Mechanistic Perspectives on Herpes Simplex Virus Inhibition by Phenolic Acids and Tannins: Interference with the Herpesvirus Life Cycle
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
40649726
PubMed Central
PMC12250183
DOI
10.3390/ijms26135932
PII: ijms26135932
Knihovny.cz E-zdroje
- Klíčová slova
- HSV latency, acyclovir resistance, antiviral mechanisms, herpes simplex virus, herpesvirus infections, natural antivirals, phenolic acids, polyphenols, synergistic antiviral effects, tannins,
- MeSH
- antivirové látky * farmakologie terapeutické užití chemie MeSH
- herpes simplex * farmakoterapie virologie MeSH
- hydroxybenzoáty * farmakologie chemie terapeutické užití MeSH
- lidé MeSH
- lidský herpesvirus 1 * účinky léků fyziologie MeSH
- lidský herpesvirus 2 účinky léků MeSH
- replikace viru účinky léků MeSH
- Simplexvirus * účinky léků fyziologie MeSH
- taniny * farmakologie chemie terapeutické užití MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- antivirové látky * MeSH
- hydroxybenzoáty * MeSH
- phenolic acid MeSH Prohlížeč
- taniny * MeSH
Herpes simplex virus (HSV) is a prevalent and persistent human pathogen belonging to the family Herpesviridae and classified as an alpha-herpesvirus. It comprises two distinct types, HSV-1 and HSV-2, which together infect a significant portion of the global population and pose substantial public health challenges. HSV-1 is typically associated with oral herpes, while HSV-2 primarily causes genital herpes; both are characterized by recurrent lesions, latent infection, and mucocutaneous discomfort. Conventional antiviral drugs such as acyclovir and its derivatives are limited by drug resistance, potential toxicity, and their inability to eradicate latent viral reservoirs. These limitations have prompted increasing interest in alternative therapeutic strategies. Phenolic acids and tannins, plant-derived polyphenolic compounds, have attracted considerable attention due to their potent antiviral properties against various viruses, including HSV. This review summarizes current research on phenolic acids and tannins as promising natural antivirals against HSV, with a focus on their mechanisms of action and efficacy in disrupting multiple stages of the HSV life cycle.
Zobrazit více v PubMed
Widener R.W., Whitley R.J. Handbook of Clinical Neurology. Volume 123. Elsevier; Amsterdam, The Netherlands: 2014. Herpes Simplex Virus; pp. 251–263. PubMed
Adler B., Sattler C., Adler H. Herpesviruses and Their Host Cells: A Successful Liaison. Trends Microbiol. 2017;25:229–241. doi: 10.1016/j.tim.2016.11.009. PubMed DOI
Petti S., Lodi G. The Controversial Natural History of Oral Herpes Simplex Virus Type 1 Infection. Oral Dis. 2019;25:1850–1865. doi: 10.1111/odi.13234. PubMed DOI
Kolokotronis A., Doumas S. Herpes Simplex Virus Infection, with Particular Reference to the Progression and Complications of Primary Herpetic Gingivostomatitis. Clin. Microbiol. Infect. 2006;12:202–211. doi: 10.1111/j.1469-0691.2005.01336.x. PubMed DOI
Gnann J.W., Whitley R.J. Herpes Simplex Encephalitis: An Update. Curr. Infect. Dis. Rep. 2017;19:13. doi: 10.1007/s11908-017-0568-7. PubMed DOI
Omarova S., Cannon A., Weiss W., Bruccoleri A., Puccio J. Genital Herpes Simplex Virus—An Updated Review. Adv. Pediatr. 2022;69:149–162. doi: 10.1016/j.yapd.2022.03.010. PubMed DOI
Harfouche M., Maalmi H., Abu-Raddad L.J. Epidemiology of Herpes Simplex Virus Type 2 in Latin America and the Caribbean: Systematic Review, Meta-Analyses and Metaregressions. Sex. Transm. Infect. 2021;97:490–500. doi: 10.1136/sextrans-2021-054972. PubMed DOI PMC
Desai D.V., Kulkarni S.S. Herpes Simplex Virus: The Interplay Between HSV, Host, and HIV-1. Viral Immunol. 2015;28:546–555. doi: 10.1089/vim.2015.0012. PubMed DOI
Corey L. Synergistic Copathogens—HIV-1 and HSV-2. N. Engl. J. Med. 2007;356:854–856. doi: 10.1056/NEJMe068302. PubMed DOI
Fatahzadeh M., Schwartz R.A. Human Herpes Simplex Virus Infections: Epidemiology, Pathogenesis, Symptomatology, Diagnosis, and Management. J. Am. Acad. Dermatol. 2007;57:737–763. doi: 10.1016/j.jaad.2007.06.027. PubMed DOI
Crimi S., Fiorillo L., Bianchi A., D’Amico C., Amoroso G., Gorassini F., Mastroieni R., Marino S., Scoglio C., Catalano F., et al. Herpes Virus, Oral Clinical Signs and QoL: Systematic Review of Recent Data. Viruses. 2019;11:463. doi: 10.3390/v11050463. PubMed DOI PMC
Pinninti S.G., Kimberlin D.W. Neonatal Herpes Simplex Virus Infections. Semin. Perinatol. 2018;42:168–175. doi: 10.1053/j.semperi.2018.02.004. PubMed DOI
Hammad W.A.B., Konje J.C. Herpes Simplex Virus Infection in Pregnancy—An Update. Eur. J. Obstet. Gynecol. Reprod. Biol. 2021;259:38–45. doi: 10.1016/j.ejogrb.2021.01.055. PubMed DOI
Mindel A. Psychological and Psychosexual Implications of Herpes Simplex Virus Infections. Scand. J. Infect. Dis. Suppl. 1996;100:27–32. PubMed
Mindel A., Marks C. Psychological Symptoms Associated with Genital Herpes Virus Infections: Epidemiology and Approaches to Management. CNS Drugs. 2005;19:303–312. doi: 10.2165/00023210-200519040-00003. PubMed DOI
Schalkwijk H.H., Snoeck R., Andrei G. Acyclovir Resistance in Herpes Simplex Viruses: Prevalence and Therapeutic Alternatives. Biochem. Pharmacol. 2022;206:115322. doi: 10.1016/j.bcp.2022.115322. PubMed DOI
Hassan S.T.S., Šudomová M., Berchová-Bímová K., Šmejkal K., Echeverría J. Psoromic Acid, a Lichen-Derived Molecule, Inhibits the Replication of HSV-1 and HSV-2, and Inactivates HSV-1 DNA Polymerase: Shedding Light on Antiherpetic Properties. Molecules. 2019;24:2912. doi: 10.3390/molecules24162912. PubMed DOI PMC
Lv W., Zhou L., Wu J., Cheng J., Duan Y., Qian W. Anti-HSV-1 Agents: An Update. Front. Pharmacol. 2025;15:1451083. doi: 10.3389/fphar.2024.1451083. PubMed DOI PMC
Treml J., Gazdová M., Šmejkal K., Šudomová M., Kubatka P., Hassan S.T.S. Natural Products-Derived Chemicals: Breaking Barriers to Novel Anti-HSV Drug Development. Viruses. 2020;12:154. doi: 10.3390/v12020154. PubMed DOI PMC
Zhu S., Viejo-Borbolla A. Pathogenesis and Virulence of Herpes Simplex Virus. Virulence. 2021;12:2670–2702. doi: 10.1080/21505594.2021.1982373. PubMed DOI PMC
Denes C.E., Everett R.D., Diefenbach R.J. Tour de Herpes: Cycling Through the Life and Biology of HSV-1. In: Diefenbach R.J., Fraefel C., editors. Herpes Simplex Virus. Volume 2060. Methods in Molecular Biology; Springer New York; New York, NY, USA: 2020. pp. 1–30. PubMed
Šudomová M., Hassan S.T.S. Flavonoids with Anti-Herpes Simplex Virus Properties: Deciphering Their Mechanisms in Disrupting the Viral Life Cycle. Viruses. 2023;15:2340. doi: 10.3390/v15122340. PubMed DOI PMC
Patel A., Patel R. Recent Insights into HSV Infection and Disease: Results of Wider Genome Analysis. Curr. Opin. Infect. Dis. 2019;32:51–55. doi: 10.1097/QCO.0000000000000512. PubMed DOI
Furlong D., Swift H., Roizman B. Arrangement of Herpesvirus Deoxyribonucleic Acid in the Core. J. Virol. 1972;10:1071–1074. doi: 10.1128/jvi.10.5.1071-1074.1972. PubMed DOI PMC
Kuny C.V., Szpara M.L. Alphaherpesvirus Genomics: Past, Present and Future. Curr. Issues Mol. Biol. 2022;42:41–80. doi: 10.21775/cimb.042.041. PubMed DOI PMC
Bhowmik D., Zhu F. Evasion of Intracellular DNA Sensing by Human Herpesviruses. Front. Cell. Infect. Microbiol. 2021;11:647992. doi: 10.3389/fcimb.2021.647992. PubMed DOI PMC
Homa F.L., Brown J.C. Capsid Assembly and DNA Packaging in Herpes Simplex Virus. Rev. Med. Virol. 1997;7:107–122. doi: 10.1002/(SICI)1099-1654(199707)7:2<107::AID-RMV191>3.0.CO;2-M. PubMed DOI
Goshima F., Watanabe D., Takakuwa H., Wada K., Daikoku T., Yamada M., Nishiyama Y. Herpes Simplex Virus UL17 Protein Is Associated with B Capsids and Colocalizes with ICP35 and VP5 in Infected Cells. Arch. Virol. 2000;145:417–426. doi: 10.1007/s007050050033. PubMed DOI
Ding X., Neumann D.M., Zhu L. Host Factors Associated with Either VP16 or VP16-induced Complex Differentially Affect HSV-1 Lytic Infection. Rev. Med. Virol. 2022;32:e2394. doi: 10.1002/rmv.2394. PubMed DOI PMC
Shiflett L.A., Read G.S. mRNA Decay during Herpes Simplex Virus (HSV) Infections: Mutations That Affect Translation of an mRNA Influence the Sites at Which It Is Cleaved by the HSV Virion Host Shutoff (Vhs) Protein. J. Virol. 2013;87:94–109. doi: 10.1128/JVI.01557-12. PubMed DOI PMC
DuRaine G., Wisner T.W., Johnson D.C. Characterization of the Herpes Simplex Virus (HSV) Tegument Proteins That Bind to gE/gI and US9, Which Promote Assembly of HSV and Transport into Neuronal Axons. J. Virol. 2020;94:e01113-20. doi: 10.1128/JVI.01113-20. PubMed DOI PMC
Owen D., Crump C., Graham S. Tegument Assembly and Secondary Envelopment of Alphaherpesviruses. Viruses. 2015;7:5084–5114. doi: 10.3390/v7092861. PubMed DOI PMC
Frost T.C., Salnikov M., Rice S.A. Enhancement of HSV-1 Cell-Free Virion Release by the Envelope Protein gC. Virology. 2024;596:110120. doi: 10.1016/j.virol.2024.110120. PubMed DOI PMC
Vallbracht M., Backovic M., Klupp B.G., Rey F.A., Mettenleiter T.C. Advances in Virus Research. Volume 104. Elsevier; Amsterdam, The Netherlands: 2019. Common Characteristics and Unique Features: A Comparison of the Fusion Machinery of the Alphaherpesviruses Pseudorabies Virus and Herpes Simplex Virus; pp. 225–281. PubMed
Kukhanova M.K., Korovina A.N., Kochetkov S.N. Human Herpes Simplex Virus: Life Cycle and Development of Inhibitors. Biochem. Mosc. 2014;79:1635–1652. doi: 10.1134/S0006297914130124. PubMed DOI
Singh N., Zachariah S., Phillips A.T., Tscharke D. Lytic Promoter Activity during Herpes Simplex Virus Latency Is Dependent on Genome Location. J. Virol. 2024;98:e01258-24. doi: 10.1128/jvi.01258-24. PubMed DOI PMC
Azab W., Osterrieder K. Initial Contact: The First Steps in Herpesvirus Entry. In: Osterrieder K., editor. Cell Biology of Herpes Viruses. Volume 223. Springer International Publishing; Cham, Switzerland: 2017. pp. 1–27. Advances in Anatomy, Embryology and Cell Biology. PubMed
Connolly S.A., Jardetzky T.S., Longnecker R. The Structural Basis of Herpesvirus Entry. Nat. Rev. Microbiol. 2021;19:110–121. doi: 10.1038/s41579-020-00448-w. PubMed DOI PMC
Arii J., Kawaguchi Y. The Role of HSV Glycoproteins in Mediating Cell Entry. In: Kawaguchi Y., Mori Y., Kimura H., editors. Human Herpesviruses. Volume 1045. Springer; Singapore: 2018. pp. 3–21. Advances in Experimental Medicine and Biology. PubMed
Pertel P.E., Fridberg A., Parish M.L., Spear P.G. Cell Fusion Induced by Herpes Simplex Virus Glycoproteins gB, gD, and gH-gL Requires a gD Receptor but Not Necessarily Heparan Sulfate. Virology. 2001;279:313–324. doi: 10.1006/viro.2000.0713. PubMed DOI
Heming J.D., Conway J.F., Homa F.L. Herpesvirus Capsid Assembly and DNA Packaging. In: Osterrieder K., editor. Cell Biology of Herpes Viruses. Volume 223. Springer International Publishing; Cham, Switzerland: 2017. pp. 119–142. Advances in Anatomy, Embryology and Cell Biology. PubMed PMC
Adlakha M., Livingston C.M., Bezsonova I., Weller S.K. The Herpes Simplex Virus 1 Immediate Early Protein ICP22 Is a Functional Mimic of a Cellular J Protein. J. Virol. 2020;94:e01564-19. doi: 10.1128/JVI.01564-19. PubMed DOI PMC
Baines J.D. Herpes Simplex Virus Capsid Assembly and DNA Packaging: A Present and Future Antiviral Drug Target. Trends Microbiol. 2011;19:606–613. doi: 10.1016/j.tim.2011.09.001. PubMed DOI
Zarrouk K., Piret J., Boivin G. Herpesvirus DNA Polymerases: Structures, Functions and Inhibitors. Virus Res. 2017;234:177–192. doi: 10.1016/j.virusres.2017.01.019. PubMed DOI
Skaliter R., Lehman I.R. Rolling Circle DNA Replication in Vitro by a Complex of Herpes Simplex Virus Type 1-Encoded Enzymes. Proc. Natl. Acad. Sci. USA. 1994;91:10665–10669. doi: 10.1073/pnas.91.22.10665. PubMed DOI PMC
Weller S.K., Coen D.M. Herpes Simplex Viruses: Mechanisms of DNA Replication. Cold Spring Harb. Perspect. Biol. 2012;4:a013011. doi: 10.1101/cshperspect.a013011. PubMed DOI PMC
Cohrs R.J., Badani H., Bos N., Scianna C., Hoskins I., Baird N.L., Gilden D. Alphaherpesvirus DNA Replication in Dissociated Human Trigeminal Ganglia. J. Neurovirol. 2016;22:688–694. doi: 10.1007/s13365-016-0450-7. PubMed DOI PMC
Muylaert I., Tang K.-W., Elias P. Replication and Recombination of Herpes Simplex Virus DNA. J. Biol. Chem. 2011;286:15619–15624. doi: 10.1074/jbc.R111.233981. PubMed DOI PMC
Taylor K.E., Mossman K.L. Cellular Protein WDR11 Interacts with Specific Herpes Simplex Virus Proteins at the Trans-Golgi Network To Promote Virus Replication. J. Virol. 2015;89:9841–9852. doi: 10.1128/JVI.01705-15. PubMed DOI PMC
Cohen J.I. Herpesvirus Latency. J. Clin. Investig. 2020;130:3361–3369. doi: 10.1172/JCI136225. PubMed DOI PMC
Lomonte P. Herpesvirus Latency: On the Importance of Positioning Oneself. In: Osterrieder K., editor. Cell Biology of Herpes Viruses. Volume 223. Springer International Publishing; Cham, Switzerland: 2017. pp. 95–117. Advances in Anatomy, Embryology and Cell Biology. PubMed
Wechsler S.L., Nesburn A.B., Watson R., Slanina S.M., Ghiasi H. Fine Mapping of the Latency-Related Gene of Herpes Simplex Virus Type 1: Alternative Splicing Produces Distinct Latency-Related RNAs Containing Open Reading Frames. J. Virol. 1988;62:4051–4058. doi: 10.1128/jvi.62.11.4051-4058.1988. PubMed DOI PMC
Efstathiou S., Preston C.M. Towards an Understanding of the Molecular Basis of Herpes Simplex Virus Latency. Virus Res. 2005;111:108–119. doi: 10.1016/j.virusres.2005.04.017. PubMed DOI
Bloom D.C. HSV LAT and neuronal survival. Int. Rev. Immunol. 2004;23:187–198. doi: 10.1080/08830180490265592. PubMed DOI
Harrison K.S., Jones C. Regulation of Herpes Simplex Virus Type 1 Latency-Reactivation Cycle and Ocular Disease by Cellular Signaling Pathways. Exp. Eye Res. 2022;218:109017. doi: 10.1016/j.exer.2022.109017. PubMed DOI PMC
Roizman B., Whitley R.J. An Inquiry into the Molecular Basis of HSV Latency and Reactivation. Annu. Rev. Microbiol. 2013;67:355–374. doi: 10.1146/annurev-micro-092412-155654. PubMed DOI
Ho D.Y., Enriquez K., Multani A. Herpesvirus Infections Potentiated by Biologics. Infect. Dis. Clin. N. Am. 2020;34:311–339. doi: 10.1016/j.idc.2020.02.006. PubMed DOI
Turuvekere Vittala Murthy N., Agrahari V., Chauhan H. Polyphenols against Infectious Diseases: Controlled Release Nano-Formulations. Eur. J. Pharm. Biopharm. 2021;161:66–79. doi: 10.1016/j.ejpb.2021.02.003. PubMed DOI
Kumar N., Goel N. Phenolic Acids: Natural Versatile Molecules with Promising Therapeutic Applications. Biotechnol. Rep. 2019;24:e00370. doi: 10.1016/j.btre.2019.e00370. PubMed DOI PMC
Durazzo A., Lucarini M., Souto E.B., Cicala C., Caiazzo E., Izzo A.A., Novellino E., Santini A. Polyphenols: A Concise Overview on the Chemistry, Occurrence, and Human Health. Phytother. Res. 2019;33:2221–2243. doi: 10.1002/ptr.6419. PubMed DOI
Di Lorenzo C., Colombo F., Biella S., Stockley C., Restani P. Polyphenols and Human Health: The Role of Bioavailability. Nutrients. 2021;13:273. doi: 10.3390/nu13010273. PubMed DOI PMC
Cory H., Passarelli S., Szeto J., Tamez M., Mattei J. The Role of Polyphenols in Human Health and Food Systems: A Mini-Review. Front. Nutr. 2018;5:87. doi: 10.3389/fnut.2018.00087. PubMed DOI PMC
Hassan S.T.S., Šudomová M., Mazurakova A., Kubatka P. Insights into Antiviral Properties and Molecular Mechanisms of Non-Flavonoid Polyphenols against Human Herpesviruses. Int. J. Mol. Sci. 2022;23:13891. doi: 10.3390/ijms232213891. PubMed DOI PMC
Hassan S.T.S., Masarčíková R., Berchová K. Bioactive Natural Products with Anti-Herpes Simplex Virus Properties. J. Pharm. Pharmacol. 2015;67:1325–1336. doi: 10.1111/jphp.12436. PubMed DOI
Molino S., Pilar Francino M., Ángel Rufián Henares J. Why Is It Important to Understand the Nature and Chemistry of Tannins to Exploit Their Potential as Nutraceuticals? Food Res. Int. 2023;173:113329. doi: 10.1016/j.foodres.2023.113329. PubMed DOI
Zhang L., Han Z., Granato D. Advances in Food and Nutrition Research. Volume 98. Elsevier; Amsterdam, The Netherlands: 2021. Polyphenols in Foods: Classification, Methods of Identification, and Nutritional Aspects in Human Health; pp. 1–33. PubMed
Seidi F., Liu Y., Huang Y., Xiao H., Crespy D. Chemistry of Lignin and Condensed Tannins as Aromatic Biopolymers. Chem. Soc. Rev. 2025;54:3140–3232. doi: 10.1039/D4CS00440J. PubMed DOI
Rousserie P., Rabot A., Geny-Denis L. From Flavanols Biosynthesis to Wine Tannins: What Place for Grape Seeds? J. Agric. Food Chem. 2019;67:1325–1343. doi: 10.1021/acs.jafc.8b05768. PubMed DOI
Chojnacka K., Skrzypczak D., Izydorczyk G., Mikula K., Szopa D., Witek-Krowiak A. Antiviral Properties of Polyphenols from Plants. Foods. 2021;10:2277. doi: 10.3390/foods10102277. PubMed DOI PMC
Luca S.V., Macovei I., Bujor A., Miron A., Skalicka-Woźniak K., Aprotosoaie A.C., Trifan A. Bioactivity of Dietary Polyphenols: The Role of Metabolites. Crit. Rev. Food Sci. Nutr. 2020;60:626–659. doi: 10.1080/10408398.2018.1546669. PubMed DOI
Lin L.-T., Chen T.-Y., Chung C.-Y., Noyce R.S., Grindley T.B., McCormick C., Lin T.-C., Wang G.-H., Lin C.-C., Richardson C.D. Hydrolyzable Tannins (Chebulagic Acid and Punicalagin) Target Viral Glycoprotein-Glycosaminoglycan Interactions To Inhibit Herpes Simplex Virus 1 Entry and Cell-to-Cell Spread. J. Virol. 2011;85:4386–4398. doi: 10.1128/JVI.01492-10. PubMed DOI PMC
Zhang H., Cheng L., Ju F. In Vitro and Silico Studies of Geraniin Interfering with HSV-2 Replication by Targeting Glycoprotein D. Nat. Prod. Res. 2024;38:2053–2059. doi: 10.1080/14786419.2023.2241153. PubMed DOI
Rudrapal M., Mishra A.K., Rani L., Sarwa K.K., Zothantluanga J.H., Khan J., Kamal M., Palai S., Bendale A.R., Talele S.G., et al. Nanodelivery of Dietary Polyphenols for Therapeutic Applications. Molecules. 2022;27:8706. doi: 10.3390/molecules27248706. PubMed DOI PMC
Aatif M. Current Understanding of Polyphenols to Enhance Bioavailability for Better Therapies. Biomedicines. 2023;11:2078. doi: 10.3390/biomedicines11072078. PubMed DOI PMC
Scalbert A., Manach C., Morand C., Rémésy C., Jiménez L. Dietary Polyphenols and the Prevention of Diseases. Crit. Rev. Food Sci. Nutr. 2005;45:287–306. doi: 10.1080/1040869059096. PubMed DOI
Yahfoufi N., Alsadi N., Jambi M., Matar C. The Immunomodulatory and Anti-Inflammatory Role of Polyphenols. Nutrients. 2018;10:1618. doi: 10.3390/nu10111618. PubMed DOI PMC
Shahidi F., Ambigaipalan P. Phenolics and Polyphenolics in Foods, Beverages and Spices: Antioxidant Activity and Health Effects—A Review. J. Funct. Foods. 2015;18:820–897. doi: 10.1016/j.jff.2015.06.018. DOI
Montenegro-Landívar M.F., Tapia-Quirós P., Vecino X., Reig M., Valderrama C., Granados M., Cortina J.L., Saurina J. Polyphenols and Their Potential Role to Fight Viral Diseases: An Overview. Sci. Total Environ. 2021;801:149719. doi: 10.1016/j.scitotenv.2021.149719. PubMed DOI PMC
Hassan S.T.S., Švajdlenka E., Berchová-Bímová K. Hibiscus Sabdariffa L. and Its Bioactive Constituents Exhibit Antiviral Activity against HSV-2 and Anti-Enzymatic Properties against Urease by an ESI-MS Based Assay. Molecules. 2017;22:722. doi: 10.3390/molecules22050722. PubMed DOI PMC
Borenstein R., Hanson B.A., Markosyan R.M., Gallo E.S., Narasipura S.D., Bhutta M., Shechter O., Lurain N.S., Cohen F.S., Al-Harthi L., et al. Ginkgolic Acid Inhibits Fusion of Enveloped Viruses. Sci. Rep. 2020;10:4746. doi: 10.1038/s41598-020-61700-0. PubMed DOI PMC
Sochocka M., Sobczyński M., Ochnik M., Zwolińska K., Leszek J. Hampering Herpesviruses HHV-1 and HHV-2 Infection by Extract of Ginkgo Biloba (EGb) and Its Phytochemical Constituents. Front. Microbiol. 2019;10:2367. doi: 10.3389/fmicb.2019.02367. PubMed DOI PMC
Bhutta M.S., Shechter O., Gallo E.S., Martin S.D., Jones E., Doncel G.F., Borenstein R. Ginkgolic Acid Inhibits Herpes Simplex Virus Type 1 Skin Infection and Prevents Zosteriform Spread in Mice. Viruses. 2021;13:86. doi: 10.3390/v13010086. PubMed DOI PMC
Di Sotto A., Di Giacomo S., Amatore D., Locatelli M., Vitalone A., Toniolo C., Rotino G.L., Lo Scalzo R., Palamara A.T., Marcocci M.E., et al. A Polyphenol Rich Extract from Solanum Melongena L. DR2 Peel Exhibits Antioxidant Properties and Anti-Herpes Simplex Virus Type 1 Activity In Vitro. Molecules. 2018;23:2066. doi: 10.3390/molecules23082066. PubMed DOI PMC
Langland J., Jacobs B., Wagner C.E., Ruiz G., Cahill T.M. Antiviral Activity of Metal Chelates of Caffeic Acid and Similar Compounds towards Herpes Simplex, VSV-Ebola Pseudotyped and Vaccinia Viruses. Antivir. Res. 2018;160:143–150. doi: 10.1016/j.antiviral.2018.10.021. PubMed DOI
AbouAitah K., Allayh A.K., Wojnarowicz J., Shaker Y.M., Swiderska-Sroda A., Lojkowski W. Nanoformulation Composed of Ellagic Acid and Functionalized Zinc Oxide Nanoparticles Inactivates DNA and RNA Viruses. Pharmaceutics. 2021;13:2174. doi: 10.3390/pharmaceutics13122174. PubMed DOI PMC
Todorova N., Rangelov M., Dincheva I., Badjakov I., Enchev V., Markova N. Potential of Hydroxybenzoic Acids from Graptopetalum Paraguayense for Inhibiting of Herpes Simplex Virus DNA Polymerase—Metabolome Profiling, Molecular Docking and Quantum-Chemical Analysis. Pharmacia. 2022;69:113–123. doi: 10.3897/pharmacia.69.e79467. DOI
EL-Aguel A., Pennisi R., Smeriglio A., Kallel I., Tamburello M.P., D’Arrigo M., Barreca D., Gargouri A., Trombetta D., Mandalari G., et al. Punica granatum Peel and Leaf Extracts as Promising Strategies for HSV-1 Treatment. Viruses. 2022;14:2639. doi: 10.3390/v14122639. PubMed DOI PMC
Aljohani A.K., Maghrabi N.A., Alrehili O.M., Alharbi A.S., Alsihli R.S., Alharthe A.M., Albladi R.S., Alosaimi K.A., Albadrani B.M., Miski S.F., et al. Ajwa Date Extract (Phoenix Dactylifera L.): Phytochemical Analysis, Antiviral Activity against Herpes Simplex Virus-I and Coxsackie B4 Virus, and in Silico Study. Saudi Med. J. 2025;46:26–35. doi: 10.15537/smj.2025.46.1.20240780. PubMed DOI PMC
Siqueira E.M.d.S., Lima T.L.C., Boff L., Lima S.G.M., Lourenço E.M.G., Ferreira É.G., Barbosa E.G., Machado P.R.L., Farias K.J.S., Ferreira L.d.S., et al. Antiviral Potential of Spondias Mombin L. Leaves Extract Against Herpes Simplex Virus Type-1 Replication Using In Vitro and In Silico Approaches. Planta Med. 2020;86:505–515. doi: 10.1055/a-1135-9066. PubMed DOI
Kesharwani A., Polachira S.K., Nair R., Agarwal A., Mishra N.N., Gupta S.K. Anti-HSV-2 Activity of Terminalia Chebula Retz Extract and Its Constituents, Chebulagic and Chebulinic Acids. BMC Complement. Altern. Med. 2017;17:110. doi: 10.1186/s12906-017-1620-8. PubMed DOI PMC
Vilhelmova-Ilieva N., Jacquet R., Deffieux D., Pouységu L., Sylla T., Chassaing S., Nikolova I., Quideau S., Galabov A.S. Anti-Herpes Simplex Virus Type 1 Activity of Specially Selected Groups of Tannins. Drug Res. 2019;69:373–374. doi: 10.1055/a-0640-2557. PubMed DOI
Vilhelmova-Ilieva N., Jacquet R., Quideau S., Galabov A.S. Ellagitannins as Synergists of ACV on the Replication of ACV-Resistant Strains of HSV 1 and 2. Antivir. Res. 2014;110:104–114. doi: 10.1016/j.antiviral.2014.07.017. PubMed DOI
Stoyanova A., Popatanasov A., Rashev V., Tancheva L., Quideau S., Galabov A.S. Effect of Castalagin against HSV-1 Infection in Newborn Mice. Nat. Prod. Res. 2023;37:4156–4161. doi: 10.1080/14786419.2023.2173191. PubMed DOI
Guo Y.-J., Luo T., Wu F., Liu H., Li H.-R., Mei Y.-W., Zhang S.-L., Tao J.-Y., Dong J.-H., Fang Y., et al. Corilagin Protects Against HSV1 Encephalitis Through Inhibiting the TLR2 Signaling Pathways In Vivo and In Vitro. Mol. Neurobiol. 2015;52:1547–1560. doi: 10.1007/s12035-014-8947-7. PubMed DOI
Jin F., Ma K., Chen M., Zou M., Wu Y., Li F., Wang Y. Pentagalloylglucose Blocks the Nuclear Transport and the Process of Nucleocapsid Egress to Inhibit HSV-1 Infection. Jpn. J. Infect. Dis. 2016;69:135–142. doi: 10.7883/yoken.JJID.2015.137. PubMed DOI
Arunkumar J., Rajarajan S. Study on Antiviral Activities, Drug-Likeness and Molecular Docking of Bioactive Compounds of Punica granatum L. to Herpes Simplex Virus-2 (HSV-2) Microb. Pathog. 2018;118:301–309. doi: 10.1016/j.micpath.2018.03.052. PubMed DOI
Houston D.M.J., Bugert J.J., Denyer S.P., Heard C.M. Potentiated Virucidal Activity of Pomegranate Rind Extract (PRE) and Punicalagin against Herpes Simplex Virus (HSV) When Co-Administered with Zinc (II) Ions, and Antiviral Activity of PRE against HSV and Aciclovir-Resistant HSV. PLoS ONE. 2017;12:e0179291. doi: 10.1371/journal.pone.0179291. PubMed DOI PMC
Szymańska E., Orłowski P., Winnicka K., Tomaszewska E., Bąska P., Celichowski G., Grobelny J., Basa A., Krzyżowska M. Multifunctional Tannic Acid/Silver Nanoparticle-Based Mucoadhesive Hydrogel for Improved Local Treatment of HSV Infection: In Vitro and In Vivo Studies. Int. J. Mol. Sci. 2018;19:387. doi: 10.3390/ijms19020387. PubMed DOI PMC
Orłowski P., Kowalczyk A., Tomaszewska E., Ranoszek-Soliwoda K., Węgrzyn A., Grzesiak J., Celichowski G., Grobelny J., Eriksson K., Krzyzowska M. Antiviral Activity of Tannic Acid Modified Silver Nanoparticles: Potential to Activate Immune Response in Herpes Genitalis. Viruses. 2018;10:524. doi: 10.3390/v10100524. PubMed DOI PMC
Fahim M.S., Brawner T.A., Hall D.G. New Treatment for Herpes Simplex Virus Type 2 [Ultrasound and Zinc, Urea and Tannic Acid Ointment]. Part II: Female Patients. J. Med. 1980;11:143–167. PubMed