Insights into Antiviral Properties and Molecular Mechanisms of Non-Flavonoid Polyphenols against Human Herpesviruses
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
36430369
PubMed Central
PMC9693824
DOI
10.3390/ijms232213891
PII: ijms232213891
Knihovny.cz E-zdroje
- Klíčová slova
- Epstein–Barr virus (EBV), HSV-1, HSV-2, Kaposi sarcoma-associated herpesvirus (KSHV), antiviral activity, herpes simplex virus, human cytomegalovirus (HCMV), natural products, non-flavonoid polyphenols, polyphenols, varicella-zoster virus (VZV),
- MeSH
- antivirové látky farmakologie terapeutické užití MeSH
- herpetické infekce * farmakoterapie MeSH
- infekce virem Epsteina-Barrové * farmakoterapie MeSH
- lidé MeSH
- polyfenoly farmakologie terapeutické užití MeSH
- virus Epsteinův-Barrové MeSH
- virus varicella zoster MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- antivirové látky MeSH
- polyfenoly MeSH
Herpesviruses are one of the most contagious DNA viruses that threaten human health, causing severe diseases, including, but not limited to, certain types of cancer and neurological complications. The overuse and misuse of anti-herpesvirus drugs are key factors leading to drug resistance. Therefore, targeting human herpesviruses with natural products is an attractive form of therapy, as it might improve treatment efficacy in therapy-resistant herpesviruses. Plant polyphenols are major players in the health arena as they possess diverse bioactivities. Hence, in this article, we comprehensively summarize the recent advances that have been attained in employing plant non-flavonoid polyphenols, such as phenolic acids, tannins and their derivatives, stilbenes and their derivatives, lignans, neolignans, xanthones, anthraquinones and their derivatives, curcuminoids, coumarins, furanocoumarins, and other polyphenols (phloroglucinol) as promising anti-herpesvirus drugs against various types of herpesvirus such as alpha-herpesviruses (herpes simplex virus type 1 and 2 and varicella-zoster virus), beta-herpesviruses (human cytomegalovirus), and gamma-herpesviruses (Epstein-Barr virus and Kaposi sarcoma-associated herpesvirus). The molecular mechanisms of non-flavonoid polyphenols against the reviewed herpesviruses are also documented.
Zobrazit více v PubMed
Šudomová M., Berchová-Bímová K., Mazurakova A., Šamec D., Kubatka P., Hassan S.T.S. Flavonoids Target Human Herpesviruses That Infect the Nervous System: Mechanisms of Action and Therapeutic Insights. Viruses. 2022;14:592. doi: 10.3390/v14030592. PubMed DOI PMC
Šudomová M., Berchová-Bímová K., Marzocco S., Liskova A., Kubatka P., Hassan S.T.S. Berberine in Human Oncogenic Herpesvirus Infections and Their Linked Cancers. Viruses. 2021;13:1014. doi: 10.3390/v13061014. PubMed DOI PMC
Treml J., Gazdová M., Šmejkal K., Šudomová M., Kubatka P., Hassan S.T.S. Natural Products-Derived Chemicals: Breaking Barriers to Novel Anti-HSV Drug Development. Viruses. 2020;12:154. doi: 10.3390/v12020154. PubMed DOI PMC
Adler B., Sattler C., Adler H. Herpesviruses and Their Host Cells: A Successful Liaison. Trends Microbiol. 2017;25:229–241. doi: 10.1016/j.tim.2016.11.009. PubMed DOI
Šudomová M., Hassan S.T.S. Nutraceutical Curcumin with Promising Protection against Herpesvirus Infections and Their Associated Inflammation: Mechanisms and Pathways. Microorganisms. 2021;9:292. doi: 10.3390/microorganisms9020292. PubMed DOI PMC
Wołącewicz M., Becht R., Grywalska E., Niedźwiedzka-Rystwej P. Herpesviruses in Head and Neck Cancers. Viruses. 2020;12:172. doi: 10.3390/v12020172. PubMed DOI PMC
Azab W., Osterrieder K. Initial Contact: The First Steps in Herpesvirus Entry. Adv. Anat. Embryol. Cell Biol. 2017;223:1–27. doi: 10.1007/978-3-319-53168-7_1. PubMed DOI
Connolly S.A., Jardetzky T.S., Longnecker R. The Structural Basis of Herpesvirus Entry. Nat. Rev. Microbiol. 2021;19:110–121. doi: 10.1038/s41579-020-00448-w. PubMed DOI PMC
Cohen J.I. Herpesvirus Latency. J. Clin. Investig. 2020;130:3361–3369. doi: 10.1172/JCI136225. PubMed DOI PMC
Wu Y., Yang Q., Wang M., Chen S., Jia R., Yang Q., Zhu D., Liu M., Zhao X., Zhang S., et al. Multifaceted Roles of ICP22/ORF63 Proteins in the Life Cycle of Human Herpesviruses. Front. Microbiol. 2021;12:668461. doi: 10.3389/fmicb.2021.668461. PubMed DOI PMC
Frappier L. Regulation of Herpesvirus Reactivation by Host MicroRNAs. J. Virol. 2015;89:2456–2458. doi: 10.1128/JVI.03413-14. PubMed DOI PMC
Dochnal S.A., Francois A.K., Cliffe A.R. De Novo Polycomb Recruitment: Lessons from Latent Herpesviruses. Viruses. 2021;13:1470. doi: 10.3390/v13081470. PubMed DOI PMC
Jarosinski K.W. Interindividual Spread of Herpesviruses. Adv. Anat. Embryol. Cell Biol. 2017;223:195–224. doi: 10.1007/978-3-319-53168-7_9. PubMed DOI
Poole C.L., James S.H. Antiviral Therapies for Herpesviruses: Current Agents and New Directions. Clin. Ther. 2018;40:1282–1298. doi: 10.1016/j.clinthera.2018.07.006. PubMed DOI PMC
Majewska A., Mlynarczyk-Bonikowska B. 40 Years after the Registration of Acyclovir: Do We Need New Anti-Herpetic Drugs? Int. J. Mol. Sci. 2022;23:3431. doi: 10.3390/ijms23073431. PubMed DOI PMC
Kłysik K., Pietraszek A., Karewicz A., Nowakowska M. Acyclovir in the Treatment of Herpes Viruses—A Review. Curr. Med. Chem. 2020;27:4118–4137. doi: 10.2174/0929867325666180309105519. PubMed DOI
Hassan S.T.S., Masarčíková R., Berchová K. Bioactive Natural Products with Anti-Herpes Simplex Virus Properties. J. Pharm. Pharmacol. 2015;67:1325–1336. doi: 10.1111/jphp.12436. PubMed DOI
Hassan S.T.S., Švajdlenka E., Berchová-Bímová K. Hibiscus sabdariffa L. and Its Bioactive Constituents Exhibit Antiviral Activity against HSV-2 and Anti-Enzymatic Properties against Urease by an ESI-MS Based Assay. Molecules. 2017;22:722. doi: 10.3390/molecules22050722. PubMed DOI PMC
Lattanzio V. Phenolic Compounds: Introduction. In: Ramawat K.G., Mérillon J.-M., editors. Natural Products. Springer; Berlin/Heidelberg, Germany: 2013. pp. 1543–1580.
Wang X., Qi Y., Zheng H. Dietary Polyphenol, Gut Microbiota, and Health Benefits. Antioxidants. 2022;11:1212. doi: 10.3390/antiox11061212. PubMed DOI PMC
Durazzo A., Lucarini M., Souto E.B., Cicala C., Caiazzo E., Izzo A.A., Novellino E., Santini A. Polyphenols: A Concise Overview on the Chemistry, Occurrence, and Human Health. Phytother. Res. 2019;33:2221–2243. doi: 10.1002/ptr.6419. PubMed DOI
Tuladhar P., Sasidharan S., Saudagar P. Biocontrol Agents and Secondary Metabolites. Elsevier; Amsterdam, The Netherlands: 2021. Role of Phenols and Polyphenols in Plant Defense Response to Biotic and Abiotic Stresses; pp. 419–441.
Cory H., Passarelli S., Szeto J., Tamez M., Mattei J. The Role of Polyphenols in Human Health and Food Systems: A Mini-Review. Front. Nutr. 2018;5:87. doi: 10.3389/fnut.2018.00087. PubMed DOI PMC
Di Lorenzo C., Colombo F., Biella S., Stockley C., Restani P. Polyphenols and Human Health: The Role of Bioavailability. Nutrients. 2021;13:273. doi: 10.3390/nu13010273. PubMed DOI PMC
Luca S.V., Macovei I., Bujor A., Miron A., Skalicka-Woźniak K., Aprotosoaie A.C., Trifan A. Bioactivity of Dietary Polyphenols: The Role of Metabolites. Crit. Rev. Food Sci. Nutr. 2020;60:626–659. doi: 10.1080/10408398.2018.1546669. PubMed DOI
Zhang L., Han Z., Granato D. Polyphenols in Foods: Classification, Methods of Identification, and Nutritional Aspects in Human Health. Adv. Food Nutr. Res. 2021;98:1–33. doi: 10.1016/bs.afnr.2021.02.004. PubMed DOI
Chojnacka K., Skrzypczak D., Izydorczyk G., Mikula K., Szopa D., Witek-Krowiak A. Antiviral Properties of Polyphenols from Plants. Foods. 2021;10:2277. doi: 10.3390/foods10102277. PubMed DOI PMC
Montenegro-Landívar M.F., Tapia-Quirós P., Vecino X., Reig M., Valderrama C., Granados M., Cortina J.L., Saurina J. Polyphenols and Their Potential Role to Fight Viral Diseases: An Overview. Sci. Total Environ. 2021;801:149719. doi: 10.1016/j.scitotenv.2021.149719. PubMed DOI PMC
Hassan S.T.S., Šudomová M., Berchová-Bímová K., Šmejkal K., Echeverría J. Psoromic Acid, a Lichen-Derived Molecule, Inhibits the Replication of HSV-1 and HSV-2, and Inactivates HSV-1 DNA Polymerase: Shedding Light on Antiherpetic Properties. Molecules. 2019;24:2912. doi: 10.3390/molecules24162912. PubMed DOI PMC
Zhu S., Viejo-Borbolla A. Pathogenesis and Virulence of Herpes Simplex Virus. Virulence. 2021;12:2670–2702. doi: 10.1080/21505594.2021.1982373. PubMed DOI PMC
Gershon A.A., Breuer J., Cohen J.I., Cohrs R.J., Gershon M.D., Gilden D., Grose C., Hambleton S., Kennedy P.G.E., Oxman M.N., et al. Varicella Zoster Virus Infection. Nat. Rev. Dis. Prim. 2015;1:15016. doi: 10.1038/nrdp.2015.16. PubMed DOI PMC
Kennedy P.G.E., Gershon A.A. Clinical Features of Varicella-Zoster Virus Infection. Viruses. 2018;10:E609. doi: 10.3390/v10110609. PubMed DOI PMC
Azab W., Dayaram A., Greenwood A.D., Osterrieder N. How Host Specific Are Herpesviruses? Lessons from Herpesviruses Infecting Wild and Endangered Mammals. Annu. Rev. Virol. 2018;5:53–68. doi: 10.1146/annurev-virology-092917-043227. PubMed DOI
Lum K.K., Cristea I.M. Host Innate Immune Response and Viral Immune Evasion During Alphaherpesvirus Infection. Curr. Issues Mol. Biol. 2021;42:635–686. doi: 10.21775/cimb.042.635. PubMed DOI PMC
Borenstein R., Hanson B.A., Markosyan R.M., Gallo E.S., Narasipura S.D., Bhutta M., Shechter O., Lurain N.S., Cohen F.S., Al-Harthi L., et al. Ginkgolic Acid Inhibits Fusion of Enveloped Viruses. Sci. Rep. 2020;10:4746. doi: 10.1038/s41598-020-61700-0. PubMed DOI PMC
Sochocka M., Sobczyński M., Ochnik M., Zwolińska K., Leszek J. Hampering Herpesviruses HHV-1 and HHV-2 Infection by Extract of Ginkgo Biloba (EGb) and Its Phytochemical Constituents. Front. Microbiol. 2019;10:2367. doi: 10.3389/fmicb.2019.02367. PubMed DOI PMC
Bhutta M.S., Shechter O., Gallo E.S., Martin S.D., Jones E., Doncel G.F., Borenstein R. Ginkgolic Acid Inhibits Herpes Simplex Virus Type 1 Skin Infection and Prevents Zosteriform Spread in Mice. Viruses. 2021;13:86. doi: 10.3390/v13010086. PubMed DOI PMC
Todorova N., Rangelov M., Dincheva I., Badjakov I., Enchev V., Markova N. Potential of Hydroxybenzoic Acids from Graptopetalum Paraguayense for Inhibiting of Herpes Simplex Virus DNA Polymerase–Metabolome Profiling, Molecular Docking and Quantum-Chemical Analysis. Pharmacia. 2022;69:113–123. doi: 10.3897/pharmacia.69.e79467. DOI
AbouAitah K., Allayh A.K., Wojnarowicz J., Shaker Y.M., Swiderska-Sroda A., Lojkowski W. Nanoformulation Composed of Ellagic Acid and Functionalized Zinc Oxide Nanoparticles Inactivates DNA and RNA Viruses. Pharmaceutics. 2021;13:2174. doi: 10.3390/pharmaceutics13122174. PubMed DOI PMC
Di Sotto A., Di Giacomo S., Amatore D., Locatelli M., Vitalone A., Toniolo C., Rotino G.L., Lo Scalzo R., Palamara A.T., Marcocci M.E., et al. A Polyphenol Rich Extract from Solanum Melongena L. DR2 Peel Exhibits Antioxidant Properties and Anti-Herpes Simplex Virus Type 1 Activity In Vitro. Molecules. 2018;23:E2066. doi: 10.3390/molecules23082066. PubMed DOI PMC
Langland J., Jacobs B., Wagner C.E., Ruiz G., Cahill T.M. Antiviral Activity of Metal Chelates of Caffeic Acid and Similar Compounds towards Herpes Simplex, VSV-Ebola Pseudotyped and Vaccinia Viruses. Antivir. Res. 2018;160:143–150. doi: 10.1016/j.antiviral.2018.10.021. PubMed DOI
Kesharwani A., Polachira S.K., Nair R., Agarwal A., Mishra N.N., Gupta S.K. Anti-HSV-2 Activity of Terminalia Chebula Retz Extract and Its Constituents, Chebulagic and Chebulinic Acids. BMC Complement. Altern. Med. 2017;17:110. doi: 10.1186/s12906-017-1620-8. PubMed DOI PMC
Siqueira E.M.D.S., Lima T.L., Boff L., Lima S.G., Lourenço E.M., Ferreira É.G., Barbosa E.G., Machado P.R., Farias K.J., Ferreira L.D.S., et al. Antiviral Potential of Spondias Mombin L. Leaves Extract Against Herpes Simplex Virus Type-1 Replication Using In Vitro and In Silico Approaches. Planta Med. 2020;86:505–515. doi: 10.1055/a-1135-9066. PubMed DOI
Szymańska E., Orłowski P., Winnicka K., Tomaszewska E., Bąska P., Celichowski G., Grobelny J., Basa A., Krzyżowska M. Multifunctional Tannic Acid/Silver Nanoparticle-Based Mucoadhesive Hydrogel for Improved Local Treatment of HSV Infection: In Vitro and In Vivo Studies. IJMS. 2018;19:387. doi: 10.3390/ijms19020387. PubMed DOI PMC
Orłowski P., Kowalczyk A., Tomaszewska E., Ranoszek-Soliwoda K., Węgrzyn A., Grzesiak J., Celichowski G., Grobelny J., Eriksson K., Krzyzowska M. Antiviral Activity of Tannic Acid Modified Silver Nanoparticles: Potential to Activate Immune Response in Herpes Genitalis. Viruses. 2018;10:524. doi: 10.3390/v10100524. PubMed DOI PMC
Vilhelmova-Ilieva N., Jacquet R., Deffieux D., Pouységu L., Sylla T., Chassaing S., Nikolova I., Quideau S., Galabov A.S. Anti-Herpes Simplex Virus Type 1 Activity of Specially Selected Groups of Tannins. Drug Res. 2019;69:373–374. doi: 10.1055/a-0640-2557. PubMed DOI
Vilhelmova-Ilieva N., Jacquet R., Quideau S., Galabov A.S. Ellagitannins as Synergists of ACV on the Replication of ACV-Resistant Strains of HSV 1 and 2. Antivir. Res. 2014;110:104–114. doi: 10.1016/j.antiviral.2014.07.017. PubMed DOI
Arunkumar J., Rajarajan S. Study on Antiviral Activities, Drug-Likeness and Molecular Docking of Bioactive Compounds of Punica Granatum L. to Herpes Simplex Virus-2 (HSV-2) Microb. Pathog. 2018;118:301–309. doi: 10.1016/j.micpath.2018.03.052. PubMed DOI
Houston D.M.J., Bugert J.J., Denyer S.P., Heard C.M. Potentiated Virucidal Activity of Pomegranate Rind Extract (PRE) and Punicalagin against Herpes Simplex Virus (HSV) When Co-Administered with Zinc (II) Ions, and Antiviral Activity of PRE against HSV and Aciclovir-Resistant HSV. PLoS ONE. 2017;12:e0179291. doi: 10.1371/journal.pone.0179291. PubMed DOI PMC
Bae S., Kim S.Y., Do M.H., Lee C.H., Song Y.-J. 1,2,3,4,6-Penta-O-Galloyl-ß-D-Glucose, a Bioactive Compound in Elaeocarpus Sylvestris Extract, Inhibits Varicella-Zoster Virus Replication. Antivir. Res. 2017;144:266–272. doi: 10.1016/j.antiviral.2017.06.018. PubMed DOI
Rechenchoski D.Z., Agostinho K.F., Faccin-Galhardi L.C., Lonni A.A.S.G., da Silva J.V.H., de Andrade F.G., Cunha A.P., Ricardo N.M.P.S., Nozawa C., Linhares R.E.C. Mangiferin: A Promising Natural Xanthone from Mangifera Indica for the Control of Acyclovir - Resistant Herpes Simplex Virus 1 Infection. Bioorg. Med. Chem. 2020;28:115304. doi: 10.1016/j.bmc.2020.115304. PubMed DOI
Rechenchoski D.Z., Samensari N.L., Faccin-Galhardi L.C., de Almeida R.R., Cunha A.P., Ricardo N.M.P.S., Nozawa C., Linhares R.E.C. The Combination of Dimorphandra Gardneriana Galactomannan and Mangiferin Inhibits Herpes Simplex and Poliovirus. Curr. Pharm. Biotechnol. 2019;20:215–221. doi: 10.2174/1389201020666190307130431. PubMed DOI
Abba Y., Hassim H., Hamzah H., Noordin M.M. Antiviral Activity of Resveratrol against Human and Animal Viruses. Adv. Virol. 2015;2015:184241. doi: 10.1155/2015/184241. PubMed DOI PMC
Chen X., Song X., Zhao X., Zhang Y., Wang Y., Jia R., Zou Y., Li L., Yin Z. Insights into the Anti-Inflammatory and Antiviral Mechanisms of Resveratrol. Mediat. Inflamm. 2022;2022:7138756. doi: 10.1155/2022/7138756. PubMed DOI PMC
Docherty J.J., Fu M.M., Stiffler B.S., Limperos R.J., Pokabla C.M., DeLucia A.L. Resveratrol Inhibition of Herpes Simplex Virus Replication. Antivir. Res. 1999;43:145–155. doi: 10.1016/S0166-3542(99)00042-X. PubMed DOI
Annunziata G., Maisto M., Schisano C., Ciampaglia R., Narciso V., Tenore G.C., Novellino E. Resveratrol as a Novel Anti-Herpes Simplex Virus Nutraceutical Agent: An Overview. Viruses. 2018;10:473. doi: 10.3390/v10090473. PubMed DOI PMC
Ding L., Jiang P., Xu X., Lu W., Yang C., Zhou P., Liu S. Resveratrol Promotes HSV-2 Replication by Increasing Histone Acetylation and Activating NF-ΚB. Biochem. Pharmacol. 2020;171:113691. doi: 10.1016/j.bcp.2019.113691. PubMed DOI
Xiao J., Wang X., Wu Y., Zhao Q., Liu X., Zhang G., Zhao Z., Ning Y., Wang K., Tan Y., et al. Synergistic Effect of Resveratrol and HSV-TK/GCV Therapy on Murine Hepatoma Cells. Cancer Biol. Ther. 2019;20:183–191. doi: 10.1080/15384047.2018.1523094. PubMed DOI PMC
Zheng Y., Yang X.-W., Schols D., Mori M., Botta B., Chevigné A., Mulinge M., Steinmetz A., Schmit J.-C., Seguin-Devaux C. Active Components from Cassia Abbreviata Prevent HIV-1 Entry by Distinct Mechanisms of Action. Int. J. Mol. Sci. 2021;22:5052. doi: 10.3390/ijms22095052. PubMed DOI PMC
Tarbeeva D.V., Krylova N.V., Iunikhina O.V., Likhatskaya G.N., Kalinovskiy A.I., Grigorchuk V.P., Shchelkanov M.Y., Fedoreyev S.A. Biologically Active Polyphenolic Compounds from Lespedeza Bicolor. Fitoterapia. 2022;157:105121. doi: 10.1016/j.fitote.2021.105121. PubMed DOI
Squillaci G., Zannella C., Carbone V., Minasi P., Folliero V., Stelitano D., Cara F.L., Galdiero M., Franci G., Morana A. Grape Canes from Typical Cultivars of Campania (Southern Italy) as a Source of High-Value Bioactive Compounds: Phenolic Profile, Antioxidant and Antimicrobial Activities. Molecules. 2021;26:2746. doi: 10.3390/molecules26092746. PubMed DOI PMC
Liu S., Li L., Tan L., Liang X. Inhibition of Herpes Simplex Virus-1 Replication by Natural Compound Honokiol. Virol. Sin. 2019;34:315–323. doi: 10.1007/s12250-019-00104-5. PubMed DOI PMC
Dias M.M., Zuza O., Riani L.R., de Faria Pinto P., Pinto P.L.S., Silva M.P., de Moraes J., Ataíde A.C.Z., de Oliveira Silva F., Cecílio A.B., et al. In Vitro Schistosomicidal and Antiviral Activities of Arctium Lappa L. (Asteraceae) against Schistosoma Mansoni and Herpes Simplex Virus-1. Biomed. Pharmacother. 2017;94:489–498. doi: 10.1016/j.biopha.2017.07.116. PubMed DOI
Saidu M.B., Kúsz N., Tsai Y.-C., Vágvölgyi M., Berkecz R., Kókai D., Burián K., Hohmann J., Rédei D. Triterpenes and Phenolic Compounds from Euphorbia Deightonii with Antiviral Activity against Herpes Simplex Virus Type-2. Plants. 2022;11:764. doi: 10.3390/plants11060764. PubMed DOI PMC
Xiong H.-R., Luo J., Hou W., Xiao H., Yang Z.-Q. The Effect of Emodin, an Anthraquinone Derivative Extracted from the Roots of Rheum Tanguticum, against Herpes Simplex Virus in Vitro and in Vivo. J. Ethnopharmacol. 2011;133:718–723. doi: 10.1016/j.jep.2010.10.059. PubMed DOI PMC
Huang Y., Li X., Pan C., Cheng W., Wang X., Yang Z., Zheng L. The Intervention Mechanism of Emodin on TLR3 Pathway in the Process of Central Nervous System Injury Caused by Herpes Virus Infection. Neurol. Res. 2021;43:307–313. doi: 10.1080/01616412.2020.1853989. PubMed DOI
Mugas M.L., Marioni J., Martinez F., Aguilar J.J., Cabrera J.L., Contigiani M.S., Konigheim B.S., Núñez-Montoya S.C. Inactivation of Herpes Simplex Virus by Photosensitizing Anthraquinones Isolated from Heterophyllaea Pustulata. Planta Med. 2021;87:716–723. doi: 10.1055/a-1345-6831. PubMed DOI
Roa-Linares V.C., Miranda-Brand Y., Tangarife-Castaño V., Ochoa R., García P.A., Castro M.Á., Betancur-Galvis L., San Feliciano A. Anti-Herpetic, Anti-Dengue and Antineoplastic Activities of Simple and Heterocycle-Fused Derivatives of Terpenyl-1,4-Naphthoquinone and 1,4-Anthraquinone. Molecules. 2019;24:1279. doi: 10.3390/molecules24071279. PubMed DOI PMC
Soleimani V., Sahebkar A., Hosseinzadeh H. Turmeric (Curcuma Longa) and Its Major Constituent (Curcumin) as Nontoxic and Safe Substances: Review. Phytother. Res. 2018;32:985–995. doi: 10.1002/ptr.6054. PubMed DOI
Kotha R.R., Luthria D.L. Curcumin: Biological, Pharmaceutical, Nutraceutical, and Analytical Aspects. Molecules. 2019;24:2930. doi: 10.3390/molecules24162930. PubMed DOI PMC
Flores D.J., Lee L.H., Adams S.D. Inhibition of Curcumin-Treated Herpes Simplex Virus 1 and 2 in Vero Cells. AiM. 2016;6:276–287. doi: 10.4236/aim.2016.64027. DOI
Kutluay S.B., Doroghazi J., Roemer M.E., Triezenberg S.J. Curcumin Inhibits Herpes Simplex Virus Immediate-Early Gene Expression by a Mechanism Independent of P300/CBP Histone Acetyltransferase Activity. Virology. 2008;373:239–247. doi: 10.1016/j.virol.2007.11.028. PubMed DOI PMC
Vitali D., Bagri P., Wessels J.M., Arora M., Ganugula R., Parikh A., Mandur T., Felker A., Garg S., Kumar M.N.V.R., et al. Curcumin Can Decrease Tissue Inflammation and the Severity of HSV-2 Infection in the Female Reproductive Mucosa. IJMS. 2020;21:337. doi: 10.3390/ijms21010337. PubMed DOI PMC
Xie Y., Wu L., Wang M., Cheng A., Yang Q., Wu Y., Jia R., Zhu D., Zhao X., Chen S., et al. Alpha-Herpesvirus Thymidine Kinase Genes Mediate Viral Virulence and Are Potential Therapeutic Targets. Front. Microbiol. 2019;10:941. doi: 10.3389/fmicb.2019.00941. PubMed DOI PMC
El-Halim S.M.A., Mamdouh M.A., El-Haddad A.E., Soliman S.M. Fabrication of Anti-HSV-1 Curcumin Stabilized Nanostructured Proniosomal Gel: Molecular Docking Studies on Thymidine Kinase Proteins. Sci. Pharm. 2020;88:9. doi: 10.3390/scipharm88010009. DOI
Badria F.A., Abdelaziz A.E., Hassan A.H., Elgazar A.A., Mazyed E.A. Development of Provesicular Nanodelivery System of Curcumin as a Safe and Effective Antiviral Agent: Statistical Optimization, In Vitro Characterization, and Antiviral Effectiveness. Molecules. 2020;25:5668. doi: 10.3390/molecules25235668. PubMed DOI PMC
Rajtar B., Skalicka-Woźniak K., Świątek Ł., Stec A., Boguszewska A., Polz-Dacewicz M. Antiviral Effect of Compounds Derived from Angelica Archangelica L. on Herpes Simplex Virus-1 and Coxsackievirus B3 Infections. Food Chem. Toxicol. 2017;109:1026–1031. doi: 10.1016/j.fct.2017.05.011. PubMed DOI
Okba M.M., El Gedaily R.A., Ashour R.M. UPLC-PDA-ESI-QTOF-MS Profiling and Potent Anti-HSV-II Activity of Eucalyptus Sideroxylon Leaves. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2017;1068–1069:335–342. doi: 10.1016/j.jchromb.2017.10.065. PubMed DOI
Fulkerson H.L., Nogalski M.T., Collins-McMillen D., Yurochko A.D. Overview of Human Cytomegalovirus Pathogenesis. Methods Mol. Biol. 2021;2244:1–18. doi: 10.1007/978-1-0716-1111-1_1. PubMed DOI
O’Connor C.M. Cytomegalovirus (CMV) Infection and Latency. Pathogens. 2021;10:342. doi: 10.3390/pathogens10030342. PubMed DOI PMC
Griffiths P., Baraniak I., Reeves M. The Pathogenesis of Human Cytomegalovirus. J. Pathol. 2015;235:288–297. doi: 10.1002/path.4437. PubMed DOI
Michaelis M., Doerr H.W., Cinatl J. The Story of Human Cytomegalovirus and Cancer: Increasing Evidence and Open Questions. Neoplasia. 2009;11:1–9. doi: 10.1593/neo.81178. PubMed DOI PMC
Golais F., Mrázová V. Human Alpha and Beta Herpesviruses and Cancer: Passengers or Foes? Folia Microbiol. 2020;65:439–449. doi: 10.1007/s12223-020-00780-x. PubMed DOI
Griffiths P. Cytomegalovirus Infection of the Central Nervous System. Herpes. 2004;11((Suppl. 2)):95A–104A. PubMed
Tselis A.C. Cytomegalovirus Infections of the Adult Human Nervous System. Handb. Clin. Neurol. 2014;123:307–318. doi: 10.1016/B978-0-444-53488-0.00014-6. PubMed DOI
Zhang X.-Y., Fang F. Congenital Human Cytomegalovirus Infection and Neurologic Diseases in Newborns. Chin. Med. J. (Engl) 2019;132:2109–2118. doi: 10.1097/CM9.0000000000000404. PubMed DOI PMC
Wang S.-Y., Zhang J., Xu X.-G., Su H.-L., Xing W.-M., Zhang Z.-S., Jin W.-H., Dai J.-H., Wang Y.-Z., He X.-Y., et al. Inhibitory Effects of Piceatannol on Human Cytomegalovirus (HCMV) in Vitro. J. Microbiol. 2020;58:716–723. doi: 10.1007/s12275-020-9528-2. PubMed DOI
Alam Z., Al-Mahdi Z., Zhu Y., McKee Z., Parris D.S., Parikh H.I., Kellogg G.E., Kuchta A., McVoy M.A. Anti-Cytomegalovirus Activity of the Anthraquinone Atanyl Blue PRL. Antivir. Res. 2015;114:86–95. doi: 10.1016/j.antiviral.2014.12.003. PubMed DOI PMC
Lv Y., An Z., Chen H., Wang Z., Liu L. Mechanism of Curcumin Resistance to Human Cytomegalovirus in HELF Cells. BMC Complement. Altern. Med. 2014;14:284. doi: 10.1186/1472-6882-14-284. PubMed DOI PMC
Lv Y., Gong L., Wang Z., Han F., Liu H., Lu X., Liu L. Curcumin Inhibits Human Cytomegalovirus by Downregulating Heat Shock Protein 90. Mol. Med. Rep. 2015;12:4789–4793. doi: 10.3892/mmr.2015.3983. PubMed DOI
Lv Y.-L., Jia Y., Wan Z., An Z.-L., Yang S., Han F.-F., Gong L.-L., Xuan L.-L., Ren L.-L., Zhang W., et al. Curcumin Inhibits the Formation of Atherosclerosis in ApoE-/- Mice by Suppressing Cytomegalovirus Activity in Endothelial Cells. Life Sci. 2020;257:117658. doi: 10.1016/j.lfs.2020.117658. PubMed DOI
Lv Y., Lei N., Wang D., An Z., Li G., Han F., Liu H., Liu L. Protective Effect of Curcumin against Cytomegalovirus Infection in Balb/c Mice. Environ. Toxicol. Pharmacol. 2014;37:1140–1147. doi: 10.1016/j.etap.2014.04.017. PubMed DOI
Möhl B.S., Chen J., Longnecker R. Gammaherpesvirus Entry and Fusion: A Tale How Two Human Pathogenic Viruses Enter Their Host Cells. Adv. Virus Res. 2019;104:313–343. doi: 10.1016/bs.aivir.2019.05.006. PubMed DOI
Farrell P.J. Epstein-Barr Virus and Cancer. Annu. Rev. Pathol. 2019;14:29–53. doi: 10.1146/annurev-pathmechdis-012418-013023. PubMed DOI
Yiu S.P.T., Dorothea M., Hui K.F., Chiang A.K.S. Lytic Induction Therapy against Epstein-Barr Virus-Associated Malignancies: Past, Present, and Future. Cancers. 2020;12:2142. doi: 10.3390/cancers12082142. PubMed DOI PMC
Wen K.W., Wang L., Menke J.R., Damania B. Cancers Associated with Human Gammaherpesviruses. FEBS J. 2021 doi: 10.1111/febs.16206. PubMed DOI PMC
Goncalves P.H., Ziegelbauer J., Uldrick T.S., Yarchoan R. Kaposi Sarcoma Herpesvirus-Associated Cancers and Related Diseases. Curr. Opin. HIV AIDS. 2017;12:47–56. doi: 10.1097/COH.0000000000000330. PubMed DOI PMC
Ackermann M. Pathogenesis of Gammaherpesvirus Infections. Vet. Microbiol. 2006;113:211–222. doi: 10.1016/j.vetmic.2005.11.008. PubMed DOI
Soldan S.S., Lieberman P.M. Epstein-Barr Virus Infection in the Development of Neurological Disorders. Drug Discov. Today Dis. Models. 2020;32:35–52. doi: 10.1016/j.ddmod.2020.01.001. PubMed DOI PMC
Jha H.C., Mehta D., Lu J., El-Naccache D., Shukla S.K., Kovacsics C., Kolson D., Robertson E.S. Gammaherpesvirus Infection of Human Neuronal Cells. mBio. 2015;6:e01844-15. doi: 10.1128/mBio.01844-15. PubMed DOI PMC
Nowalk A., Green M. Epstein-Barr Virus. Microbiol. Spectr. 2016;4 doi: 10.1128/microbiolspec.DMIH2-0011-2015. PubMed DOI
Ciccarese G., Trave I., Herzum A., Parodi A., Drago F. Dermatological Manifestations of Epstein-Barr Virus Systemic Infection: A Case Report and Literature Review. Int. J. Dermatol. 2020;59:1202–1209. doi: 10.1111/ijd.14887. PubMed DOI
Li S., Bai L., Dong J., Sun R., Lan K. Kaposi’s Sarcoma-Associated Herpesvirus: Epidemiology and Molecular Biology. In: Cai Q., Yuan Z., Lan K., editors. Infectious Agents Associated Cancers: Epidemiology and Molecular Biology. Volume 1018. Springer; Singapore: 2017. pp. 91–127. Advances in Experimental Medicine and Biology. PubMed
Nomura E., Hosoda A., Morishita H., Murakami A., Koshimizu K., Ohigashi H., Taniguchi H. Synthesis of Novel Polyphenols Consisted of Ferulic and Gallic Acids, and Their Inhibitory Effects on Phorbol Ester-Induced Epstein-Barr Virus Activation and Superoxide Generation. Bioorg. Med. Chem. 2002;10:1069–1075. doi: 10.1016/S0968-0896(01)00361-3. PubMed DOI
Crowley A., Connell J., Schaffer K., Hall W., Hassan J. Is There Diagnostic Value in Detection of Immunoglobulin g Antibodies to the Epstein-Barr Virus Early Antigen? Biores. Open Access. 2012;1:291–296. doi: 10.1089/biores.2012.0274. PubMed DOI PMC
Boonsopon S., Maghsoudlou A., Kombo N.E., Foster C.S. A Therapeutic Trial of Valganciclovir in Patients with Uveitis and Positive Epstein-Barr Virus Early Antigen D IgG Titers. Eur. J. Ophthalmol. 2016;26:30–35. doi: 10.5301/ejo.5000673. PubMed DOI
Zhang J., Zhu W.-F., Xu J., Kitdamrongtham W., Manosroi A., Manosroi J., Tokuda H., Abe M., Akihisa T., Feng F. Potential Cancer Chemopreventive and Anticancer Constituents from the Fruits of Ficus Hispida L.f. (Moraceae) J. Ethnopharmacol. 2018;214:37–46. doi: 10.1016/j.jep.2017.11.016. PubMed DOI
Tang F.-Y., Chen C.-Y., Shyu H.-W., Hong S., Chen H.-M., Chiou Y.-H., Lin K.-H., Chou M.-C., Wang L.-Y., Wang Y.-F. Resveratrol Induces Cell Death and Inhibits Human Herpesvirus 8 Replication in Primary Effusion Lymphoma Cells. Chem. Biol. Interact. 2015;242:372–379. doi: 10.1016/j.cbi.2015.10.025. PubMed DOI
Wang Q., Zhu N., Hu J., Wang Y., Xu J., Gu Q., Lieberman P.M., Yuan Y. The MTOR Inhibitor Manassantin B Reveals a Crucial Role of MTORC2 Signaling in Epstein-Barr Virus Reactivation. J. Biol. Chem. 2020;295:7431–7441. doi: 10.1074/jbc.RA120.012645. PubMed DOI PMC
Wu C.-C., Chen M.-S., Cheng Y.-J., Ko Y.-C., Lin S.-F., Chiu I.-M., Chen J.-Y. Emodin Inhibits EBV Reactivation and Represses NPC Tumorigenesis. Cancers. 2019;11:1795. doi: 10.3390/cancers11111795. PubMed DOI PMC
Dheekollu J., Wiedmer A., Ayyanathan K., Deakyne J.S., Messick T.E., Lieberman P.M. Cell-Cycle-Dependent EBNA1-DNA Crosslinking Promotes Replication Termination at OriP and Viral Episome Maintenance. Cell. 2021;184:643–654.e13. doi: 10.1016/j.cell.2020.12.022. PubMed DOI PMC
Jakhmola S., Jonniya N.A., Sk M.F., Rani A., Kar P., Jha H.C. Identification of Potential Inhibitors against Epstein–Barr Virus Nuclear Antigen 1 (EBNA1): An Insight from Docking and Molecular Dynamic Simulations. ACS Chem. Neurosci. 2021;12:3060–3072. doi: 10.1021/acschemneuro.1c00350. PubMed DOI
Yiu C.-Y., Chiu Y.-J., Lin T.-P. The Ethyl Acetate Subfraction of Polygonum Cuspidatum Root Containing Emodin Affect EBV Gene Expression and Induce EBV-Positive Cells Apoptosis. Biol. Pharm. Bull. 2021;44:1837–1842. doi: 10.1248/bpb.b21-00508. PubMed DOI
Tsai Y.-C., Hohmann J., El-Shazly M., Chang L.-K., Dankó B., Kúsz N., Hsieh C.-T., Hunyadi A., Chang F.-R. Bioactive Constituents of Lindernia Crustacea and Its Anti-EBV Effect via Rta Expression Inhibition in the Viral Lytic Cycle. J. Ethnopharmacol. 2020;250:112493. doi: 10.1016/j.jep.2019.112493. PubMed DOI
Liu L., Yang J., Ji W., Wang C. Curcumin Inhibits Proliferation of Epstein-Barr Virus-Associated Human Nasopharyngeal Carcinoma Cells by Inhibiting EBV Nuclear Antigen 1 Expression. Biomed. Res. Int. 2019;2019:8592921. doi: 10.1155/2019/8592921. PubMed DOI PMC
Martínez-Castillo M., Cruz-Robledo G., Hernández-Zavala A., Córdova E.J. Curcumin Sensitizes Epstein-Barr-Immortalized Lymphoblastoid Cell Lines to Inorganic Arsenic Toxicity. Exp. Ther. Med. 2021;22:872. doi: 10.3892/etm.2021.10304. PubMed DOI PMC
Li H., Zhong C., Wang Q., Chen W., Yuan Y. Curcumin Is an APE1 Redox Inhibitor and Exhibits an Antiviral Activity against KSHV Replication and Pathogenesis. Antivir. Res. 2019;167:98–103. doi: 10.1016/j.antiviral.2019.04.011. PubMed DOI PMC
Wu T., Wang Y., Yuan Y. Antiviral Activity of Topoisomerase II Catalytic Inhibitors against Epstein-Barr Virus. Antivir. Res. 2014;107:95–101. doi: 10.1016/j.antiviral.2014.05.003. PubMed DOI
Lin Y., Wang Q., Gu Q., Zhang H., Jiang C., Hu J., Wang Y., Yan Y., Xu J. Semisynthesis of (-)-Rutamarin Derivatives and Their Inhibitory Activity on Epstein-Barr Virus Lytic Replication. J. Nat. Prod. 2017;80:53–60. doi: 10.1021/acs.jnatprod.6b00415. PubMed DOI
Xu B., Wang L., González-Molleda L., Wang Y., Xu J., Yuan Y. Antiviral Activity of (+)-Rutamarin against Kaposi’s Sarcoma-Associated Herpesvirus by Inhibition of the Catalytic Activity of Human Topoisomerase II. Antimicrob. Agents Chemother. 2014;58:563–573. doi: 10.1128/AAC.01259-13. PubMed DOI PMC
Coen D.M., Lawler J.L., Abraham J. Herpesvirus DNA Polymerase: Structures, Functions, and Mechanisms. Enzymes. 2021;50:133–178. doi: 10.1016/bs.enz.2021.09.003. PubMed DOI
Piret J., Boivin G. Antiviral Drugs Against Herpesviruses. Adv. Exp. Med. Biol. 2021;1322:1–30. doi: 10.1007/978-981-16-0267-2_1. PubMed DOI
Anti-Epstein-Barr Virus Activities of Flavones and Flavonols with Effects on Virus-Related Cancers