., Bezsonova I., Weller S.K. The Herpes Simplex Virus 1 Immediate Early Protein ICP22 Is a Functional Mimic of a Cellular J Protein. J. Virol. 2020;94:e01564-19. doi: 10.1128/JVI.01564-19. PubMed DOI PMC

Adler B., Sattler C., Adler H. Herpesviruses and Their Host Cells: A Successful Liaison. Trends Microbiol. 2017;25:229–241. doi: 10.1016/j.tim.2016.11.009. PubMed DOI

Krawczyk E., Kangas C., He B. HSV Replication: Triggering and Repressing STING Functionality. Viruses. 2023;15:226. doi: 10.3390/v15010226. PubMed DOI PMC

Rice S.A. Release of HSV-1 Cell-Free Virions: Mechanisms, Regulation, and Likely Role in Human-Human Transmission. Viruses. 2021;13:2395. doi: 10.3390/v13122395. PubMed DOI PMC

Cohen J.I. Herpesvirus Latency. J. Clin. Investig. 2020;130:3361–3369. doi: 10.1172/JCI136225. PubMed DOI PMC

Lomonte P. Herpesvirus Latency: On the Importance of Positioning Oneself. Adv. Anat. Embryol. Cell Biol. 2017;223:95–117. doi: 10.1007/978-3-319-53168-7_5. PubMed DOI

Ostler J.B., Sawant L., Harrison K., Jones C. Regulation of Neurotropic Herpesvirus Productive Infection and Latency-Reactivation Cycle by Glucocorticoid Receptor and Stress-Induced Transcription Factors. Vitam. Horm. 2021;117:101–132. doi: 10.1016/bs.vh.2021.06.005. PubMed DOI PMC

Reese T.A. Coinfections: Another Variable in the Herpesvirus Latency-Reactivation Dynamic. J. Virol. 2016;90:5534–5537. doi: 10.1128/JVI.01865-15. PubMed DOI PMC

Harrison K.S., Jones C. Regulation of Herpes Simplex Virus Type 1 Latency-Reactivation Cycle and Ocular Disease by Cellular Signaling Pathways. Exp. Eye Res. 2022;218:109017. doi: 10.1016/j.exer.2022.109017. PubMed DOI PMC

Asha K., Sharma-Walia N. Targeting Host Cellular Factors as a Strategy of Therapeutic Intervention for Herpesvirus Infections. Front. Cell. Infect. Microbiol. 2021;11:603309. doi: 10.3389/fcimb.2021.603309. PubMed DOI PMC

Kukhanova M.K., Korovina A.N., Kochetkov S.N. Human Herpes Simplex Virus: Life Cycle and Development of Inhibitors. Biochemistry. 2014;79:1635–1652. doi: 10.1134/S0006297914130124. PubMed DOI

Packard J.E., Dembowski J.A. HSV-1 DNA Replication-Coordinated Regulation by Viral and Cellular Factors. Viruses. 2021;13:2015. doi: 10.3390/v13102015. PubMed DOI PMC

Wen L., Jiang Y., Yang J., Zhao Y., Tian M., Yang B. Structure, Bioactivity, and Synthesis of Methylated Flavonoids. Ann. N. Y. Acad. Sci. 2017;1398:120–129. doi: 10.1111/nyas.13350. PubMed DOI

Chen L., Cao H., Huang Q., Xiao J., Teng H. Absorption, Metabolism and Bioavailability of Flavonoids: A Review. Crit. Rev. Food Sci. Nutr. 2022;62:7730–7742. doi: 10.1080/10408398.2021.1917508. PubMed DOI

Safe S., Jayaraman A., Chapkin R.S., Howard M., Mohankumar K., Shrestha R. Flavonoids: Structure-Function and Mechanisms of Action and Opportunities for Drug Development. Toxicol. Res. 2021;37:147–162. doi: 10.1007/s43188-020-00080-z. PubMed DOI PMC

Liu W., Feng Y., Yu S., Fan Z., Li X., Li J., Yin H. The Flavonoid Biosynthesis Network in Plants. Int. J. Mol. Sci. 2021;22:12824. doi: 10.3390/ijms222312824. PubMed DOI PMC

Petrussa E., Braidot E., Zancani M., Peresson C., Bertolini A., Patui S., Vianello A. Plant Flavonoids--Biosynthesis, Transport and Involvement in Stress Responses. Int. J. Mol. Sci. 2013;14:14950–14973. doi: 10.3390/ijms140714950. PubMed DOI PMC

Šamec D., Karalija E., Šola I., Vujčić Bok V., Salopek-Sondi B. The Role of Polyphenols in Abiotic Stress Response: The Influence of Molecular Structure. Plants. 2021;10:118. doi: 10.3390/plants10010118. PubMed DOI PMC

Teng H., Chen L. Polyphenols and Bioavailability: An Update. Crit. Rev. Food Sci. Nutr. 2019;59:2040–2051. doi: 10.1080/10408398.2018.1437023. PubMed DOI

Hassan S.T.S., Šudomová M. Molecular Mechanisms of Flavonoids against Tumor Gamma-Herpesviruses and Their Correlated Cancers—A Focus on EBV and KSHV Life Cycles and Carcinogenesis. Int. J. Mol. Sci. 2022;24:247. doi: 10.3390/ijms24010247. PubMed DOI PMC

Singh B., Kumar A., Malik A.K. Flavonoids Biosynthesis in Plants and Its Further Analysis by Capillary Electrophoresis. Electrophoresis. 2017;38:820–832. doi: 10.1002/elps.201600334. PubMed DOI

Wen K., Fang X., Yang J., Yao Y., Nandakumar K.S., Salem M.L., Cheng K. Recent Research on Flavonoids and Their Biomedical Applications. Curr. Med. Chem. 2021;28:1042–1066. doi: 10.2174/0929867327666200713184138. PubMed DOI

Šudomová M., Berchová-Bímová K., Mazurakova A., Šamec D., Kubatka P., Hassan S.T.S. Flavonoids Target Human Herpesviruses That Infect the Nervous System: Mechanisms of Action and Therapeutic Insights. Viruses. 2022;14:592. doi: 10.3390/v14030592. PubMed DOI PMC

Russo M., Moccia S., Spagnuolo C., Tedesco I., Russo G.L. Roles of Flavonoids against Coronavirus Infection. Chem. Biol. Interact. 2020;328:109211. doi: 10.1016/j.cbi.2020.109211. PubMed DOI PMC

Sharma V., Sehrawat N., Sharma A., Yadav M., Verma P., Sharma A.K. Multifaceted Antiviral Therapeutic Potential of Dietary Flavonoids: Emerging Trends and Future Perspectives. Biotechnol. Appl. Biochem. 2021;69:2028–2045. doi: 10.1002/bab.2265. PubMed DOI

Ninfali P., Antonelli A., Magnani M., Scarpa E.S. Antiviral Properties of Flavonoids and Delivery Strategies. Nutrients. 2020;12:2534. doi: 10.3390/nu12092534. PubMed DOI PMC

Hassan S.T.S., Masarčíková R., Berchová K. Bioactive Natural Products with Anti-Herpes Simplex Virus Properties. J. Pharm. Pharmacol. 2015;67:1325–1336. doi: 10.1111/jphp.12436. PubMed DOI

Zakaryan H., Arabyan E., Oo A., Zandi K. Flavonoids: Promising Natural Compounds against Viral Infections. Arch. Virol. 2017;162:2539–2551. doi: 10.1007/s00705-017-3417-y. PubMed DOI PMC

Ortega J.T., Serrano M.L., Suárez A.I., Baptista J., Pujol F.H., Cavallaro L.V., Campos H.R., Rangel H.R. Antiviral Activity of Flavonoids Present in Aerial Parts of Marcetia Taxifolia against Hepatitis B Virus, Poliovirus, and Herpes Simplex Virus in Vitro. EXCLI J. 2019;18:1037–1048. doi: 10.17179/excli2019-1837. PubMed DOI PMC

Kim T.I., Kwon E.-B., Oh Y.-C., Go Y., Choi J.-G. Mori Ramulus and Its Major Component Morusin Inhibit Herpes Simplex Virus Type 1 Replication and the Virus-Induced Reactive Oxygen Species. Am. J. Chin. Med. 2021;49:163–179. doi: 10.1142/S0192415X21500099. PubMed DOI

Čulenová M., Sychrová A., Hassan S.T.S., Berchová-Bímová K., Svobodová P., Helclová A., Michnová H., Hošek J., Vasilev H., Suchý P., et al. Multiple In Vitro Biological Effects of Phenolic Compounds from Morus alba Root Bark. J. Ethnopharmacol. 2020;248:112296. doi: 10.1016/j.jep.2019.112296. PubMed DOI

Chu Y., Lv X., Zhang L., Fu X., Song S., Su A., Chen D., Xu L., Wang Y., Wu Z., et al. Wogonin Inhibits in Vitro Herpes Simplex Virus Type 1 and 2 Infection by Modulating Cellular NF-κB and MAPK Pathways. BMC Microbiol. 2020;20:227. doi: 10.1186/s12866-020-01916-2. PubMed DOI PMC

Luo Z., Kuang X.-P., Zhou Q.-Q., Yan C.-Y., Li W., Gong H.-B., Kurihara H., Li W.-X., Li Y.-F., He R.-R. Inhibitory Effects of Baicalein against Herpes Simplex Virus Type 1. Acta Pharm. Sin. B. 2020;10:2323–2338. doi: 10.1016/j.apsb.2020.06.008. PubMed DOI PMC

Fahmy N.M., Al-Sayed E., Moghannem S., Azam F., El-Shazly M., Singab A.N. Breaking Down the Barriers to a Natural Antiviral Agent: Antiviral Activity and Molecular Docking of Erythrina Speciosa Extract, Fractions, and the Major Compound. Chem. Biodivers. 2020;17:e1900511. doi: 10.1002/cbdv.201900511. PubMed DOI

Wang Y., Li F., Wang Z., Song X., Ren Z., Wang X., Wang Y., Zheng K. Luteolin Inhibits Herpes Simplex Virus 1 Infection by Activating Cyclic Guanosine Monophosphate-Adenosine Monophosphate Synthase-Mediated Antiviral Innate Immunity. Phytomedicine. 2023;120:155020. doi: 10.1016/j.phymed.2023.155020. PubMed DOI

Li F., Song X., Su G., Wang Y., Wang Z., Jia J., Qing S., Huang L., Wang Y., Zheng K., et al. Amentoflavone Inhibits HSV-1 and ACV-Resistant Strain Infection by Suppressing Viral Early Infection. Viruses. 2019;11:466. doi: 10.3390/v11050466. PubMed DOI PMC

Li W., Xu C., Hao C., Zhang Y., Wang Z., Wang S., Wang W. Inhibition of Herpes Simplex Virus by Myricetin through Targeting Viral gD Protein and Cellular EGFR/PI3K/Akt Pathway. Antivir. Res. 2020;177:104714. doi: 10.1016/j.antiviral.2020.104714. PubMed DOI PMC

Yarmolinsky L., Nakonechny F., Budovsky A., Zeigerman H., Khalfin B., Sharon E., Yarmolinsky L., Ben-Shabat S., Nisnevitch M. Antimicrobial and Antiviral Compounds of Phlomis Viscosa Poiret. Biomedicines. 2023;11:441. doi: 10.3390/biomedicines11020441. PubMed DOI PMC

Tarbeeva D.V., Krylova N.V., Iunikhina O.V., Likhatskaya G.N., Kalinovskiy A.I., Grigorchuk V.P., Shchelkanov M.Y., Fedoreyev S.A. Biologically Active Polyphenolic Compounds from Lespedeza bicolor. Fitoterapia. 2022;157:105121. doi: 10.1016/j.fitote.2021.105121. PubMed DOI

Zhao C., Wang F., Tang B., Han J., Li X., Lian G., Li X., Hao S. Anti-Inflammatory Effects of Kaempferol-3-O-Rhamnoside on HSV-1 Encephalitis in Vivo and in Vitro. Neurosci. Lett. 2021;765:136172. doi: 10.1016/j.neulet.2021.136172. PubMed DOI

Sochocka M., Sobczyński M., Ochnik M., Zwolińska K., Leszek J. Hampering Herpesviruses HHV-1 and HHV-2 Infection by Extract of Ginkgo Biloba (EGb) and Its Phytochemical Constituents. Front. Microbiol. 2019;10:2367. doi: 10.3389/fmicb.2019.02367. PubMed DOI PMC

Zhou H.-Y., Gao S.-Q., Gong Y.-S., Lin T., Tong S., Xiong W., Shi C.-Y., Wang W.-Q., Fang J.-G. Anti-HSV-1 Effect of Dihydromyricetin from Ampelopsis grossedentata via the TLR9-Dependent Anti-Inflammatory Pathway. J. Glob. Antimicrob. Resist. 2020;23:370–376. doi: 10.1016/j.jgar.2020.10.003. PubMed DOI

Zhou N., Zheng D., You Q., Chen T., Jiang J., Shen W., Zhang D., Liu J., Chen D., Hu K. Therapeutic Potential of Biochanin A in Herpes Simplex Keratitis. Pharmaceuticals. 2023;16:1240. doi: 10.3390/ph16091240. PubMed DOI PMC

Pradhan P., Nguyen M.L. Herpes Simplex Virus Virucidal Activity of MST-312 and Epigallocatechin Gallate. Virus Res. 2018;249:93–98. doi: 10.1016/j.virusres.2018.03.015. PubMed DOI

Wu C.-Y., Yu Z.-Y., Chen Y.-C., Hung S.-L. Effects of Epigallocatechin-3-Gallate and Acyclovir on Herpes Simplex Virus Type 1 Infection in Oral Epithelial Cells. J. Formos. Med. Assoc. 2021;120:2136–2143. doi: 10.1016/j.jfma.2020.12.018. PubMed DOI

Wang H., Jia X., Zhang M., Cheng C., Liang X., Wang X., Xie F., Wang J., Yu Y., He Y., et al. Isoliquiritigenin Inhibits Virus Replication and Virus-Mediated Inflammation via NRF2 Signaling. Phytomedicine. 2023;114:154786. doi: 10.1016/j.phymed.2023.154786. PubMed DOI

Vicente J., Benedetti M., Martelliti P., Vázquez L., Gentilini M.V., Peñaranda Figueredo F.A., Nabaes Jodar M.S., Viegas M., Barquero A.A., Bueno C.A. The Flavonoid Cyanidin Shows Immunomodulatory and Broad-Spectrum Antiviral Properties, Including SARS-CoV-2. Viruses. 2023;15:989. doi: 10.3390/v15040989. PubMed DOI PMC

Sivarajan R., Oberwinkler H., Roll V., König E.-M., Steinke M., Bodem J. A Defined Anthocyanin Mixture Sourced from Bilberry and Black Currant Inhibits Measles Virus and Various Herpesviruses. BMC Complement. Med. Ther. 2022;22:181. doi: 10.1186/s12906-022-03661-7. PubMed DOI PMC

Guo H., Wan X., Niu F., Sun J., Shi C., Ye J.M., Zhou C. Evaluation of Antiviral Effect and Toxicity of Total Flavonoids Extracted from Robinia pseudoacacia Cv. Idaho. Biomed. Pharmacother. 2019;118:109335. doi: 10.1016/j.biopha.2019.109335. PubMed DOI

Wang Y.-Q., Cai L., Zhang N., Zhang J., Wang H.-H., Zhu W. Protective Effect of Total Flavonoids from Ixeris Sonchifolia on Herpes Simplex Virus Keratitis in Mice. BMC Complement. Med. Ther. 2020;20:113. doi: 10.1186/s12906-020-02911-w. PubMed DOI PMC

Rittà M., Marengo A., Civra A., Lembo D., Cagliero C., Kant K., Lal U.R., Rubiolo P., Ghosh M., Donalisio M. Antiviral Activity of a Arisaema tortuosum Leaf Extract and Some of Its Constituents against Herpes Simplex Virus Type 2. Planta Med. 2020;86:267–275. doi: 10.1055/a-1087-8303. PubMed DOI

Stamos J.D., Lee L.H., Taylor C., Elias T., Adams S.D. In Vitro and In Silico Analysis of the Inhibitory Activity of EGCG-Stearate against Herpes Simplex Virus-2. Microorganisms. 2022;10:1462. doi: 10.3390/microorganisms10071462. PubMed DOI PMC

Obisesan O., Katata-Seru L., Mufamadi S., Mufhandu H. Applications of Nanoparticles for Herpes Simplex Virus (HSV) and Human Immunodeficiency Virus (HIV) Treatment. J. Biomed. Nanotechnol. 2021;17:793–808. doi: 10.1166/jbn.2021.3074. PubMed DOI

Treml J., Gazdová M., Šmejkal K., Šudomová M., Kubatka P., Hassan S.T.S. Natural Products-Derived Chemicals: Breaking Barriers to Novel Anti-HSV Drug Development. Viruses. 2020;12:154. doi: 10.3390/v12020154. PubMed DOI PMC

Tomaszewska E., Ranoszek-Soliwoda K., Bednarczyk K., Lech A., Janicka M., Chodkowski M., Psarski M., Celichowski G., Krzyzowska M., Grobelny J. Anti-HSV Activity of Metallic Nanoparticles Functionalized with Sulfonates vs. Polyphenols. Int. J. Mol. Sci. 2022;23:13104. doi: 10.3390/ijms232113104. PubMed DOI PMC

Paradowska E., Studzińska M., Jabłońska A., Lozovski V., Rusinchuk N., Mukha I., Vitiuk N., Leśnikowski Z.J. Antiviral Effect of Nonfunctionalized Gold Nanoparticles against Herpes Simplex Virus Type-1 (HSV-1) and Possible Contribution of Near-Field Interaction Mechanism. Molecules. 2021;26:5960. doi: 10.3390/molecules26195960. PubMed DOI PMC

Elste J., Kumari S., Sharma N., Razo E.P., Azhar E., Gao F., Nunez M.C., Anwar W., Mitchell J.C., Tiwari V., et al. Plant Cell-Engineered Gold Nanoparticles Conjugated to Quercetin Inhibit SARS-CoV-2 and HSV-1 Entry. Int. J. Mol. Sci. 2023;24:14792. doi: 10.3390/ijms241914792. PubMed DOI PMC

Krzyzowska M., Janicka M., Chodkowski M., Patrycy M., Obuch-Woszczatyńska O., Tomaszewska E., Ranoszek-Soliwoda K., Celichowski G., Grobelny J. Epigallocatechin Gallate-Modified Silver Nanoparticles Show Antiviral Activity against Herpes Simplex Type 1 and 2. Viruses. 2023;15:2024. doi: 10.3390/v15102024. PubMed DOI PMC

Caldas Dos Santos T., Rescignano N., Boff L., Reginatto F.H., Simões C.M.O., de Campos A.M., Mijangos C. In Vitro Antiherpes Effect of C-Glycosyl Flavonoid Enriched Fraction of Cecropia glaziovii Encapsulated in PLGA Nanoparticles. Mater. Sci. Eng. C Mater. Biol. Appl. 2017;75:1214–1220. doi: 10.1016/j.msec.2017.02.135. PubMed DOI

Sicurella M., Sguizzato M., Mariani P., Pepe A., Baldisserotto A., Buzzi R., Huang N., Simelière F., Burholt S., Marconi P., et al. Natural Polyphenol-Containing Gels against HSV-1 Infection: A Comparative Study. Nanomaterials. 2022;12:227. doi: 10.3390/nano12020227. PubMed DOI PMC

Dickinson D., Marsh B., Shao X., Liu E., Sampath L., Yao B., Jiang X., Hsu S. Virucidal Activities of Novel Hand Hygiene and Surface Disinfectant Formulations Containing EGCG-Palmitates (EC16) Am. J. Infect. Control. 2022;50:1212–1219. doi: 10.1016/j.ajic.2022.05.027. PubMed DOI PMC

Brandariz-Nuñez A., Liu T., Du T., Evilevitch A. Pressure-Driven Release of Viral Genome into a Host Nucleus Is a Mechanism Leading to Herpes Infection. Elife. 2019;8:e47212. doi: 10.7554/eLife.47212. PubMed DOI PMC

Bauer D.W., Huffman J.B., Homa F.L., Evilevitch A. Herpes Virus Genome, the Pressure Is on. J. Am. Chem. Soc. 2013;135:11216–11221. doi: 10.1021/ja404008r. PubMed DOI PMC

Brandariz-Nuñez A., Robinson S.J., Evilevitch A. Pressurized DNA State inside Herpes Capsids—A Novel Antiviral Target. PLoS Pathog. 2020;16:e1008604. doi: 10.1371/journal.ppat.1008604. PubMed DOI PMC

Šudomová M., Hassan S.T.S. Nutraceutical Curcumin with Promising Protection against Herpesvirus Infections and Their Associated Inflammation: Mechanisms and Pathways. Microorganisms. 2021;9:292. doi: 10.3390/microorganisms9020292. PubMed DOI PMC

Polansky H., Javaherian A., Itzkovitz E. Clinical Trial of Herbal Treatment Gene-Eden-VIR/Novirin in Oral Herpes. J. Evid. Based Integr. Med. 2018;23:2515690X18806269. doi: 10.1177/2515690X18806269. PubMed DOI PMC

Polansky H., Javaherian A., Itzkovitz E. Clinical Study in Genital Herpes: Natural Gene-Eden-VIR/Novirin versus Acyclovir, Valacyclovir, and Famciclovir. Drug Des. Devel Ther. 2016;10:2713–2722. doi: 10.2147/DDDT.S112852. PubMed DOI PMC

Polansky H., Itzkovitz E., Javaherian A. Clinical Study of Gene-Eden-VIR/Novirin in Genital Herpes: Suppressive Treatment Safely Decreases the Duration of Outbreaks in Both Severe and Mild Cases. Clin. Transl. Med. 2016;5:40. doi: 10.1186/s40169-016-0121-6. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...