Anti-Epstein-Barr Virus Activities of Flavones and Flavonols with Effects on Virus-Related Cancers
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
40076282
PubMed Central
PMC11902172
DOI
10.3390/molecules30051058
PII: molecules30051058
Knihovny.cz E-zdroje
- Klíčová slova
- EBV life cycle, EBV-associated cancers, Epstein–Barr virus, anticancer effects, antiviral properties, flavones, flavonoids, flavonols, host–EBV interaction, viral and cellular genes, viral and cellular proteins,
- MeSH
- antivirové látky farmakologie terapeutické užití chemie MeSH
- flavonoly * farmakologie chemie MeSH
- flavony * farmakologie chemie terapeutické užití MeSH
- infekce virem Epsteina-Barrové * farmakoterapie virologie MeSH
- lidé MeSH
- nádory * farmakoterapie virologie metabolismus MeSH
- protinádorové látky farmakologie chemie terapeutické užití MeSH
- virus Epsteinův-Barrové * účinky léků MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- antivirové látky MeSH
- flavonoly * MeSH
- flavony * MeSH
- protinádorové látky MeSH
The Epstein-Barr virus (EBV), a member of the human gamma-herpesviruses, is intricately linked to various human malignancies. Current treatment options for EBV infection involve the use of acyclovir and its derivatives, which exhibit limited efficacy and are associated with drug resistance issues. Therefore, there is a critical need for new medications with more effective therapeutic actions and less susceptibility to resistance. This review explores the therapeutic promise of flavones and flavonols, naturally occurring molecules, against EBV and its correlated cancers. It thoroughly delves into the molecular mechanisms underlying the therapeutic efficacy of these compounds and scrutinizes their complex interplay in EBV-linked processes and cancer transformation by targeting key genes and proteins pivotal to both the viral life cycle and tumor development. Additionally, the review covers current research, highlights key findings, and discusses promising avenues for future investigations in the pursuit of targeted therapies against EBV and its related tumors.
Zobrazit více v PubMed
Wong Y., Meehan M.T., Burrows S.R., Doolan D.L., Miles J.J. Estimating the global burden of Epstein-Barr virus-related cancers. J. Cancer Res. Clin. Oncol. 2022;148:31–46. doi: 10.1007/s00432-021-03824-y. PubMed DOI PMC
Shannon-Lowe C., Rickinson A. The Global Landscape of EBV-Associated Tumors. Front. Oncol. 2019;9:713. doi: 10.3389/fonc.2019.00713. PubMed DOI PMC
Šudomová M., Hassan S.T.S. Nutraceutical Curcumin with Promising Protection against Herpesvirus Infections and Their Associated Inflammation: Mechanisms and Pathways. Microorganisms. 2021;9:292. doi: 10.3390/microorganisms9020292. PubMed DOI PMC
Soldan S.S., Lieberman P.M. Epstein-Barr virus and multiple sclerosis. Nat. Rev. Microbiol. 2023;21:51–64. doi: 10.1038/s41579-022-00770-5. PubMed DOI PMC
Kerr J.R. Epstein-Barr virus (EBV) reactivation and therapeutic inhibitors. J. Clin. Pathol. 2019;72:651–658. doi: 10.1136/jclinpath-2019-205822. PubMed DOI
Sausen D.G., Bhutta M.S., Gallo E.S., Dahari H., Borenstein R. Stress-Induced Epstein-Barr Virus Reactivation. Biomolecules. 2021;11:1380. doi: 10.3390/biom11091380. PubMed DOI PMC
Farrell P.J. Epstein-Barr Virus and Cancer. Annu. Rev. Pathol. 2019;14:29–53. doi: 10.1146/annurev-pathmechdis-012418-013023. PubMed DOI
Yin H., Qu J., Peng Q., Gan R. Molecular mechanisms of EBV-driven cell cycle progression and oncogenesis. Med. Microbiol. Immunol. 2019;208:573–583. doi: 10.1007/s00430-018-0570-1. PubMed DOI PMC
Low Y.H., Loh C.J.L., Peh D.Y.Y., Chu A.J.M., Han S., Toh H.C. Pathogenesis and therapeutic implications of EBV-associated epithelial cancers. Front. Oncol. 2023;13:1202117. doi: 10.3389/fonc.2023.1202117. PubMed DOI PMC
Kanda T., Yajima M., Ikuta K. Epstein-Barr virus strain variation and cancer. Cancer Sci. 2019;110:1132–1139. doi: 10.1111/cas.13954. PubMed DOI PMC
Toner K., Bollard C.M. EBV+ lymphoproliferative diseases: Opportunities for leveraging EBV as a therapeutic target. Blood. 2022;139:983–994. doi: 10.1182/blood.2020005466. PubMed DOI PMC
Houen G., Trier N.H., Frederiksen J.L. Epstein-Barr Virus and Multiple Sclerosis. Front. Immunol. 2020;11:587078. doi: 10.3389/fimmu.2020.587078. PubMed DOI PMC
Houen G., Trier N.H. Epstein-Barr Virus and Systemic Autoimmune Diseases. Front. Immunol. 2020;11:587380. doi: 10.3389/fimmu.2020.587380. PubMed DOI PMC
Zhao B. Epstein-Barr Virus B Cell Growth Transformation: The Nuclear Events. Viruses. 2023;15:832. doi: 10.3390/v15040832. PubMed DOI PMC
Kempkes B., Ling P.D. EBNA2 and Its Coactivator EBNA-LP. Curr. Top. Microbiol. Immunol. 2015;391:35–59. doi: 10.1007/978-3-319-22834-1_2. PubMed DOI
Kanda T. EBV-Encoded Latent Genes. Adv. Exp. Med. Biol. 2018;1045:377–394. doi: 10.1007/978-981-10-7230-7_17. PubMed DOI
Khasnis S., Veenstra H., McClellan M.J., Ojeniyi O., Wood C.D., West M.J. Regulation of B cell receptor signalling by Epstein-Barr virus nuclear antigens. Biochem. J. 2022;479:2395–2417. doi: 10.1042/BCJ20220417. PubMed DOI PMC
Liu W., Xiao H., Song H., An S., Luo B. Transcriptome sequencing of LMP2A-transfected gastric cancer cells identifies potential biomarkers in EBV-associated gastric cancer. Virus Genes. 2022;58:515–526. doi: 10.1007/s11262-022-01925-5. PubMed DOI
Saha A., Robertson E.S. Impact of EBV essential nuclear protein EBNA-3C on B-cell proliferation and apoptosis. Future Microbiol. 2013;8:323–352. doi: 10.2217/fmb.12.147. PubMed DOI PMC
Shi F., Shang L., Zhou M., Lv C., Li Y., Luo C., Liu N., Lu J., Tang M., Luo X., et al. Epstein-Barr virus-driven metabolic alterations contribute to the viral lytic reactivation and tumor progression in nasopharyngeal carcinoma. J. Med. Virol. 2024;96:e29634. doi: 10.1002/jmv.29634. PubMed DOI
Wu Y., Zhang X., Liu C., Li Z., Wen Y., Zheng R., Xu C., Tian J., Wei L., Wang J., et al. Epstein-Barr virus microRNA miR-BART2-5p accelerates nasopharyngeal carcinoma metastasis by suppressing RNase Ⅲ endonuclease DICER1. J. Biol. Chem. 2023;299:105082. doi: 10.1016/j.jbc.2023.105082. PubMed DOI PMC
Jin J., Sun T., Zhang M., Cheng J., Gu J., Huang L., Xiao M., Zhou J., Luo H. EBV-Encoded MicroRNA-BART17-3p Targets DDX3X and Promotes EBV Infection in EBV-Associated T/Natural Killer-Cell Lymphoproliferative Diseases. Open Forum Infect. Dis. 2023;10:ofad516. doi: 10.1093/ofid/ofad516. PubMed DOI PMC
Tan H., Gong Y., Liu Y., Long J., Luo Q., Faleti O.D., Lyu X. Advancing therapeutic strategies for Epstein-Barr virus-associated malignancies through lytic reactivation. Biomed. Pharmacother. Biomed. Pharmacother. 2023;164:114916. doi: 10.1016/j.biopha.2023.114916. PubMed DOI
Li H., Liu S., Hu J., Luo X., Li N., M Bode A., Cao Y. Epstein-Barr virus lytic reactivation regulation and its pathogenic role in carcinogenesis. Int. J. Biol. Sci. 2016;12:1309–1318. doi: 10.7150/ijbs.16564. PubMed DOI PMC
Young L.S., Yap L.F., Murray P.G. Epstein-Barr virus: More than 50 years old and still providing surprises. Nat. Rev. Cancer. 2016;16:789–802. doi: 10.1038/nrc.2016.92. PubMed DOI
Pagano J.S., Whitehurst C.B., Andrei G. Antiviral Drugs for EBV. Cancers. 2018;10:197. doi: 10.3390/cancers10060197. PubMed DOI PMC
Poole C.L., James S.H. Antiviral Therapies for Herpesviruses: Current Agents and New Directions. Clin. Ther. 2018;40:1282–1298. doi: 10.1016/j.clinthera.2018.07.006. PubMed DOI PMC
Šudomová M., Berchová-Bímová K., Mazurakova A., Šamec D., Kubatka P., Hassan S.T.S. Flavonoids Target Human Herpesviruses That Infect the Nervous System: Mechanisms of Action and Therapeutic Insights. Viruses. 2022;14:592. doi: 10.3390/v14030592. PubMed DOI PMC
Šudomová M., Hassan S.T.S. Herpesvirus Diseases in Humans and Animals: Recent Developments, Challenges, and Charting Future Paths. Pathogens. 2023;12:1422. doi: 10.3390/pathogens12121422. PubMed DOI PMC
Fugl A., Andersen C.L. Epstein-Barr virus and its association with disease—A review of relevance to general practice. BMC Fam. Pract. 2019;20:62. doi: 10.1186/s12875-019-0954-3. PubMed DOI PMC
Gomes K., Goldman R.D. Corticosteroids for infectious mononucleosis. Can. Fam. Physician Med. Fam. Can. 2023;69:101–102. doi: 10.46747/cfp.6902101. PubMed DOI PMC
Hassan S.T.S., Šudomová M. Molecular Mechanisms of Flavonoids against Tumor Gamma-Herpesviruses and Their Correlated Cancers—A Focus on EBV and KSHV Life Cycles and Carcinogenesis. Int. J. Mol. Sci. 2022;24:247. doi: 10.3390/ijms24010247. PubMed DOI PMC
Hassan S.T.S., Šudomová M., Mazurakova A., Kubatka P. Insights into Antiviral Properties and Molecular Mechanisms of Non-Flavonoid Polyphenols against Human Herpesviruses. Int. J. Mol. Sci. 2022;23:13891. doi: 10.3390/ijms232213891. PubMed DOI PMC
Taylor G.S., Long H.M., Brooks J.M., Rickinson A.B., Hislop A.D. The immunology of Epstein-Barr virus-induced disease. Annu. Rev. Immunol. 2015;33:787–821. doi: 10.1146/annurev-immunol-032414-112326. PubMed DOI
Baer R., Bankier A.T., Biggin M.D., Deininger P.L., Farrell P.J., Gibson T.J., Hatfull G., Hudson G.S., Satchwell S.C., Séguin C. DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature. 1984;310:207–211. doi: 10.1038/310207a0. PubMed DOI
Notarte K.I., Senanayake S., Macaranas I., Albano P.M., Mundo L., Fennell E., Leoncini L., Murray P. MicroRNA and Other Non-Coding RNAs in Epstein-Barr Virus-Associated Cancers. Cancers. 2021;13:3909. doi: 10.3390/cancers13153909. PubMed DOI PMC
Bu G.-L., Xie C., Kang Y.-F., Zeng M.-S., Sun C. How EBV Infects: The Tropism and Underlying Molecular Mechanism for Viral Infection. Viruses. 2022;14:2372. doi: 10.3390/v14112372. PubMed DOI PMC
Speck P., Haan K.M., Longnecker R. Epstein-Barr virus entry into cells. Virology. 2000;277:1–5. doi: 10.1006/viro.2000.0624. PubMed DOI
Borza C.M., Hutt-Fletcher L.M. Alternate replication in B cells and epithelial cells switches tropism of Epstein-Barr virus. Nat. Med. 2002;8:594–599. doi: 10.1038/nm0602-594. PubMed DOI
Chesnokova L.S., Ahuja M.K., Hutt-Fletcher L.M. Epstein-Barr virus glycoprotein gB and gHgL can mediate fusion and entry in trans, and heat can act as a partial surrogate for gHgL and trigger a conformational change in gB. J. Virol. 2014;88:12193–12201. doi: 10.1128/JVI.01597-14. PubMed DOI PMC
Damania B., Kenney S.C., Raab-Traub N. Epstein-Barr virus: Biology and clinical disease. Cell. 2022;185:3652–3670. doi: 10.1016/j.cell.2022.08.026. PubMed DOI PMC
Rosemarie Q., Sugden B. Epstein-Barr Virus: How Its Lytic Phase Contributes to Oncogenesis. Microorganisms. 2020;8:E1824. doi: 10.3390/microorganisms8111824. PubMed DOI PMC
Kalla M., Hammerschmidt W. Human B cells on their route to latent infection--early but transient expression of lytic genes of Epstein-Barr virus. Eur. J. Cell Biol. 2012;91:65–69. doi: 10.1016/j.ejcb.2011.01.014. PubMed DOI
Yap L.F., Wong A.K.C., Paterson I.C., Young L.S. Functional Implications of Epstein-Barr Virus Lytic Genes in Carcinogenesis. Cancers. 2022;14:5780. doi: 10.3390/cancers14235780. PubMed DOI PMC
Albanese M., Tagawa T., Hammerschmidt W. Strategies of Epstein-Barr virus to evade innate antiviral immunity of its human host. Front. Microbiol. 2022;13:955603. doi: 10.3389/fmicb.2022.955603. PubMed DOI PMC
Quinn L.L., Williams L.R., White C., Forrest C., Zuo J., Rowe M. The Missing Link in Epstein-Barr Virus Immune Evasion: The BDLF3 Gene Induces Ubiquitination and Downregulation of Major Histocompatibility Complex Class I (MHC-I) and MHC-II. J. Virol. 2016;90:356–367. doi: 10.1128/JVI.02183-15. PubMed DOI PMC
Zuo J., Quinn L.L., Tamblyn J., Thomas W.A., Feederle R., Delecluse H.-J., Hislop A.D., Rowe M. The Epstein-Barr virus-encoded BILF1 protein modulates immune recognition of endogenously processed antigen by targeting major histocompatibility complex class I molecules trafficking on both the exocytic and endocytic pathways. J. Virol. 2011;85:1604–1614. doi: 10.1128/JVI.01608-10. PubMed DOI PMC
Keating S., Prince S., Jones M., Rowe M. The lytic cycle of Epstein-Barr virus is associated with decreased expression of cell surface major histocompatibility complex class I and class II molecules. J. Virol. 2002;76:8179–8188. doi: 10.1128/JVI.76.16.8179-8188.2002. PubMed DOI PMC
Hammerschmidt W. The Epigenetic Life Cycle of Epstein-Barr Virus. Curr. Top. Microbiol. Immunol. 2015;390:103–117. doi: 10.1007/978-3-319-22822-8_6. PubMed DOI
Cui X., Snapper C.M. Epstein Barr Virus: Development of Vaccines and Immune Cell Therapy for EBV-Associated Diseases. Front. Immunol. 2021;12:734471. doi: 10.3389/fimmu.2021.734471. PubMed DOI PMC
Ozoya O.O., Sokol L., Dalia S. EBV-Related Malignancies, Outcomes and Novel Prevention Strategies. Infect. Disord. Drug Targets. 2016;16:4–21. doi: 10.2174/1871526516666160407113536. PubMed DOI
Safe S., Jayaraman A., Chapkin R.S., Howard M., Mohankumar K., Shrestha R. Flavonoids: Structure-function and mechanisms of action and opportunities for drug development. Toxicol. Res. 2021;37:147–162. doi: 10.1007/s43188-020-00080-z. PubMed DOI PMC
Chen L., Cao H., Huang Q., Xiao J., Teng H. Absorption, metabolism and bioavailability of flavonoids: A review. Crit. Rev. Food Sci. Nutr. 2022;62:7730–7742. doi: 10.1080/10408398.2021.1917508. PubMed DOI
Liu W., Feng Y., Yu S., Fan Z., Li X., Li J., Yin H. The Flavonoid Biosynthesis Network in Plants. Int. J. Mol. Sci. 2021;22:12824. doi: 10.3390/ijms222312824. PubMed DOI PMC
Petrussa E., Braidot E., Zancani M., Peresson C., Bertolini A., Patui S., Vianello A. Plant flavonoids--biosynthesis, transport and involvement in stress responses. Int. J. Mol. Sci. 2013;14:14950–14973. doi: 10.3390/ijms140714950. PubMed DOI PMC
Šamec D., Karalija E., Šola I., Vujčić Bok V., Salopek-Sondi B. The Role of Polyphenols in Abiotic Stress Response: The Influence of Molecular Structure. Plants Basel Switz. 2021;10:118. doi: 10.3390/plants10010118. PubMed DOI PMC
Chagas M.D.S.S., Behrens M.D., Moragas-Tellis C.J., Penedo G.X.M., Silva A.R., Gonçalves-de-Albuquerque C.F. Flavonols and Flavones as Potential anti-Inflammatory, Antioxidant, and Antibacterial Compounds. Oxidative Med. Cell. Longev. 2022;2022:9966750. doi: 10.1155/2022/9966750. PubMed DOI PMC
Shen N., Wang T., Gan Q., Liu S., Wang L., Jin B. Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chem. 2022;383:132531. doi: 10.1016/j.foodchem.2022.132531. PubMed DOI
Singh B., Kumar A., Malik A.K. Flavonoids biosynthesis in plants and its further analysis by capillary electrophoresis. Electrophoresis. 2017;38:820–832. doi: 10.1002/elps.201600334. PubMed DOI
Wen K., Fang X., Yang J., Yao Y., Nandakumar K.S., Salem M.L., Cheng K. Recent Research on Flavonoids and their Biomedical Applications. Curr. Med. Chem. 2021;28:1042–1066. doi: 10.2174/0929867327666200713184138. PubMed DOI
Zaragozá C., Villaescusa L., Monserrat J., Zaragozá F., Álvarez-Mon M. Potential Therapeutic Anti-Inflammatory and Immunomodulatory Effects of Dihydroflavones, Flavones, and Flavonols. Molecules. 2020;25:1017. doi: 10.3390/molecules25041017. PubMed DOI PMC
Dajas F., Andrés A.-C.J., Florencia A., Carolina E., Felicia R.-M. Neuroprotective actions of flavones and flavonols: Mechanisms and relationship to flavonoid structural features. Cent. Nerv. Syst. Agents Med. Chem. 2013;13:30–35. doi: 10.2174/1871524911313010005. PubMed DOI
Mekni-Toujani M., Mousavizadeh L., Gallo A., Ghram A. Thymus capitatus flavonoids inhibit infection of Kaposi’s sarcoma-associated herpesvirus. FEBS Open Bio. 2022;12:1166–1177. doi: 10.1002/2211-5463.13407. PubMed DOI PMC
Cherry J.J., Rietz A., Malinkevich A., Liu Y., Xie M., Bartolowits M., Davisson V.J., Baleja J.D., Androphy E.J. Structure based identification and characterization of flavonoids that disrupt human papillomavirus-16 E6 function. PLoS ONE. 2013;8:e84506. doi: 10.1371/journal.pone.0084506. PubMed DOI PMC
Ahmed S., Parvez M.K., Al-Dosari M.S., Abdelwahid M.A.S., Alhowiriny T.A., Al-Rehaily A.J. Novel anti-hepatitis B virus flavonoids sakuranetin and velutin from Rhus retinorrhoea. Mol. Med. Rep. 2023;28:176. doi: 10.3892/mmr.2023.13063. PubMed DOI
Shimizu J.F., Lima C.S., Pereira C.M., Bittar C., Batista M.N., Nazaré A.C., Polaquini C.R., Zothner C., Harris M., Rahal P., et al. Flavonoids from Pterogyne nitens Inhibit Hepatitis C Virus Entry. Sci. Rep. 2017;7:16127. doi: 10.1038/s41598-017-16336-y. PubMed DOI PMC
Ishikawa C., Senba M., Mori N. Butein inhibits NF-κB, AP-1 and Akt activation in adult T-cell leukemia/lymphoma. Int. J. Oncol. 2017;51:633–643. doi: 10.3892/ijo.2017.4026. PubMed DOI
Murata T., Sugimoto A., Inagaki T., Yanagi Y., Watanabe T., Sato Y., Kimura H. Molecular Basis of Epstein-Barr Virus Latency Establishment and Lytic Reactivation. Viruses. 2021;13:2344. doi: 10.3390/v13122344. PubMed DOI PMC
Frappier L. EBNA1. Curr. Top. Microbiol. Immunol. 2015;391:3–34. doi: 10.1007/978-3-319-22834-1_1. PubMed DOI
Tsai Y.-C., Hohmann J., El-Shazly M., Chang L.-K., Dankó B., Kúsz N., Hsieh C.-T., Hunyadi A., Chang F.-R. Bioactive constituents of Lindernia crustacea and its anti-EBV effect via Rta expression inhibition in the viral lytic cycle. J. Ethnopharmacol. 2020;250:112493. doi: 10.1016/j.jep.2019.112493. PubMed DOI
Wu C.-C., Fang C.-Y., Hsu H.-Y., Chen Y.-J., Chou S.-P., Huang S.-Y., Cheng Y.-J., Lin S.-F., Chang Y., Tsai C.-H., et al. Luteolin inhibits Epstein-Barr virus lytic reactivation by repressing the promoter activities of immediate-early genes. Antivir. Res. 2016;132:99–110. doi: 10.1016/j.antiviral.2016.05.007. PubMed DOI
Wu C.-C., Fang C.-Y., Cheng Y.-J., Hsu H.-Y., Chou S.-P., Huang S.-Y., Tsai C.-H., Chen J.-Y. Inhibition of Epstein-Barr virus reactivation by the flavonoid apigenin. J. Biomed. Sci. 2017;24:2. doi: 10.1186/s12929-016-0313-9. PubMed DOI PMC
Zhang J., Koike R., Yamamoto A., Ukiya M., Fukatsu M., Banno N., Miura M., Motohashi S., Tokuda H., Akihisa T. Glycosidic inhibitors of melanogenesis from leaves of Passiflora edulis. Chem. Biodivers. 2013;10:1851–1865. doi: 10.1002/cbdv.201300181. PubMed DOI
Lima R.T., Seca H., Palmeira A., Fernandes M.X., Castro F., Correia-da-Silva M., Nascimento M.S.J., Sousa E., Pinto M., Vasconcelos M.H. Sulfated small molecules targeting eBV in Burkitt lymphoma: From in silico screening to the evidence of in vitro effect on viral episomal DNA. Chem. Biol. Drug Des. 2013;81:631–644. doi: 10.1111/cbdd.12109. PubMed DOI
Tung C.-P., Chang F.-R., Wu Y.-C., Chuang D.-W., Hunyadi A., Liu S.-T. Inhibition of the Epstein–Barr virus lytic cycle by protoapigenone. J. Gen. Virol. 2011;92:1760–1768. doi: 10.1099/vir.0.031609-0. PubMed DOI
Vágvölgyi M., Girst G., Kúsz N., Ötvös S.B., Fülöp F., Hohmann J., Servais J.-Y., Seguin-Devaux C., Chang F.-R., Chen M.S., et al. Less Cytotoxic Protoflavones as Antiviral Agents: Protoapigenone 1′-O-isopropyl ether Shows Improved Selectivity Against the Epstein–Barr Virus Lytic Cycle. Int. J. Mol. Sci. 2019;20:6269. doi: 10.3390/ijms20246269. PubMed DOI PMC
Lee M., Son M., Ryu E., Shin Y.S., Kim J.G., Kang B.W., Cho H., Kang H. Quercetin-induced apoptosis prevents EBV infection. Oncotarget. 2015;6:12603–12624. doi: 10.18632/oncotarget.3687. PubMed DOI PMC
Akazawa H., Kohno H., Tokuda H., Suzuki N., Yasukawa K., Kimura Y., Manosroi A., Manosroi J., Akihisa T. Anti-Inflammatory and Anti-Tumor-Promoting Effects of 5-Deprenyllupulonol C and Other Compounds from Hop (Humulus lupulus L.) Chem. Biodivers. 2012;9:1045–1054. doi: 10.1002/cbdv.201100233. PubMed DOI
Murata T. Encyclopedia of EBV-Encoded Lytic Genes: An Update. Adv. Exp. Med. Biol. 2018;1045:395–412. doi: 10.1007/978-981-10-7230-7_18. PubMed DOI
Zhang J., Sommermann T., Li X., Gieselmann L., de la Rosa K., Stecklum M., Klein F., Kocks C., Rajewsky K. LMP1 and EBNA2 constitute a minimal set of EBV genes for transformation of human B cells. Front. Immunol. 2023;14:1331730. doi: 10.3389/fimmu.2023.1331730. PubMed DOI PMC
Ko Y.-H. EBV and human cancer. Exp. Mol. Med. 2015;47:e130. doi: 10.1038/emm.2014.109. PubMed DOI PMC
Wu C.-C., Fang C.-Y., Hsu H.-Y., Chuang H.-Y., Cheng Y.-J., Chen Y.-J., Chou S.-P., Huang S.-Y., Lin S.-F., Chang Y., et al. EBV reactivation as a target of luteolin to repress NPC tumorigenesis. Oncotarget. 2016;7:18999–19017. doi: 10.18632/oncotarget.7967. PubMed DOI PMC
Lo A.K.-F., Lung R.W.-M., Dawson C.W., Young L.S., Ko C.-W., Yeung W.W., Kang W., To K.-F., Lo K.-W. Activation of sterol regulatory element-binding protein 1 (SREBP1)-mediated lipogenesis by the Epstein-Barr virus-encoded latent membrane protein 1 (LMP1) promotes cell proliferation and progression of nasopharyngeal carcinoma. J. Pathol. 2018;246:180–190. doi: 10.1002/path.5130. PubMed DOI PMC
Wu X., Liu P., Zhang H., Li Y., Salmani J.M.M., Wang F., Yang K., Fu R., Chen Z., Chen B. Wogonin as a targeted therapeutic agent for EBV (+) lymphoma cells involved in LMP1/NF-κB/miR-155/PU.1 pathway. BMC Cancer. 2017;17:147. doi: 10.1186/s12885-017-3145-4. PubMed DOI PMC
Zhang Y., Wang H., Liu Y., Wang C., Wang J., Long C., Guo W., Sun X. Baicalein inhibits growth of Epstein-Barr virus-positive nasopharyngeal carcinoma by repressing the activity of EBNA1 Q-promoter. Biomed. Pharmacother. Biomed. Pharmacother. 2018;102:1003–1014. doi: 10.1016/j.biopha.2018.03.114. PubMed DOI
Park G.B., Kim Y.S., Lee H.-K., Yang J.W., Kim D., Hur D.Y. ASK1/JNK-mediated TAp63 activation controls the cell survival signal of baicalein-treated EBV-transformed B cells. Mol. Cell. Biochem. 2016;412:247–258. doi: 10.1007/s11010-015-2631-8. PubMed DOI
Lee H.H., Lee S., Shin Y.S., Cho M., Kang H., Cho H. Anti-Cancer Effect of Quercetin in Xenograft Models with EBV-Associated Human Gastric Carcinoma. Molecules. 2016;21:1286. doi: 10.3390/molecules21101286. PubMed DOI PMC
Huh S., Lee S., Choi S.J., Wu Z., Cho J.-H., Kim L., Shin Y.S., Kang B.W., Kim J.G., Liu K., et al. Quercetin Synergistically Inhibit EBV-Associated Gastric Carcinoma with Ganoderma lucidum Extracts. Molecules. 2019;24:3834. doi: 10.3390/molecules24213834. PubMed DOI PMC
Granato M., Rizzello C., Romeo M.A., Yadav S., Santarelli R., D’Orazi G., Faggioni A., Cirone M. Concomitant reduction of c-Myc expression and PI3K/AKT/mTOR signaling by quercetin induces a strong cytotoxic effect against Burkitt’s lymphoma. Int. J. Biochem. Cell Biol. 2016;79:393–400. doi: 10.1016/j.biocel.2016.09.006. PubMed DOI
Daker M., Bhuvanendran S., Ahmad M., Takada K., Khoo A.S.-B. Deregulation of lipid metabolism pathway genes in nasopharyngeal carcinoma cells. Mol. Med. Rep. 2013;7:731–741. doi: 10.3892/mmr.2012.1253. PubMed DOI PMC
Granato M., Gilardini Montani M.S., Zompetta C., Santarelli R., Gonnella R., Romeo M.A., D’Orazi G., Faggioni A., Cirone M. Quercetin Interrupts the Positive Feedback Loop Between STAT3 and IL-6, Promotes Autophagy, and Reduces ROS, Preventing EBV-Driven B Cell Immortalization. Biomolecules. 2019;9:482. doi: 10.3390/biom9090482. PubMed DOI PMC
Wu T., Wang S., Wu J., Lin Z., Sui X., Xu X., Shimizu N., Chen B., Wang X. Icaritin induces lytic cytotoxicity in extranodal NK/T-cell lymphoma. J. Exp. Clin. Cancer Res. 2015;34:17. doi: 10.1186/s13046-015-0133-x. PubMed DOI PMC
Li R., Zhao Y., Chen J., Shao S., Zhang X. Fisetin inhibits migration, invasion and epithelial-mesenchymal transition of LMP1-positive nasopharyngeal carcinoma cells. Mol. Med. Rep. 2014;9:413–418. doi: 10.3892/mmr.2013.1836. PubMed DOI
Li R., Liang H.-Y., Li M.-Y., Lin C.-Y., Shi M.-J., Zhang X.-J. Interference of fisetin with targets of the nuclear factor-κB signal transduction pathway activated by Epstein-Barr virus encoded latent membrane protein 1. Asian Pac. J. Cancer Prev. APJCP. 2014;15:9835–9839. doi: 10.7314/APJCP.2014.15.22.9835. PubMed DOI
Yun S.-M., Kim Y.S., Kim K.H., Hur D.Y. Ampelopsin Induces DR5-Mediated Apoptotic Cell Death in EBV-Infected Cells through the p38 Pathway. Nutr. Cancer. 2020;72:489–494. doi: 10.1080/01635581.2019.1639778. PubMed DOI
Badshah S.L., Faisal S., Muhammad A., Poulson B.G., Emwas A.H., Jaremko M. Antiviral activities of flavonoids. Biomed. Pharmacother. Biomed. Pharmacother. 2021;140:111596. doi: 10.1016/j.biopha.2021.111596. PubMed DOI PMC
Mazurakova A., Koklesova L., Vybohova D., Samec M., Kudela E., Biringer K., Šudomová M., Hassan S.T.S., Kello M., Büsselberg D., et al. Therapy-resistant breast cancer in focus: Clinically relevant mitigation by flavonoids targeting cancer stem cells. Front. Pharmacol. 2023;14:1160068. doi: 10.3389/fphar.2023.1160068. PubMed DOI PMC
Ross J.A., Kasum C.M. Dietary flavonoids: Bioavailability, metabolic effects, and safety. Annu. Rev. Nutr. 2002;22:19–34. doi: 10.1146/annurev.nutr.22.111401.144957. PubMed DOI
Hollman P.C., Katan M.B. Health effects and bioavailability of dietary flavonols. Free Radic. Res. 1999;31:S75–S80. doi: 10.1080/10715769900301351. PubMed DOI
Sampson L., Rimm E., Hollman P.C.H., de Vries J.H.M., Katan M.B. Flavonol and flavone intakes in US health professionals. J. Am. Diet. Assoc. 2002;102:1414–1420. doi: 10.1016/S0002-8223(02)90314-7. PubMed DOI
Egert S., Rimbach G. Which sources of flavonoids: Complex diets or dietary supplements? Adv. Nutr. 2011;2:8–14. doi: 10.3945/an.110.000026. PubMed DOI PMC
Andres S., Pevny S., Ziegenhagen R., Bakhiya N., Schäfer B., Hirsch-Ernst K.I., Lampen A. Safety Aspects of the Use of Quercetin as a Dietary Supplement. Mol. Nutr. Food Res. 2018;62:1700447. doi: 10.1002/mnfr.201700447. PubMed DOI
Srinivas N.R. Recent trends in preclinical drug-drug interaction studies of flavonoids--Review of case studies, issues and perspectives. Phytother. Res. PTR. 2015;29:1679–1691. doi: 10.1002/ptr.5447. PubMed DOI
Tang D., Chen K., Huang L., Li J. Pharmacokinetic properties and drug interactions of apigenin, a natural flavone. Expert Opin. Drug Metab. Toxicol. 2017;13:323–330. doi: 10.1080/17425255.2017.1251903. PubMed DOI
Ma Y., Zeng M., Sun R., Hu M. Disposition of flavonoids impacts their efficacy and safety. Curr. Drug Metab. 2014;15:841–864. doi: 10.2174/1389200216666150206123719. PubMed DOI
Barenys M., Masjosthusmann S., Fritsche E. Is Intake of Flavonoid-Based Food Supplements During Pregnancy Safe for the Developing Child? A Literature Review. Curr. Drug Targets. 2017;18:196–231. doi: 10.2174/1389450116666150804110049. PubMed DOI
Skibola C.F., Smith M.T. Potential health impacts of excessive flavonoid intake. Free Radic. Biol. Med. 2000;29:375–383. doi: 10.1016/S0891-5849(00)00304-X. PubMed DOI