Insights into Antiviral Properties and Molecular Mechanisms of Non-Flavonoid Polyphenols against Human Herpesviruses

. 2022 Nov 11 ; 23 (22) : . [epub] 20221111

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid36430369

Herpesviruses are one of the most contagious DNA viruses that threaten human health, causing severe diseases, including, but not limited to, certain types of cancer and neurological complications. The overuse and misuse of anti-herpesvirus drugs are key factors leading to drug resistance. Therefore, targeting human herpesviruses with natural products is an attractive form of therapy, as it might improve treatment efficacy in therapy-resistant herpesviruses. Plant polyphenols are major players in the health arena as they possess diverse bioactivities. Hence, in this article, we comprehensively summarize the recent advances that have been attained in employing plant non-flavonoid polyphenols, such as phenolic acids, tannins and their derivatives, stilbenes and their derivatives, lignans, neolignans, xanthones, anthraquinones and their derivatives, curcuminoids, coumarins, furanocoumarins, and other polyphenols (phloroglucinol) as promising anti-herpesvirus drugs against various types of herpesvirus such as alpha-herpesviruses (herpes simplex virus type 1 and 2 and varicella-zoster virus), beta-herpesviruses (human cytomegalovirus), and gamma-herpesviruses (Epstein-Barr virus and Kaposi sarcoma-associated herpesvirus). The molecular mechanisms of non-flavonoid polyphenols against the reviewed herpesviruses are also documented.

Zobrazit více v PubMed

Šudomová M., Berchová-Bímová K., Mazurakova A., Šamec D., Kubatka P., Hassan S.T.S. Flavonoids Target Human Herpesviruses That Infect the Nervous System: Mechanisms of Action and Therapeutic Insights. Viruses. 2022;14:592. doi: 10.3390/v14030592. PubMed DOI PMC

Šudomová M., Berchová-Bímová K., Marzocco S., Liskova A., Kubatka P., Hassan S.T.S. Berberine in Human Oncogenic Herpesvirus Infections and Their Linked Cancers. Viruses. 2021;13:1014. doi: 10.3390/v13061014. PubMed DOI PMC

Treml J., Gazdová M., Šmejkal K., Šudomová M., Kubatka P., Hassan S.T.S. Natural Products-Derived Chemicals: Breaking Barriers to Novel Anti-HSV Drug Development. Viruses. 2020;12:154. doi: 10.3390/v12020154. PubMed DOI PMC

Adler B., Sattler C., Adler H. Herpesviruses and Their Host Cells: A Successful Liaison. Trends Microbiol. 2017;25:229–241. doi: 10.1016/j.tim.2016.11.009. PubMed DOI

Šudomová M., Hassan S.T.S. Nutraceutical Curcumin with Promising Protection against Herpesvirus Infections and Their Associated Inflammation: Mechanisms and Pathways. Microorganisms. 2021;9:292. doi: 10.3390/microorganisms9020292. PubMed DOI PMC

Wołącewicz M., Becht R., Grywalska E., Niedźwiedzka-Rystwej P. Herpesviruses in Head and Neck Cancers. Viruses. 2020;12:172. doi: 10.3390/v12020172. PubMed DOI PMC

Azab W., Osterrieder K. Initial Contact: The First Steps in Herpesvirus Entry. Adv. Anat. Embryol. Cell Biol. 2017;223:1–27. doi: 10.1007/978-3-319-53168-7_1. PubMed DOI

Connolly S.A., Jardetzky T.S., Longnecker R. The Structural Basis of Herpesvirus Entry. Nat. Rev. Microbiol. 2021;19:110–121. doi: 10.1038/s41579-020-00448-w. PubMed DOI PMC

Cohen J.I. Herpesvirus Latency. J. Clin. Investig. 2020;130:3361–3369. doi: 10.1172/JCI136225. PubMed DOI PMC

Wu Y., Yang Q., Wang M., Chen S., Jia R., Yang Q., Zhu D., Liu M., Zhao X., Zhang S., et al. Multifaceted Roles of ICP22/ORF63 Proteins in the Life Cycle of Human Herpesviruses. Front. Microbiol. 2021;12:668461. doi: 10.3389/fmicb.2021.668461. PubMed DOI PMC

Frappier L. Regulation of Herpesvirus Reactivation by Host MicroRNAs. J. Virol. 2015;89:2456–2458. doi: 10.1128/JVI.03413-14. PubMed DOI PMC

Dochnal S.A., Francois A.K., Cliffe A.R. De Novo Polycomb Recruitment: Lessons from Latent Herpesviruses. Viruses. 2021;13:1470. doi: 10.3390/v13081470. PubMed DOI PMC

Jarosinski K.W. Interindividual Spread of Herpesviruses. Adv. Anat. Embryol. Cell Biol. 2017;223:195–224. doi: 10.1007/978-3-319-53168-7_9. PubMed DOI

Poole C.L., James S.H. Antiviral Therapies for Herpesviruses: Current Agents and New Directions. Clin. Ther. 2018;40:1282–1298. doi: 10.1016/j.clinthera.2018.07.006. PubMed DOI PMC

Majewska A., Mlynarczyk-Bonikowska B. 40 Years after the Registration of Acyclovir: Do We Need New Anti-Herpetic Drugs? Int. J. Mol. Sci. 2022;23:3431. doi: 10.3390/ijms23073431. PubMed DOI PMC

Kłysik K., Pietraszek A., Karewicz A., Nowakowska M. Acyclovir in the Treatment of Herpes Viruses—A Review. Curr. Med. Chem. 2020;27:4118–4137. doi: 10.2174/0929867325666180309105519. PubMed DOI

Hassan S.T.S., Masarčíková R., Berchová K. Bioactive Natural Products with Anti-Herpes Simplex Virus Properties. J. Pharm. Pharmacol. 2015;67:1325–1336. doi: 10.1111/jphp.12436. PubMed DOI

Hassan S.T.S., Švajdlenka E., Berchová-Bímová K. Hibiscus sabdariffa L. and Its Bioactive Constituents Exhibit Antiviral Activity against HSV-2 and Anti-Enzymatic Properties against Urease by an ESI-MS Based Assay. Molecules. 2017;22:722. doi: 10.3390/molecules22050722. PubMed DOI PMC

Lattanzio V. Phenolic Compounds: Introduction. In: Ramawat K.G., Mérillon J.-M., editors. Natural Products. Springer; Berlin/Heidelberg, Germany: 2013. pp. 1543–1580.

Wang X., Qi Y., Zheng H. Dietary Polyphenol, Gut Microbiota, and Health Benefits. Antioxidants. 2022;11:1212. doi: 10.3390/antiox11061212. PubMed DOI PMC

Durazzo A., Lucarini M., Souto E.B., Cicala C., Caiazzo E., Izzo A.A., Novellino E., Santini A. Polyphenols: A Concise Overview on the Chemistry, Occurrence, and Human Health. Phytother. Res. 2019;33:2221–2243. doi: 10.1002/ptr.6419. PubMed DOI

Tuladhar P., Sasidharan S., Saudagar P. Biocontrol Agents and Secondary Metabolites. Elsevier; Amsterdam, The Netherlands: 2021. Role of Phenols and Polyphenols in Plant Defense Response to Biotic and Abiotic Stresses; pp. 419–441.

Cory H., Passarelli S., Szeto J., Tamez M., Mattei J. The Role of Polyphenols in Human Health and Food Systems: A Mini-Review. Front. Nutr. 2018;5:87. doi: 10.3389/fnut.2018.00087. PubMed DOI PMC

Di Lorenzo C., Colombo F., Biella S., Stockley C., Restani P. Polyphenols and Human Health: The Role of Bioavailability. Nutrients. 2021;13:273. doi: 10.3390/nu13010273. PubMed DOI PMC

Luca S.V., Macovei I., Bujor A., Miron A., Skalicka-Woźniak K., Aprotosoaie A.C., Trifan A. Bioactivity of Dietary Polyphenols: The Role of Metabolites. Crit. Rev. Food Sci. Nutr. 2020;60:626–659. doi: 10.1080/10408398.2018.1546669. PubMed DOI

Zhang L., Han Z., Granato D. Polyphenols in Foods: Classification, Methods of Identification, and Nutritional Aspects in Human Health. Adv. Food Nutr. Res. 2021;98:1–33. doi: 10.1016/bs.afnr.2021.02.004. PubMed DOI

Chojnacka K., Skrzypczak D., Izydorczyk G., Mikula K., Szopa D., Witek-Krowiak A. Antiviral Properties of Polyphenols from Plants. Foods. 2021;10:2277. doi: 10.3390/foods10102277. PubMed DOI PMC

Montenegro-Landívar M.F., Tapia-Quirós P., Vecino X., Reig M., Valderrama C., Granados M., Cortina J.L., Saurina J. Polyphenols and Their Potential Role to Fight Viral Diseases: An Overview. Sci. Total Environ. 2021;801:149719. doi: 10.1016/j.scitotenv.2021.149719. PubMed DOI PMC

Hassan S.T.S., Šudomová M., Berchová-Bímová K., Šmejkal K., Echeverría J. Psoromic Acid, a Lichen-Derived Molecule, Inhibits the Replication of HSV-1 and HSV-2, and Inactivates HSV-1 DNA Polymerase: Shedding Light on Antiherpetic Properties. Molecules. 2019;24:2912. doi: 10.3390/molecules24162912. PubMed DOI PMC

Zhu S., Viejo-Borbolla A. Pathogenesis and Virulence of Herpes Simplex Virus. Virulence. 2021;12:2670–2702. doi: 10.1080/21505594.2021.1982373. PubMed DOI PMC

Gershon A.A., Breuer J., Cohen J.I., Cohrs R.J., Gershon M.D., Gilden D., Grose C., Hambleton S., Kennedy P.G.E., Oxman M.N., et al. Varicella Zoster Virus Infection. Nat. Rev. Dis. Prim. 2015;1:15016. doi: 10.1038/nrdp.2015.16. PubMed DOI PMC

Kennedy P.G.E., Gershon A.A. Clinical Features of Varicella-Zoster Virus Infection. Viruses. 2018;10:E609. doi: 10.3390/v10110609. PubMed DOI PMC

Azab W., Dayaram A., Greenwood A.D., Osterrieder N. How Host Specific Are Herpesviruses? Lessons from Herpesviruses Infecting Wild and Endangered Mammals. Annu. Rev. Virol. 2018;5:53–68. doi: 10.1146/annurev-virology-092917-043227. PubMed DOI

Lum K.K., Cristea I.M. Host Innate Immune Response and Viral Immune Evasion During Alphaherpesvirus Infection. Curr. Issues Mol. Biol. 2021;42:635–686. doi: 10.21775/cimb.042.635. PubMed DOI PMC

Borenstein R., Hanson B.A., Markosyan R.M., Gallo E.S., Narasipura S.D., Bhutta M., Shechter O., Lurain N.S., Cohen F.S., Al-Harthi L., et al. Ginkgolic Acid Inhibits Fusion of Enveloped Viruses. Sci. Rep. 2020;10:4746. doi: 10.1038/s41598-020-61700-0. PubMed DOI PMC

Sochocka M., Sobczyński M., Ochnik M., Zwolińska K., Leszek J. Hampering Herpesviruses HHV-1 and HHV-2 Infection by Extract of Ginkgo Biloba (EGb) and Its Phytochemical Constituents. Front. Microbiol. 2019;10:2367. doi: 10.3389/fmicb.2019.02367. PubMed DOI PMC

Bhutta M.S., Shechter O., Gallo E.S., Martin S.D., Jones E., Doncel G.F., Borenstein R. Ginkgolic Acid Inhibits Herpes Simplex Virus Type 1 Skin Infection and Prevents Zosteriform Spread in Mice. Viruses. 2021;13:86. doi: 10.3390/v13010086. PubMed DOI PMC

Todorova N., Rangelov M., Dincheva I., Badjakov I., Enchev V., Markova N. Potential of Hydroxybenzoic Acids from Graptopetalum Paraguayense for Inhibiting of Herpes Simplex Virus DNA Polymerase–Metabolome Profiling, Molecular Docking and Quantum-Chemical Analysis. Pharmacia. 2022;69:113–123. doi: 10.3897/pharmacia.69.e79467. DOI

AbouAitah K., Allayh A.K., Wojnarowicz J., Shaker Y.M., Swiderska-Sroda A., Lojkowski W. Nanoformulation Composed of Ellagic Acid and Functionalized Zinc Oxide Nanoparticles Inactivates DNA and RNA Viruses. Pharmaceutics. 2021;13:2174. doi: 10.3390/pharmaceutics13122174. PubMed DOI PMC

Di Sotto A., Di Giacomo S., Amatore D., Locatelli M., Vitalone A., Toniolo C., Rotino G.L., Lo Scalzo R., Palamara A.T., Marcocci M.E., et al. A Polyphenol Rich Extract from Solanum Melongena L. DR2 Peel Exhibits Antioxidant Properties and Anti-Herpes Simplex Virus Type 1 Activity In Vitro. Molecules. 2018;23:E2066. doi: 10.3390/molecules23082066. PubMed DOI PMC

Langland J., Jacobs B., Wagner C.E., Ruiz G., Cahill T.M. Antiviral Activity of Metal Chelates of Caffeic Acid and Similar Compounds towards Herpes Simplex, VSV-Ebola Pseudotyped and Vaccinia Viruses. Antivir. Res. 2018;160:143–150. doi: 10.1016/j.antiviral.2018.10.021. PubMed DOI

Kesharwani A., Polachira S.K., Nair R., Agarwal A., Mishra N.N., Gupta S.K. Anti-HSV-2 Activity of Terminalia Chebula Retz Extract and Its Constituents, Chebulagic and Chebulinic Acids. BMC Complement. Altern. Med. 2017;17:110. doi: 10.1186/s12906-017-1620-8. PubMed DOI PMC

Siqueira E.M.D.S., Lima T.L., Boff L., Lima S.G., Lourenço E.M., Ferreira É.G., Barbosa E.G., Machado P.R., Farias K.J., Ferreira L.D.S., et al. Antiviral Potential of Spondias Mombin L. Leaves Extract Against Herpes Simplex Virus Type-1 Replication Using In Vitro and In Silico Approaches. Planta Med. 2020;86:505–515. doi: 10.1055/a-1135-9066. PubMed DOI

Szymańska E., Orłowski P., Winnicka K., Tomaszewska E., Bąska P., Celichowski G., Grobelny J., Basa A., Krzyżowska M. Multifunctional Tannic Acid/Silver Nanoparticle-Based Mucoadhesive Hydrogel for Improved Local Treatment of HSV Infection: In Vitro and In Vivo Studies. IJMS. 2018;19:387. doi: 10.3390/ijms19020387. PubMed DOI PMC

Orłowski P., Kowalczyk A., Tomaszewska E., Ranoszek-Soliwoda K., Węgrzyn A., Grzesiak J., Celichowski G., Grobelny J., Eriksson K., Krzyzowska M. Antiviral Activity of Tannic Acid Modified Silver Nanoparticles: Potential to Activate Immune Response in Herpes Genitalis. Viruses. 2018;10:524. doi: 10.3390/v10100524. PubMed DOI PMC

Vilhelmova-Ilieva N., Jacquet R., Deffieux D., Pouységu L., Sylla T., Chassaing S., Nikolova I., Quideau S., Galabov A.S. Anti-Herpes Simplex Virus Type 1 Activity of Specially Selected Groups of Tannins. Drug Res. 2019;69:373–374. doi: 10.1055/a-0640-2557. PubMed DOI

Vilhelmova-Ilieva N., Jacquet R., Quideau S., Galabov A.S. Ellagitannins as Synergists of ACV on the Replication of ACV-Resistant Strains of HSV 1 and 2. Antivir. Res. 2014;110:104–114. doi: 10.1016/j.antiviral.2014.07.017. PubMed DOI

Arunkumar J., Rajarajan S. Study on Antiviral Activities, Drug-Likeness and Molecular Docking of Bioactive Compounds of Punica Granatum L. to Herpes Simplex Virus-2 (HSV-2) Microb. Pathog. 2018;118:301–309. doi: 10.1016/j.micpath.2018.03.052. PubMed DOI

Houston D.M.J., Bugert J.J., Denyer S.P., Heard C.M. Potentiated Virucidal Activity of Pomegranate Rind Extract (PRE) and Punicalagin against Herpes Simplex Virus (HSV) When Co-Administered with Zinc (II) Ions, and Antiviral Activity of PRE against HSV and Aciclovir-Resistant HSV. PLoS ONE. 2017;12:e0179291. doi: 10.1371/journal.pone.0179291. PubMed DOI PMC

Bae S., Kim S.Y., Do M.H., Lee C.H., Song Y.-J. 1,2,3,4,6-Penta-O-Galloyl-ß-D-Glucose, a Bioactive Compound in Elaeocarpus Sylvestris Extract, Inhibits Varicella-Zoster Virus Replication. Antivir. Res. 2017;144:266–272. doi: 10.1016/j.antiviral.2017.06.018. PubMed DOI

Rechenchoski D.Z., Agostinho K.F., Faccin-Galhardi L.C., Lonni A.A.S.G., da Silva J.V.H., de Andrade F.G., Cunha A.P., Ricardo N.M.P.S., Nozawa C., Linhares R.E.C. Mangiferin: A Promising Natural Xanthone from Mangifera Indica for the Control of Acyclovir - Resistant Herpes Simplex Virus 1 Infection. Bioorg. Med. Chem. 2020;28:115304. doi: 10.1016/j.bmc.2020.115304. PubMed DOI

Rechenchoski D.Z., Samensari N.L., Faccin-Galhardi L.C., de Almeida R.R., Cunha A.P., Ricardo N.M.P.S., Nozawa C., Linhares R.E.C. The Combination of Dimorphandra Gardneriana Galactomannan and Mangiferin Inhibits Herpes Simplex and Poliovirus. Curr. Pharm. Biotechnol. 2019;20:215–221. doi: 10.2174/1389201020666190307130431. PubMed DOI

Abba Y., Hassim H., Hamzah H., Noordin M.M. Antiviral Activity of Resveratrol against Human and Animal Viruses. Adv. Virol. 2015;2015:184241. doi: 10.1155/2015/184241. PubMed DOI PMC

Chen X., Song X., Zhao X., Zhang Y., Wang Y., Jia R., Zou Y., Li L., Yin Z. Insights into the Anti-Inflammatory and Antiviral Mechanisms of Resveratrol. Mediat. Inflamm. 2022;2022:7138756. doi: 10.1155/2022/7138756. PubMed DOI PMC

Docherty J.J., Fu M.M., Stiffler B.S., Limperos R.J., Pokabla C.M., DeLucia A.L. Resveratrol Inhibition of Herpes Simplex Virus Replication. Antivir. Res. 1999;43:145–155. doi: 10.1016/S0166-3542(99)00042-X. PubMed DOI

Annunziata G., Maisto M., Schisano C., Ciampaglia R., Narciso V., Tenore G.C., Novellino E. Resveratrol as a Novel Anti-Herpes Simplex Virus Nutraceutical Agent: An Overview. Viruses. 2018;10:473. doi: 10.3390/v10090473. PubMed DOI PMC

Ding L., Jiang P., Xu X., Lu W., Yang C., Zhou P., Liu S. Resveratrol Promotes HSV-2 Replication by Increasing Histone Acetylation and Activating NF-ΚB. Biochem. Pharmacol. 2020;171:113691. doi: 10.1016/j.bcp.2019.113691. PubMed DOI

Xiao J., Wang X., Wu Y., Zhao Q., Liu X., Zhang G., Zhao Z., Ning Y., Wang K., Tan Y., et al. Synergistic Effect of Resveratrol and HSV-TK/GCV Therapy on Murine Hepatoma Cells. Cancer Biol. Ther. 2019;20:183–191. doi: 10.1080/15384047.2018.1523094. PubMed DOI PMC

Zheng Y., Yang X.-W., Schols D., Mori M., Botta B., Chevigné A., Mulinge M., Steinmetz A., Schmit J.-C., Seguin-Devaux C. Active Components from Cassia Abbreviata Prevent HIV-1 Entry by Distinct Mechanisms of Action. Int. J. Mol. Sci. 2021;22:5052. doi: 10.3390/ijms22095052. PubMed DOI PMC

Tarbeeva D.V., Krylova N.V., Iunikhina O.V., Likhatskaya G.N., Kalinovskiy A.I., Grigorchuk V.P., Shchelkanov M.Y., Fedoreyev S.A. Biologically Active Polyphenolic Compounds from Lespedeza Bicolor. Fitoterapia. 2022;157:105121. doi: 10.1016/j.fitote.2021.105121. PubMed DOI

Squillaci G., Zannella C., Carbone V., Minasi P., Folliero V., Stelitano D., Cara F.L., Galdiero M., Franci G., Morana A. Grape Canes from Typical Cultivars of Campania (Southern Italy) as a Source of High-Value Bioactive Compounds: Phenolic Profile, Antioxidant and Antimicrobial Activities. Molecules. 2021;26:2746. doi: 10.3390/molecules26092746. PubMed DOI PMC

Liu S., Li L., Tan L., Liang X. Inhibition of Herpes Simplex Virus-1 Replication by Natural Compound Honokiol. Virol. Sin. 2019;34:315–323. doi: 10.1007/s12250-019-00104-5. PubMed DOI PMC

Dias M.M., Zuza O., Riani L.R., de Faria Pinto P., Pinto P.L.S., Silva M.P., de Moraes J., Ataíde A.C.Z., de Oliveira Silva F., Cecílio A.B., et al. In Vitro Schistosomicidal and Antiviral Activities of Arctium Lappa L. (Asteraceae) against Schistosoma Mansoni and Herpes Simplex Virus-1. Biomed. Pharmacother. 2017;94:489–498. doi: 10.1016/j.biopha.2017.07.116. PubMed DOI

Saidu M.B., Kúsz N., Tsai Y.-C., Vágvölgyi M., Berkecz R., Kókai D., Burián K., Hohmann J., Rédei D. Triterpenes and Phenolic Compounds from Euphorbia Deightonii with Antiviral Activity against Herpes Simplex Virus Type-2. Plants. 2022;11:764. doi: 10.3390/plants11060764. PubMed DOI PMC

Xiong H.-R., Luo J., Hou W., Xiao H., Yang Z.-Q. The Effect of Emodin, an Anthraquinone Derivative Extracted from the Roots of Rheum Tanguticum, against Herpes Simplex Virus in Vitro and in Vivo. J. Ethnopharmacol. 2011;133:718–723. doi: 10.1016/j.jep.2010.10.059. PubMed DOI PMC

Huang Y., Li X., Pan C., Cheng W., Wang X., Yang Z., Zheng L. The Intervention Mechanism of Emodin on TLR3 Pathway in the Process of Central Nervous System Injury Caused by Herpes Virus Infection. Neurol. Res. 2021;43:307–313. doi: 10.1080/01616412.2020.1853989. PubMed DOI

Mugas M.L., Marioni J., Martinez F., Aguilar J.J., Cabrera J.L., Contigiani M.S., Konigheim B.S., Núñez-Montoya S.C. Inactivation of Herpes Simplex Virus by Photosensitizing Anthraquinones Isolated from Heterophyllaea Pustulata. Planta Med. 2021;87:716–723. doi: 10.1055/a-1345-6831. PubMed DOI

Roa-Linares V.C., Miranda-Brand Y., Tangarife-Castaño V., Ochoa R., García P.A., Castro M.Á., Betancur-Galvis L., San Feliciano A. Anti-Herpetic, Anti-Dengue and Antineoplastic Activities of Simple and Heterocycle-Fused Derivatives of Terpenyl-1,4-Naphthoquinone and 1,4-Anthraquinone. Molecules. 2019;24:1279. doi: 10.3390/molecules24071279. PubMed DOI PMC

Soleimani V., Sahebkar A., Hosseinzadeh H. Turmeric (Curcuma Longa) and Its Major Constituent (Curcumin) as Nontoxic and Safe Substances: Review. Phytother. Res. 2018;32:985–995. doi: 10.1002/ptr.6054. PubMed DOI

Kotha R.R., Luthria D.L. Curcumin: Biological, Pharmaceutical, Nutraceutical, and Analytical Aspects. Molecules. 2019;24:2930. doi: 10.3390/molecules24162930. PubMed DOI PMC

Flores D.J., Lee L.H., Adams S.D. Inhibition of Curcumin-Treated Herpes Simplex Virus 1 and 2 in Vero Cells. AiM. 2016;6:276–287. doi: 10.4236/aim.2016.64027. DOI

Kutluay S.B., Doroghazi J., Roemer M.E., Triezenberg S.J. Curcumin Inhibits Herpes Simplex Virus Immediate-Early Gene Expression by a Mechanism Independent of P300/CBP Histone Acetyltransferase Activity. Virology. 2008;373:239–247. doi: 10.1016/j.virol.2007.11.028. PubMed DOI PMC

Vitali D., Bagri P., Wessels J.M., Arora M., Ganugula R., Parikh A., Mandur T., Felker A., Garg S., Kumar M.N.V.R., et al. Curcumin Can Decrease Tissue Inflammation and the Severity of HSV-2 Infection in the Female Reproductive Mucosa. IJMS. 2020;21:337. doi: 10.3390/ijms21010337. PubMed DOI PMC

Xie Y., Wu L., Wang M., Cheng A., Yang Q., Wu Y., Jia R., Zhu D., Zhao X., Chen S., et al. Alpha-Herpesvirus Thymidine Kinase Genes Mediate Viral Virulence and Are Potential Therapeutic Targets. Front. Microbiol. 2019;10:941. doi: 10.3389/fmicb.2019.00941. PubMed DOI PMC

El-Halim S.M.A., Mamdouh M.A., El-Haddad A.E., Soliman S.M. Fabrication of Anti-HSV-1 Curcumin Stabilized Nanostructured Proniosomal Gel: Molecular Docking Studies on Thymidine Kinase Proteins. Sci. Pharm. 2020;88:9. doi: 10.3390/scipharm88010009. DOI

Badria F.A., Abdelaziz A.E., Hassan A.H., Elgazar A.A., Mazyed E.A. Development of Provesicular Nanodelivery System of Curcumin as a Safe and Effective Antiviral Agent: Statistical Optimization, In Vitro Characterization, and Antiviral Effectiveness. Molecules. 2020;25:5668. doi: 10.3390/molecules25235668. PubMed DOI PMC

Rajtar B., Skalicka-Woźniak K., Świątek Ł., Stec A., Boguszewska A., Polz-Dacewicz M. Antiviral Effect of Compounds Derived from Angelica Archangelica L. on Herpes Simplex Virus-1 and Coxsackievirus B3 Infections. Food Chem. Toxicol. 2017;109:1026–1031. doi: 10.1016/j.fct.2017.05.011. PubMed DOI

Okba M.M., El Gedaily R.A., Ashour R.M. UPLC-PDA-ESI-QTOF-MS Profiling and Potent Anti-HSV-II Activity of Eucalyptus Sideroxylon Leaves. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2017;1068–1069:335–342. doi: 10.1016/j.jchromb.2017.10.065. PubMed DOI

Fulkerson H.L., Nogalski M.T., Collins-McMillen D., Yurochko A.D. Overview of Human Cytomegalovirus Pathogenesis. Methods Mol. Biol. 2021;2244:1–18. doi: 10.1007/978-1-0716-1111-1_1. PubMed DOI

O’Connor C.M. Cytomegalovirus (CMV) Infection and Latency. Pathogens. 2021;10:342. doi: 10.3390/pathogens10030342. PubMed DOI PMC

Griffiths P., Baraniak I., Reeves M. The Pathogenesis of Human Cytomegalovirus. J. Pathol. 2015;235:288–297. doi: 10.1002/path.4437. PubMed DOI

Michaelis M., Doerr H.W., Cinatl J. The Story of Human Cytomegalovirus and Cancer: Increasing Evidence and Open Questions. Neoplasia. 2009;11:1–9. doi: 10.1593/neo.81178. PubMed DOI PMC

Golais F., Mrázová V. Human Alpha and Beta Herpesviruses and Cancer: Passengers or Foes? Folia Microbiol. 2020;65:439–449. doi: 10.1007/s12223-020-00780-x. PubMed DOI

Griffiths P. Cytomegalovirus Infection of the Central Nervous System. Herpes. 2004;11((Suppl. 2)):95A–104A. PubMed

Tselis A.C. Cytomegalovirus Infections of the Adult Human Nervous System. Handb. Clin. Neurol. 2014;123:307–318. doi: 10.1016/B978-0-444-53488-0.00014-6. PubMed DOI

Zhang X.-Y., Fang F. Congenital Human Cytomegalovirus Infection and Neurologic Diseases in Newborns. Chin. Med. J. (Engl) 2019;132:2109–2118. doi: 10.1097/CM9.0000000000000404. PubMed DOI PMC

Wang S.-Y., Zhang J., Xu X.-G., Su H.-L., Xing W.-M., Zhang Z.-S., Jin W.-H., Dai J.-H., Wang Y.-Z., He X.-Y., et al. Inhibitory Effects of Piceatannol on Human Cytomegalovirus (HCMV) in Vitro. J. Microbiol. 2020;58:716–723. doi: 10.1007/s12275-020-9528-2. PubMed DOI

Alam Z., Al-Mahdi Z., Zhu Y., McKee Z., Parris D.S., Parikh H.I., Kellogg G.E., Kuchta A., McVoy M.A. Anti-Cytomegalovirus Activity of the Anthraquinone Atanyl Blue PRL. Antivir. Res. 2015;114:86–95. doi: 10.1016/j.antiviral.2014.12.003. PubMed DOI PMC

Lv Y., An Z., Chen H., Wang Z., Liu L. Mechanism of Curcumin Resistance to Human Cytomegalovirus in HELF Cells. BMC Complement. Altern. Med. 2014;14:284. doi: 10.1186/1472-6882-14-284. PubMed DOI PMC

Lv Y., Gong L., Wang Z., Han F., Liu H., Lu X., Liu L. Curcumin Inhibits Human Cytomegalovirus by Downregulating Heat Shock Protein 90. Mol. Med. Rep. 2015;12:4789–4793. doi: 10.3892/mmr.2015.3983. PubMed DOI

Lv Y.-L., Jia Y., Wan Z., An Z.-L., Yang S., Han F.-F., Gong L.-L., Xuan L.-L., Ren L.-L., Zhang W., et al. Curcumin Inhibits the Formation of Atherosclerosis in ApoE-/- Mice by Suppressing Cytomegalovirus Activity in Endothelial Cells. Life Sci. 2020;257:117658. doi: 10.1016/j.lfs.2020.117658. PubMed DOI

Lv Y., Lei N., Wang D., An Z., Li G., Han F., Liu H., Liu L. Protective Effect of Curcumin against Cytomegalovirus Infection in Balb/c Mice. Environ. Toxicol. Pharmacol. 2014;37:1140–1147. doi: 10.1016/j.etap.2014.04.017. PubMed DOI

Möhl B.S., Chen J., Longnecker R. Gammaherpesvirus Entry and Fusion: A Tale How Two Human Pathogenic Viruses Enter Their Host Cells. Adv. Virus Res. 2019;104:313–343. doi: 10.1016/bs.aivir.2019.05.006. PubMed DOI

Farrell P.J. Epstein-Barr Virus and Cancer. Annu. Rev. Pathol. 2019;14:29–53. doi: 10.1146/annurev-pathmechdis-012418-013023. PubMed DOI

Yiu S.P.T., Dorothea M., Hui K.F., Chiang A.K.S. Lytic Induction Therapy against Epstein-Barr Virus-Associated Malignancies: Past, Present, and Future. Cancers. 2020;12:2142. doi: 10.3390/cancers12082142. PubMed DOI PMC

Wen K.W., Wang L., Menke J.R., Damania B. Cancers Associated with Human Gammaherpesviruses. FEBS J. 2021 doi: 10.1111/febs.16206. PubMed DOI PMC

Goncalves P.H., Ziegelbauer J., Uldrick T.S., Yarchoan R. Kaposi Sarcoma Herpesvirus-Associated Cancers and Related Diseases. Curr. Opin. HIV AIDS. 2017;12:47–56. doi: 10.1097/COH.0000000000000330. PubMed DOI PMC

Ackermann M. Pathogenesis of Gammaherpesvirus Infections. Vet. Microbiol. 2006;113:211–222. doi: 10.1016/j.vetmic.2005.11.008. PubMed DOI

Soldan S.S., Lieberman P.M. Epstein-Barr Virus Infection in the Development of Neurological Disorders. Drug Discov. Today Dis. Models. 2020;32:35–52. doi: 10.1016/j.ddmod.2020.01.001. PubMed DOI PMC

Jha H.C., Mehta D., Lu J., El-Naccache D., Shukla S.K., Kovacsics C., Kolson D., Robertson E.S. Gammaherpesvirus Infection of Human Neuronal Cells. mBio. 2015;6:e01844-15. doi: 10.1128/mBio.01844-15. PubMed DOI PMC

Nowalk A., Green M. Epstein-Barr Virus. Microbiol. Spectr. 2016;4 doi: 10.1128/microbiolspec.DMIH2-0011-2015. PubMed DOI

Ciccarese G., Trave I., Herzum A., Parodi A., Drago F. Dermatological Manifestations of Epstein-Barr Virus Systemic Infection: A Case Report and Literature Review. Int. J. Dermatol. 2020;59:1202–1209. doi: 10.1111/ijd.14887. PubMed DOI

Li S., Bai L., Dong J., Sun R., Lan K. Kaposi’s Sarcoma-Associated Herpesvirus: Epidemiology and Molecular Biology. In: Cai Q., Yuan Z., Lan K., editors. Infectious Agents Associated Cancers: Epidemiology and Molecular Biology. Volume 1018. Springer; Singapore: 2017. pp. 91–127. Advances in Experimental Medicine and Biology. PubMed

Nomura E., Hosoda A., Morishita H., Murakami A., Koshimizu K., Ohigashi H., Taniguchi H. Synthesis of Novel Polyphenols Consisted of Ferulic and Gallic Acids, and Their Inhibitory Effects on Phorbol Ester-Induced Epstein-Barr Virus Activation and Superoxide Generation. Bioorg. Med. Chem. 2002;10:1069–1075. doi: 10.1016/S0968-0896(01)00361-3. PubMed DOI

Crowley A., Connell J., Schaffer K., Hall W., Hassan J. Is There Diagnostic Value in Detection of Immunoglobulin g Antibodies to the Epstein-Barr Virus Early Antigen? Biores. Open Access. 2012;1:291–296. doi: 10.1089/biores.2012.0274. PubMed DOI PMC

Boonsopon S., Maghsoudlou A., Kombo N.E., Foster C.S. A Therapeutic Trial of Valganciclovir in Patients with Uveitis and Positive Epstein-Barr Virus Early Antigen D IgG Titers. Eur. J. Ophthalmol. 2016;26:30–35. doi: 10.5301/ejo.5000673. PubMed DOI

Zhang J., Zhu W.-F., Xu J., Kitdamrongtham W., Manosroi A., Manosroi J., Tokuda H., Abe M., Akihisa T., Feng F. Potential Cancer Chemopreventive and Anticancer Constituents from the Fruits of Ficus Hispida L.f. (Moraceae) J. Ethnopharmacol. 2018;214:37–46. doi: 10.1016/j.jep.2017.11.016. PubMed DOI

Tang F.-Y., Chen C.-Y., Shyu H.-W., Hong S., Chen H.-M., Chiou Y.-H., Lin K.-H., Chou M.-C., Wang L.-Y., Wang Y.-F. Resveratrol Induces Cell Death and Inhibits Human Herpesvirus 8 Replication in Primary Effusion Lymphoma Cells. Chem. Biol. Interact. 2015;242:372–379. doi: 10.1016/j.cbi.2015.10.025. PubMed DOI

Wang Q., Zhu N., Hu J., Wang Y., Xu J., Gu Q., Lieberman P.M., Yuan Y. The MTOR Inhibitor Manassantin B Reveals a Crucial Role of MTORC2 Signaling in Epstein-Barr Virus Reactivation. J. Biol. Chem. 2020;295:7431–7441. doi: 10.1074/jbc.RA120.012645. PubMed DOI PMC

Wu C.-C., Chen M.-S., Cheng Y.-J., Ko Y.-C., Lin S.-F., Chiu I.-M., Chen J.-Y. Emodin Inhibits EBV Reactivation and Represses NPC Tumorigenesis. Cancers. 2019;11:1795. doi: 10.3390/cancers11111795. PubMed DOI PMC

Dheekollu J., Wiedmer A., Ayyanathan K., Deakyne J.S., Messick T.E., Lieberman P.M. Cell-Cycle-Dependent EBNA1-DNA Crosslinking Promotes Replication Termination at OriP and Viral Episome Maintenance. Cell. 2021;184:643–654.e13. doi: 10.1016/j.cell.2020.12.022. PubMed DOI PMC

Jakhmola S., Jonniya N.A., Sk M.F., Rani A., Kar P., Jha H.C. Identification of Potential Inhibitors against Epstein–Barr Virus Nuclear Antigen 1 (EBNA1): An Insight from Docking and Molecular Dynamic Simulations. ACS Chem. Neurosci. 2021;12:3060–3072. doi: 10.1021/acschemneuro.1c00350. PubMed DOI

Yiu C.-Y., Chiu Y.-J., Lin T.-P. The Ethyl Acetate Subfraction of Polygonum Cuspidatum Root Containing Emodin Affect EBV Gene Expression and Induce EBV-Positive Cells Apoptosis. Biol. Pharm. Bull. 2021;44:1837–1842. doi: 10.1248/bpb.b21-00508. PubMed DOI

Tsai Y.-C., Hohmann J., El-Shazly M., Chang L.-K., Dankó B., Kúsz N., Hsieh C.-T., Hunyadi A., Chang F.-R. Bioactive Constituents of Lindernia Crustacea and Its Anti-EBV Effect via Rta Expression Inhibition in the Viral Lytic Cycle. J. Ethnopharmacol. 2020;250:112493. doi: 10.1016/j.jep.2019.112493. PubMed DOI

Liu L., Yang J., Ji W., Wang C. Curcumin Inhibits Proliferation of Epstein-Barr Virus-Associated Human Nasopharyngeal Carcinoma Cells by Inhibiting EBV Nuclear Antigen 1 Expression. Biomed. Res. Int. 2019;2019:8592921. doi: 10.1155/2019/8592921. PubMed DOI PMC

Martínez-Castillo M., Cruz-Robledo G., Hernández-Zavala A., Córdova E.J. Curcumin Sensitizes Epstein-Barr-Immortalized Lymphoblastoid Cell Lines to Inorganic Arsenic Toxicity. Exp. Ther. Med. 2021;22:872. doi: 10.3892/etm.2021.10304. PubMed DOI PMC

Li H., Zhong C., Wang Q., Chen W., Yuan Y. Curcumin Is an APE1 Redox Inhibitor and Exhibits an Antiviral Activity against KSHV Replication and Pathogenesis. Antivir. Res. 2019;167:98–103. doi: 10.1016/j.antiviral.2019.04.011. PubMed DOI PMC

Wu T., Wang Y., Yuan Y. Antiviral Activity of Topoisomerase II Catalytic Inhibitors against Epstein-Barr Virus. Antivir. Res. 2014;107:95–101. doi: 10.1016/j.antiviral.2014.05.003. PubMed DOI

Lin Y., Wang Q., Gu Q., Zhang H., Jiang C., Hu J., Wang Y., Yan Y., Xu J. Semisynthesis of (-)-Rutamarin Derivatives and Their Inhibitory Activity on Epstein-Barr Virus Lytic Replication. J. Nat. Prod. 2017;80:53–60. doi: 10.1021/acs.jnatprod.6b00415. PubMed DOI

Xu B., Wang L., González-Molleda L., Wang Y., Xu J., Yuan Y. Antiviral Activity of (+)-Rutamarin against Kaposi’s Sarcoma-Associated Herpesvirus by Inhibition of the Catalytic Activity of Human Topoisomerase II. Antimicrob. Agents Chemother. 2014;58:563–573. doi: 10.1128/AAC.01259-13. PubMed DOI PMC

Coen D.M., Lawler J.L., Abraham J. Herpesvirus DNA Polymerase: Structures, Functions, and Mechanisms. Enzymes. 2021;50:133–178. doi: 10.1016/bs.enz.2021.09.003. PubMed DOI

Piret J., Boivin G. Antiviral Drugs Against Herpesviruses. Adv. Exp. Med. Biol. 2021;1322:1–30. doi: 10.1007/978-981-16-0267-2_1. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...