Anti-Epstein-Barr Virus Activities of Flavones and Flavonols with Effects on Virus-Related Cancers

. 2025 Feb 26 ; 30 (5) : . [epub] 20250226

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid40076282

The Epstein-Barr virus (EBV), a member of the human gamma-herpesviruses, is intricately linked to various human malignancies. Current treatment options for EBV infection involve the use of acyclovir and its derivatives, which exhibit limited efficacy and are associated with drug resistance issues. Therefore, there is a critical need for new medications with more effective therapeutic actions and less susceptibility to resistance. This review explores the therapeutic promise of flavones and flavonols, naturally occurring molecules, against EBV and its correlated cancers. It thoroughly delves into the molecular mechanisms underlying the therapeutic efficacy of these compounds and scrutinizes their complex interplay in EBV-linked processes and cancer transformation by targeting key genes and proteins pivotal to both the viral life cycle and tumor development. Additionally, the review covers current research, highlights key findings, and discusses promising avenues for future investigations in the pursuit of targeted therapies against EBV and its related tumors.

Zobrazit více v PubMed

Wong Y., Meehan M.T., Burrows S.R., Doolan D.L., Miles J.J. Estimating the global burden of Epstein-Barr virus-related cancers. J. Cancer Res. Clin. Oncol. 2022;148:31–46. doi: 10.1007/s00432-021-03824-y. PubMed DOI PMC

Shannon-Lowe C., Rickinson A. The Global Landscape of EBV-Associated Tumors. Front. Oncol. 2019;9:713. doi: 10.3389/fonc.2019.00713. PubMed DOI PMC

Šudomová M., Hassan S.T.S. Nutraceutical Curcumin with Promising Protection against Herpesvirus Infections and Their Associated Inflammation: Mechanisms and Pathways. Microorganisms. 2021;9:292. doi: 10.3390/microorganisms9020292. PubMed DOI PMC

Soldan S.S., Lieberman P.M. Epstein-Barr virus and multiple sclerosis. Nat. Rev. Microbiol. 2023;21:51–64. doi: 10.1038/s41579-022-00770-5. PubMed DOI PMC

Kerr J.R. Epstein-Barr virus (EBV) reactivation and therapeutic inhibitors. J. Clin. Pathol. 2019;72:651–658. doi: 10.1136/jclinpath-2019-205822. PubMed DOI

Sausen D.G., Bhutta M.S., Gallo E.S., Dahari H., Borenstein R. Stress-Induced Epstein-Barr Virus Reactivation. Biomolecules. 2021;11:1380. doi: 10.3390/biom11091380. PubMed DOI PMC

Farrell P.J. Epstein-Barr Virus and Cancer. Annu. Rev. Pathol. 2019;14:29–53. doi: 10.1146/annurev-pathmechdis-012418-013023. PubMed DOI

Yin H., Qu J., Peng Q., Gan R. Molecular mechanisms of EBV-driven cell cycle progression and oncogenesis. Med. Microbiol. Immunol. 2019;208:573–583. doi: 10.1007/s00430-018-0570-1. PubMed DOI PMC

Low Y.H., Loh C.J.L., Peh D.Y.Y., Chu A.J.M., Han S., Toh H.C. Pathogenesis and therapeutic implications of EBV-associated epithelial cancers. Front. Oncol. 2023;13:1202117. doi: 10.3389/fonc.2023.1202117. PubMed DOI PMC

Kanda T., Yajima M., Ikuta K. Epstein-Barr virus strain variation and cancer. Cancer Sci. 2019;110:1132–1139. doi: 10.1111/cas.13954. PubMed DOI PMC

Toner K., Bollard C.M. EBV+ lymphoproliferative diseases: Opportunities for leveraging EBV as a therapeutic target. Blood. 2022;139:983–994. doi: 10.1182/blood.2020005466. PubMed DOI PMC

Houen G., Trier N.H., Frederiksen J.L. Epstein-Barr Virus and Multiple Sclerosis. Front. Immunol. 2020;11:587078. doi: 10.3389/fimmu.2020.587078. PubMed DOI PMC

Houen G., Trier N.H. Epstein-Barr Virus and Systemic Autoimmune Diseases. Front. Immunol. 2020;11:587380. doi: 10.3389/fimmu.2020.587380. PubMed DOI PMC

Zhao B. Epstein-Barr Virus B Cell Growth Transformation: The Nuclear Events. Viruses. 2023;15:832. doi: 10.3390/v15040832. PubMed DOI PMC

Kempkes B., Ling P.D. EBNA2 and Its Coactivator EBNA-LP. Curr. Top. Microbiol. Immunol. 2015;391:35–59. doi: 10.1007/978-3-319-22834-1_2. PubMed DOI

Kanda T. EBV-Encoded Latent Genes. Adv. Exp. Med. Biol. 2018;1045:377–394. doi: 10.1007/978-981-10-7230-7_17. PubMed DOI

Khasnis S., Veenstra H., McClellan M.J., Ojeniyi O., Wood C.D., West M.J. Regulation of B cell receptor signalling by Epstein-Barr virus nuclear antigens. Biochem. J. 2022;479:2395–2417. doi: 10.1042/BCJ20220417. PubMed DOI PMC

Liu W., Xiao H., Song H., An S., Luo B. Transcriptome sequencing of LMP2A-transfected gastric cancer cells identifies potential biomarkers in EBV-associated gastric cancer. Virus Genes. 2022;58:515–526. doi: 10.1007/s11262-022-01925-5. PubMed DOI

Saha A., Robertson E.S. Impact of EBV essential nuclear protein EBNA-3C on B-cell proliferation and apoptosis. Future Microbiol. 2013;8:323–352. doi: 10.2217/fmb.12.147. PubMed DOI PMC

Shi F., Shang L., Zhou M., Lv C., Li Y., Luo C., Liu N., Lu J., Tang M., Luo X., et al. Epstein-Barr virus-driven metabolic alterations contribute to the viral lytic reactivation and tumor progression in nasopharyngeal carcinoma. J. Med. Virol. 2024;96:e29634. doi: 10.1002/jmv.29634. PubMed DOI

Wu Y., Zhang X., Liu C., Li Z., Wen Y., Zheng R., Xu C., Tian J., Wei L., Wang J., et al. Epstein-Barr virus microRNA miR-BART2-5p accelerates nasopharyngeal carcinoma metastasis by suppressing RNase Ⅲ endonuclease DICER1. J. Biol. Chem. 2023;299:105082. doi: 10.1016/j.jbc.2023.105082. PubMed DOI PMC

Jin J., Sun T., Zhang M., Cheng J., Gu J., Huang L., Xiao M., Zhou J., Luo H. EBV-Encoded MicroRNA-BART17-3p Targets DDX3X and Promotes EBV Infection in EBV-Associated T/Natural Killer-Cell Lymphoproliferative Diseases. Open Forum Infect. Dis. 2023;10:ofad516. doi: 10.1093/ofid/ofad516. PubMed DOI PMC

Tan H., Gong Y., Liu Y., Long J., Luo Q., Faleti O.D., Lyu X. Advancing therapeutic strategies for Epstein-Barr virus-associated malignancies through lytic reactivation. Biomed. Pharmacother. Biomed. Pharmacother. 2023;164:114916. doi: 10.1016/j.biopha.2023.114916. PubMed DOI

Li H., Liu S., Hu J., Luo X., Li N., M Bode A., Cao Y. Epstein-Barr virus lytic reactivation regulation and its pathogenic role in carcinogenesis. Int. J. Biol. Sci. 2016;12:1309–1318. doi: 10.7150/ijbs.16564. PubMed DOI PMC

Young L.S., Yap L.F., Murray P.G. Epstein-Barr virus: More than 50 years old and still providing surprises. Nat. Rev. Cancer. 2016;16:789–802. doi: 10.1038/nrc.2016.92. PubMed DOI

Pagano J.S., Whitehurst C.B., Andrei G. Antiviral Drugs for EBV. Cancers. 2018;10:197. doi: 10.3390/cancers10060197. PubMed DOI PMC

Poole C.L., James S.H. Antiviral Therapies for Herpesviruses: Current Agents and New Directions. Clin. Ther. 2018;40:1282–1298. doi: 10.1016/j.clinthera.2018.07.006. PubMed DOI PMC

Šudomová M., Berchová-Bímová K., Mazurakova A., Šamec D., Kubatka P., Hassan S.T.S. Flavonoids Target Human Herpesviruses That Infect the Nervous System: Mechanisms of Action and Therapeutic Insights. Viruses. 2022;14:592. doi: 10.3390/v14030592. PubMed DOI PMC

Šudomová M., Hassan S.T.S. Herpesvirus Diseases in Humans and Animals: Recent Developments, Challenges, and Charting Future Paths. Pathogens. 2023;12:1422. doi: 10.3390/pathogens12121422. PubMed DOI PMC

Fugl A., Andersen C.L. Epstein-Barr virus and its association with disease—A review of relevance to general practice. BMC Fam. Pract. 2019;20:62. doi: 10.1186/s12875-019-0954-3. PubMed DOI PMC

Gomes K., Goldman R.D. Corticosteroids for infectious mononucleosis. Can. Fam. Physician Med. Fam. Can. 2023;69:101–102. doi: 10.46747/cfp.6902101. PubMed DOI PMC

Hassan S.T.S., Šudomová M. Molecular Mechanisms of Flavonoids against Tumor Gamma-Herpesviruses and Their Correlated Cancers—A Focus on EBV and KSHV Life Cycles and Carcinogenesis. Int. J. Mol. Sci. 2022;24:247. doi: 10.3390/ijms24010247. PubMed DOI PMC

Hassan S.T.S., Šudomová M., Mazurakova A., Kubatka P. Insights into Antiviral Properties and Molecular Mechanisms of Non-Flavonoid Polyphenols against Human Herpesviruses. Int. J. Mol. Sci. 2022;23:13891. doi: 10.3390/ijms232213891. PubMed DOI PMC

Taylor G.S., Long H.M., Brooks J.M., Rickinson A.B., Hislop A.D. The immunology of Epstein-Barr virus-induced disease. Annu. Rev. Immunol. 2015;33:787–821. doi: 10.1146/annurev-immunol-032414-112326. PubMed DOI

Baer R., Bankier A.T., Biggin M.D., Deininger P.L., Farrell P.J., Gibson T.J., Hatfull G., Hudson G.S., Satchwell S.C., Séguin C. DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature. 1984;310:207–211. doi: 10.1038/310207a0. PubMed DOI

Notarte K.I., Senanayake S., Macaranas I., Albano P.M., Mundo L., Fennell E., Leoncini L., Murray P. MicroRNA and Other Non-Coding RNAs in Epstein-Barr Virus-Associated Cancers. Cancers. 2021;13:3909. doi: 10.3390/cancers13153909. PubMed DOI PMC

Bu G.-L., Xie C., Kang Y.-F., Zeng M.-S., Sun C. How EBV Infects: The Tropism and Underlying Molecular Mechanism for Viral Infection. Viruses. 2022;14:2372. doi: 10.3390/v14112372. PubMed DOI PMC

Speck P., Haan K.M., Longnecker R. Epstein-Barr virus entry into cells. Virology. 2000;277:1–5. doi: 10.1006/viro.2000.0624. PubMed DOI

Borza C.M., Hutt-Fletcher L.M. Alternate replication in B cells and epithelial cells switches tropism of Epstein-Barr virus. Nat. Med. 2002;8:594–599. doi: 10.1038/nm0602-594. PubMed DOI

Chesnokova L.S., Ahuja M.K., Hutt-Fletcher L.M. Epstein-Barr virus glycoprotein gB and gHgL can mediate fusion and entry in trans, and heat can act as a partial surrogate for gHgL and trigger a conformational change in gB. J. Virol. 2014;88:12193–12201. doi: 10.1128/JVI.01597-14. PubMed DOI PMC

Damania B., Kenney S.C., Raab-Traub N. Epstein-Barr virus: Biology and clinical disease. Cell. 2022;185:3652–3670. doi: 10.1016/j.cell.2022.08.026. PubMed DOI PMC

Rosemarie Q., Sugden B. Epstein-Barr Virus: How Its Lytic Phase Contributes to Oncogenesis. Microorganisms. 2020;8:E1824. doi: 10.3390/microorganisms8111824. PubMed DOI PMC

Kalla M., Hammerschmidt W. Human B cells on their route to latent infection--early but transient expression of lytic genes of Epstein-Barr virus. Eur. J. Cell Biol. 2012;91:65–69. doi: 10.1016/j.ejcb.2011.01.014. PubMed DOI

Yap L.F., Wong A.K.C., Paterson I.C., Young L.S. Functional Implications of Epstein-Barr Virus Lytic Genes in Carcinogenesis. Cancers. 2022;14:5780. doi: 10.3390/cancers14235780. PubMed DOI PMC

Albanese M., Tagawa T., Hammerschmidt W. Strategies of Epstein-Barr virus to evade innate antiviral immunity of its human host. Front. Microbiol. 2022;13:955603. doi: 10.3389/fmicb.2022.955603. PubMed DOI PMC

Quinn L.L., Williams L.R., White C., Forrest C., Zuo J., Rowe M. The Missing Link in Epstein-Barr Virus Immune Evasion: The BDLF3 Gene Induces Ubiquitination and Downregulation of Major Histocompatibility Complex Class I (MHC-I) and MHC-II. J. Virol. 2016;90:356–367. doi: 10.1128/JVI.02183-15. PubMed DOI PMC

Zuo J., Quinn L.L., Tamblyn J., Thomas W.A., Feederle R., Delecluse H.-J., Hislop A.D., Rowe M. The Epstein-Barr virus-encoded BILF1 protein modulates immune recognition of endogenously processed antigen by targeting major histocompatibility complex class I molecules trafficking on both the exocytic and endocytic pathways. J. Virol. 2011;85:1604–1614. doi: 10.1128/JVI.01608-10. PubMed DOI PMC

Keating S., Prince S., Jones M., Rowe M. The lytic cycle of Epstein-Barr virus is associated with decreased expression of cell surface major histocompatibility complex class I and class II molecules. J. Virol. 2002;76:8179–8188. doi: 10.1128/JVI.76.16.8179-8188.2002. PubMed DOI PMC

Hammerschmidt W. The Epigenetic Life Cycle of Epstein-Barr Virus. Curr. Top. Microbiol. Immunol. 2015;390:103–117. doi: 10.1007/978-3-319-22822-8_6. PubMed DOI

Cui X., Snapper C.M. Epstein Barr Virus: Development of Vaccines and Immune Cell Therapy for EBV-Associated Diseases. Front. Immunol. 2021;12:734471. doi: 10.3389/fimmu.2021.734471. PubMed DOI PMC

Ozoya O.O., Sokol L., Dalia S. EBV-Related Malignancies, Outcomes and Novel Prevention Strategies. Infect. Disord. Drug Targets. 2016;16:4–21. doi: 10.2174/1871526516666160407113536. PubMed DOI

Safe S., Jayaraman A., Chapkin R.S., Howard M., Mohankumar K., Shrestha R. Flavonoids: Structure-function and mechanisms of action and opportunities for drug development. Toxicol. Res. 2021;37:147–162. doi: 10.1007/s43188-020-00080-z. PubMed DOI PMC

Chen L., Cao H., Huang Q., Xiao J., Teng H. Absorption, metabolism and bioavailability of flavonoids: A review. Crit. Rev. Food Sci. Nutr. 2022;62:7730–7742. doi: 10.1080/10408398.2021.1917508. PubMed DOI

Liu W., Feng Y., Yu S., Fan Z., Li X., Li J., Yin H. The Flavonoid Biosynthesis Network in Plants. Int. J. Mol. Sci. 2021;22:12824. doi: 10.3390/ijms222312824. PubMed DOI PMC

Petrussa E., Braidot E., Zancani M., Peresson C., Bertolini A., Patui S., Vianello A. Plant flavonoids--biosynthesis, transport and involvement in stress responses. Int. J. Mol. Sci. 2013;14:14950–14973. doi: 10.3390/ijms140714950. PubMed DOI PMC

Šamec D., Karalija E., Šola I., Vujčić Bok V., Salopek-Sondi B. The Role of Polyphenols in Abiotic Stress Response: The Influence of Molecular Structure. Plants Basel Switz. 2021;10:118. doi: 10.3390/plants10010118. PubMed DOI PMC

Chagas M.D.S.S., Behrens M.D., Moragas-Tellis C.J., Penedo G.X.M., Silva A.R., Gonçalves-de-Albuquerque C.F. Flavonols and Flavones as Potential anti-Inflammatory, Antioxidant, and Antibacterial Compounds. Oxidative Med. Cell. Longev. 2022;2022:9966750. doi: 10.1155/2022/9966750. PubMed DOI PMC

Shen N., Wang T., Gan Q., Liu S., Wang L., Jin B. Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chem. 2022;383:132531. doi: 10.1016/j.foodchem.2022.132531. PubMed DOI

Singh B., Kumar A., Malik A.K. Flavonoids biosynthesis in plants and its further analysis by capillary electrophoresis. Electrophoresis. 2017;38:820–832. doi: 10.1002/elps.201600334. PubMed DOI

Wen K., Fang X., Yang J., Yao Y., Nandakumar K.S., Salem M.L., Cheng K. Recent Research on Flavonoids and their Biomedical Applications. Curr. Med. Chem. 2021;28:1042–1066. doi: 10.2174/0929867327666200713184138. PubMed DOI

Zaragozá C., Villaescusa L., Monserrat J., Zaragozá F., Álvarez-Mon M. Potential Therapeutic Anti-Inflammatory and Immunomodulatory Effects of Dihydroflavones, Flavones, and Flavonols. Molecules. 2020;25:1017. doi: 10.3390/molecules25041017. PubMed DOI PMC

Dajas F., Andrés A.-C.J., Florencia A., Carolina E., Felicia R.-M. Neuroprotective actions of flavones and flavonols: Mechanisms and relationship to flavonoid structural features. Cent. Nerv. Syst. Agents Med. Chem. 2013;13:30–35. doi: 10.2174/1871524911313010005. PubMed DOI

Mekni-Toujani M., Mousavizadeh L., Gallo A., Ghram A. Thymus capitatus flavonoids inhibit infection of Kaposi’s sarcoma-associated herpesvirus. FEBS Open Bio. 2022;12:1166–1177. doi: 10.1002/2211-5463.13407. PubMed DOI PMC

Cherry J.J., Rietz A., Malinkevich A., Liu Y., Xie M., Bartolowits M., Davisson V.J., Baleja J.D., Androphy E.J. Structure based identification and characterization of flavonoids that disrupt human papillomavirus-16 E6 function. PLoS ONE. 2013;8:e84506. doi: 10.1371/journal.pone.0084506. PubMed DOI PMC

Ahmed S., Parvez M.K., Al-Dosari M.S., Abdelwahid M.A.S., Alhowiriny T.A., Al-Rehaily A.J. Novel anti-hepatitis B virus flavonoids sakuranetin and velutin from Rhus retinorrhoea. Mol. Med. Rep. 2023;28:176. doi: 10.3892/mmr.2023.13063. PubMed DOI

Shimizu J.F., Lima C.S., Pereira C.M., Bittar C., Batista M.N., Nazaré A.C., Polaquini C.R., Zothner C., Harris M., Rahal P., et al. Flavonoids from Pterogyne nitens Inhibit Hepatitis C Virus Entry. Sci. Rep. 2017;7:16127. doi: 10.1038/s41598-017-16336-y. PubMed DOI PMC

Ishikawa C., Senba M., Mori N. Butein inhibits NF-κB, AP-1 and Akt activation in adult T-cell leukemia/lymphoma. Int. J. Oncol. 2017;51:633–643. doi: 10.3892/ijo.2017.4026. PubMed DOI

Murata T., Sugimoto A., Inagaki T., Yanagi Y., Watanabe T., Sato Y., Kimura H. Molecular Basis of Epstein-Barr Virus Latency Establishment and Lytic Reactivation. Viruses. 2021;13:2344. doi: 10.3390/v13122344. PubMed DOI PMC

Frappier L. EBNA1. Curr. Top. Microbiol. Immunol. 2015;391:3–34. doi: 10.1007/978-3-319-22834-1_1. PubMed DOI

Tsai Y.-C., Hohmann J., El-Shazly M., Chang L.-K., Dankó B., Kúsz N., Hsieh C.-T., Hunyadi A., Chang F.-R. Bioactive constituents of Lindernia crustacea and its anti-EBV effect via Rta expression inhibition in the viral lytic cycle. J. Ethnopharmacol. 2020;250:112493. doi: 10.1016/j.jep.2019.112493. PubMed DOI

Wu C.-C., Fang C.-Y., Hsu H.-Y., Chen Y.-J., Chou S.-P., Huang S.-Y., Cheng Y.-J., Lin S.-F., Chang Y., Tsai C.-H., et al. Luteolin inhibits Epstein-Barr virus lytic reactivation by repressing the promoter activities of immediate-early genes. Antivir. Res. 2016;132:99–110. doi: 10.1016/j.antiviral.2016.05.007. PubMed DOI

Wu C.-C., Fang C.-Y., Cheng Y.-J., Hsu H.-Y., Chou S.-P., Huang S.-Y., Tsai C.-H., Chen J.-Y. Inhibition of Epstein-Barr virus reactivation by the flavonoid apigenin. J. Biomed. Sci. 2017;24:2. doi: 10.1186/s12929-016-0313-9. PubMed DOI PMC

Zhang J., Koike R., Yamamoto A., Ukiya M., Fukatsu M., Banno N., Miura M., Motohashi S., Tokuda H., Akihisa T. Glycosidic inhibitors of melanogenesis from leaves of Passiflora edulis. Chem. Biodivers. 2013;10:1851–1865. doi: 10.1002/cbdv.201300181. PubMed DOI

Lima R.T., Seca H., Palmeira A., Fernandes M.X., Castro F., Correia-da-Silva M., Nascimento M.S.J., Sousa E., Pinto M., Vasconcelos M.H. Sulfated small molecules targeting eBV in Burkitt lymphoma: From in silico screening to the evidence of in vitro effect on viral episomal DNA. Chem. Biol. Drug Des. 2013;81:631–644. doi: 10.1111/cbdd.12109. PubMed DOI

Tung C.-P., Chang F.-R., Wu Y.-C., Chuang D.-W., Hunyadi A., Liu S.-T. Inhibition of the Epstein–Barr virus lytic cycle by protoapigenone. J. Gen. Virol. 2011;92:1760–1768. doi: 10.1099/vir.0.031609-0. PubMed DOI

Vágvölgyi M., Girst G., Kúsz N., Ötvös S.B., Fülöp F., Hohmann J., Servais J.-Y., Seguin-Devaux C., Chang F.-R., Chen M.S., et al. Less Cytotoxic Protoflavones as Antiviral Agents: Protoapigenone 1′-O-isopropyl ether Shows Improved Selectivity Against the Epstein–Barr Virus Lytic Cycle. Int. J. Mol. Sci. 2019;20:6269. doi: 10.3390/ijms20246269. PubMed DOI PMC

Lee M., Son M., Ryu E., Shin Y.S., Kim J.G., Kang B.W., Cho H., Kang H. Quercetin-induced apoptosis prevents EBV infection. Oncotarget. 2015;6:12603–12624. doi: 10.18632/oncotarget.3687. PubMed DOI PMC

Akazawa H., Kohno H., Tokuda H., Suzuki N., Yasukawa K., Kimura Y., Manosroi A., Manosroi J., Akihisa T. Anti-Inflammatory and Anti-Tumor-Promoting Effects of 5-Deprenyllupulonol C and Other Compounds from Hop (Humulus lupulus L.) Chem. Biodivers. 2012;9:1045–1054. doi: 10.1002/cbdv.201100233. PubMed DOI

Murata T. Encyclopedia of EBV-Encoded Lytic Genes: An Update. Adv. Exp. Med. Biol. 2018;1045:395–412. doi: 10.1007/978-981-10-7230-7_18. PubMed DOI

Zhang J., Sommermann T., Li X., Gieselmann L., de la Rosa K., Stecklum M., Klein F., Kocks C., Rajewsky K. LMP1 and EBNA2 constitute a minimal set of EBV genes for transformation of human B cells. Front. Immunol. 2023;14:1331730. doi: 10.3389/fimmu.2023.1331730. PubMed DOI PMC

Ko Y.-H. EBV and human cancer. Exp. Mol. Med. 2015;47:e130. doi: 10.1038/emm.2014.109. PubMed DOI PMC

Wu C.-C., Fang C.-Y., Hsu H.-Y., Chuang H.-Y., Cheng Y.-J., Chen Y.-J., Chou S.-P., Huang S.-Y., Lin S.-F., Chang Y., et al. EBV reactivation as a target of luteolin to repress NPC tumorigenesis. Oncotarget. 2016;7:18999–19017. doi: 10.18632/oncotarget.7967. PubMed DOI PMC

Lo A.K.-F., Lung R.W.-M., Dawson C.W., Young L.S., Ko C.-W., Yeung W.W., Kang W., To K.-F., Lo K.-W. Activation of sterol regulatory element-binding protein 1 (SREBP1)-mediated lipogenesis by the Epstein-Barr virus-encoded latent membrane protein 1 (LMP1) promotes cell proliferation and progression of nasopharyngeal carcinoma. J. Pathol. 2018;246:180–190. doi: 10.1002/path.5130. PubMed DOI PMC

Wu X., Liu P., Zhang H., Li Y., Salmani J.M.M., Wang F., Yang K., Fu R., Chen Z., Chen B. Wogonin as a targeted therapeutic agent for EBV (+) lymphoma cells involved in LMP1/NF-κB/miR-155/PU.1 pathway. BMC Cancer. 2017;17:147. doi: 10.1186/s12885-017-3145-4. PubMed DOI PMC

Zhang Y., Wang H., Liu Y., Wang C., Wang J., Long C., Guo W., Sun X. Baicalein inhibits growth of Epstein-Barr virus-positive nasopharyngeal carcinoma by repressing the activity of EBNA1 Q-promoter. Biomed. Pharmacother. Biomed. Pharmacother. 2018;102:1003–1014. doi: 10.1016/j.biopha.2018.03.114. PubMed DOI

Park G.B., Kim Y.S., Lee H.-K., Yang J.W., Kim D., Hur D.Y. ASK1/JNK-mediated TAp63 activation controls the cell survival signal of baicalein-treated EBV-transformed B cells. Mol. Cell. Biochem. 2016;412:247–258. doi: 10.1007/s11010-015-2631-8. PubMed DOI

Lee H.H., Lee S., Shin Y.S., Cho M., Kang H., Cho H. Anti-Cancer Effect of Quercetin in Xenograft Models with EBV-Associated Human Gastric Carcinoma. Molecules. 2016;21:1286. doi: 10.3390/molecules21101286. PubMed DOI PMC

Huh S., Lee S., Choi S.J., Wu Z., Cho J.-H., Kim L., Shin Y.S., Kang B.W., Kim J.G., Liu K., et al. Quercetin Synergistically Inhibit EBV-Associated Gastric Carcinoma with Ganoderma lucidum Extracts. Molecules. 2019;24:3834. doi: 10.3390/molecules24213834. PubMed DOI PMC

Granato M., Rizzello C., Romeo M.A., Yadav S., Santarelli R., D’Orazi G., Faggioni A., Cirone M. Concomitant reduction of c-Myc expression and PI3K/AKT/mTOR signaling by quercetin induces a strong cytotoxic effect against Burkitt’s lymphoma. Int. J. Biochem. Cell Biol. 2016;79:393–400. doi: 10.1016/j.biocel.2016.09.006. PubMed DOI

Daker M., Bhuvanendran S., Ahmad M., Takada K., Khoo A.S.-B. Deregulation of lipid metabolism pathway genes in nasopharyngeal carcinoma cells. Mol. Med. Rep. 2013;7:731–741. doi: 10.3892/mmr.2012.1253. PubMed DOI PMC

Granato M., Gilardini Montani M.S., Zompetta C., Santarelli R., Gonnella R., Romeo M.A., D’Orazi G., Faggioni A., Cirone M. Quercetin Interrupts the Positive Feedback Loop Between STAT3 and IL-6, Promotes Autophagy, and Reduces ROS, Preventing EBV-Driven B Cell Immortalization. Biomolecules. 2019;9:482. doi: 10.3390/biom9090482. PubMed DOI PMC

Wu T., Wang S., Wu J., Lin Z., Sui X., Xu X., Shimizu N., Chen B., Wang X. Icaritin induces lytic cytotoxicity in extranodal NK/T-cell lymphoma. J. Exp. Clin. Cancer Res. 2015;34:17. doi: 10.1186/s13046-015-0133-x. PubMed DOI PMC

Li R., Zhao Y., Chen J., Shao S., Zhang X. Fisetin inhibits migration, invasion and epithelial-mesenchymal transition of LMP1-positive nasopharyngeal carcinoma cells. Mol. Med. Rep. 2014;9:413–418. doi: 10.3892/mmr.2013.1836. PubMed DOI

Li R., Liang H.-Y., Li M.-Y., Lin C.-Y., Shi M.-J., Zhang X.-J. Interference of fisetin with targets of the nuclear factor-κB signal transduction pathway activated by Epstein-Barr virus encoded latent membrane protein 1. Asian Pac. J. Cancer Prev. APJCP. 2014;15:9835–9839. doi: 10.7314/APJCP.2014.15.22.9835. PubMed DOI

Yun S.-M., Kim Y.S., Kim K.H., Hur D.Y. Ampelopsin Induces DR5-Mediated Apoptotic Cell Death in EBV-Infected Cells through the p38 Pathway. Nutr. Cancer. 2020;72:489–494. doi: 10.1080/01635581.2019.1639778. PubMed DOI

Badshah S.L., Faisal S., Muhammad A., Poulson B.G., Emwas A.H., Jaremko M. Antiviral activities of flavonoids. Biomed. Pharmacother. Biomed. Pharmacother. 2021;140:111596. doi: 10.1016/j.biopha.2021.111596. PubMed DOI PMC

Mazurakova A., Koklesova L., Vybohova D., Samec M., Kudela E., Biringer K., Šudomová M., Hassan S.T.S., Kello M., Büsselberg D., et al. Therapy-resistant breast cancer in focus: Clinically relevant mitigation by flavonoids targeting cancer stem cells. Front. Pharmacol. 2023;14:1160068. doi: 10.3389/fphar.2023.1160068. PubMed DOI PMC

Ross J.A., Kasum C.M. Dietary flavonoids: Bioavailability, metabolic effects, and safety. Annu. Rev. Nutr. 2002;22:19–34. doi: 10.1146/annurev.nutr.22.111401.144957. PubMed DOI

Hollman P.C., Katan M.B. Health effects and bioavailability of dietary flavonols. Free Radic. Res. 1999;31:S75–S80. doi: 10.1080/10715769900301351. PubMed DOI

Sampson L., Rimm E., Hollman P.C.H., de Vries J.H.M., Katan M.B. Flavonol and flavone intakes in US health professionals. J. Am. Diet. Assoc. 2002;102:1414–1420. doi: 10.1016/S0002-8223(02)90314-7. PubMed DOI

Egert S., Rimbach G. Which sources of flavonoids: Complex diets or dietary supplements? Adv. Nutr. 2011;2:8–14. doi: 10.3945/an.110.000026. PubMed DOI PMC

Andres S., Pevny S., Ziegenhagen R., Bakhiya N., Schäfer B., Hirsch-Ernst K.I., Lampen A. Safety Aspects of the Use of Quercetin as a Dietary Supplement. Mol. Nutr. Food Res. 2018;62:1700447. doi: 10.1002/mnfr.201700447. PubMed DOI

Srinivas N.R. Recent trends in preclinical drug-drug interaction studies of flavonoids--Review of case studies, issues and perspectives. Phytother. Res. PTR. 2015;29:1679–1691. doi: 10.1002/ptr.5447. PubMed DOI

Tang D., Chen K., Huang L., Li J. Pharmacokinetic properties and drug interactions of apigenin, a natural flavone. Expert Opin. Drug Metab. Toxicol. 2017;13:323–330. doi: 10.1080/17425255.2017.1251903. PubMed DOI

Ma Y., Zeng M., Sun R., Hu M. Disposition of flavonoids impacts their efficacy and safety. Curr. Drug Metab. 2014;15:841–864. doi: 10.2174/1389200216666150206123719. PubMed DOI

Barenys M., Masjosthusmann S., Fritsche E. Is Intake of Flavonoid-Based Food Supplements During Pregnancy Safe for the Developing Child? A Literature Review. Curr. Drug Targets. 2017;18:196–231. doi: 10.2174/1389450116666150804110049. PubMed DOI

Skibola C.F., Smith M.T. Potential health impacts of excessive flavonoid intake. Free Radic. Biol. Med. 2000;29:375–383. doi: 10.1016/S0891-5849(00)00304-X. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace