Occurrence of Thermophilic Microorganisms in Different Full Scale Biogas Plants
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
31906223
PubMed Central
PMC6981860
DOI
10.3390/ijms21010283
PII: ijms21010283
Knihovny.cz E-zdroje
- Klíčová slova
- Illumina sequencing, anaerobic digesters, biogas, renewable energy, thermophilic microorganisms,
- MeSH
- anaerobióza MeSH
- bakteriální RNA genetika MeSH
- biopaliva * MeSH
- mikrobiální společenstva fyziologie MeSH
- odpadní vody mikrobiologie MeSH
- RNA ribozomální 16S genetika MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- bakteriální RNA MeSH
- biopaliva * MeSH
- odpadní vody MeSH
- RNA ribozomální 16S MeSH
BACKGROUND: In recent years, various substrates have been tested to increase the sustainable production of biomethane. The effect of these substrates on methanogenesis has been investigated mainly in small volume fermenters and were, for the most part, focused on studying the diversity of mesophilic microorganisms. However, studies of thermophilic communities in large scale operating mesophilic biogas plants do not yet exist. METHODS: Microbiological, biochemical, biophysical methods, and statistical analysis were used to track thermophilic communities in mesophilic anaerobic digesters. RESULTS: The diversity of the main thermophile genera in eight biogas plants located in the Czech Republic using different input substrates was investigated. In total, 19 thermophilic genera were detected after 16S rRNA gene sequencing. The highest percentage (40.8%) of thermophiles was found in the Modřice biogas plant where the input substrate was primary sludge and biological sludge (50/50, w/w %). The smallest percentage (1.87%) of thermophiles was found in the Čejč biogas plant with the input substrate being maize silage and liquid pig manure (80/20, w/w %). CONCLUSIONS: The composition of the anaerobic consortia in anaerobic digesters is an important factor for the biogas plant operator. The present study can help characterizing the impact of input feeds on the composition of microbial communities in these plants.
Bioscience Center National Renewable Energy Laboratory 16253 Denver West Parkway Golden CO 80401 USA
Department of Experimental Biology Faculty of Science Masaryk University 62500 Brno Czech Republic
Zobrazit více v PubMed
Griffin M.E., McMahon K.D., Mackie R.I., Raskin L. Methanogenic population dynamics during start-up of anaerobic digesters treating municipal solid waste and biosolids. Biotechnol. Eng. 2000;57:342–355. doi: 10.1002/(SICI)1097-0290(19980205)57:3<342::AID-BIT11>3.0.CO;2-I. PubMed DOI
Grothenhuis J.T., Smith M., Plugge C.M., Yuansheng X., Lammeren A.A., Stams A.J. Bacteriological composition and structure of granular sludge adapted to different substrates. Appl. Environ. Microbiol. 1991;57:1942–1949. PubMed PMC
Ilyin V.K., Korniushenkova I.N., Starkova L.V., Lauriniavichius K.S. Study of methanogenesis during bioutilization of plant residuals. Acta Astronaut. 2005;56:465–470. doi: 10.1016/j.actaastro.2004.05.077. PubMed DOI
Jäckel U., Thummes K., Kämpfer P. Thermophilic methane production and oxidation in compost. FEMS Microbiol. Ecol. 2005;52:175–184. doi: 10.1016/j.femsec.2004.11.003. PubMed DOI
Sreekrishnan T.R., Kohli S., Rana V. Enhancement of biogas production from solid substrates using different techniques––A review. Bioresour. Technol. 2004;95:1–10. PubMed
Krich K., Augenstein D., Batmale J.P., Benemann J., Rutledge B., Salour D. Biomethane from Dairy Waste: A Sourcebook for the Production and Use of Renewable Natural Gas in California. USDA Rural Development; Washington, DC, USA: 2005.
Conrad R. Contribution of hydrogen to methane production and control of hydrogen concentration in methanogenic soils and sediments. FEMS Microbiol. Ecol. 1999;28:193–202. doi: 10.1111/j.1574-6941.1999.tb00575.x. DOI
Demirel B., Scherer P. The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass to methane: A review. Rev. Environ. Sci. Biotechnol. 2008;7:173–190. doi: 10.1007/s11157-008-9131-1. DOI
Wilkie A. Biomethane from Biomass. In: Harwood C., Demain A., editors. Biowaste and Biofuels. ASM Press; Washington, DC, USA: 2008. pp. 195–205.
Ahring B., Ibrahim A.A., Mladenovska Z. Effect of temperature increase from 55 to 65 °C on performance and microbial population dynamics of an anaerobic reactor treating cattle manure. Water Resour. 2001;35:2446–2452. doi: 10.1016/S0043-1354(00)00526-1. PubMed DOI
Kushkevych I., Vítězová M., Vítěz T., Bartoš M. Production of biogas: Relationship between methanogenic and sulfate-reducing microorganisms. Open Life Sci. 2017;12:82–91. doi: 10.1515/biol-2017-0009. DOI
Kushkevych I., Kováč J., Vítězová M., Vítěz T., Bartoš M. The diversity of sulfate-reducing bacteria in the seven bioreactors. Arch. Microbial. 2018;200:945–950. doi: 10.1007/s00203-018-1510-6. PubMed DOI
Ziemiński K., Frąc M. Methane fermentation process as anaerobic digestion of biomass: Transformations, stages and microorganisms. Afr. J. Biotechnol. 2012;11:4127–4139.
Scherer P.A., Vollmer G.R., Fakhouri T., Martensen S. Development of methanogenic process to degrade exhaustively the organic fraction of municipal grey waste under thermophilic and hyperthermophilic conditions. Water Sci. Technol. 2000;41:83–91. doi: 10.2166/wst.2000.0059. PubMed DOI
Schink B. Energetics of syntrophic cooperation in methanogenic degradation. Microbiol. Mol. Biol. Rev. 1997;61:262–280. PubMed PMC
Weiland P. Biogas production: Current state and perspectives. Appl. Microbiol. Biotechnol. 2010;85:849–860. doi: 10.1007/s00253-009-2246-7. PubMed DOI
Madigan M.T., Martino J.M., Thomas D.B. Brock Biology of Microorganisms. Pearson Prentice Hall; Upper Saddle River, NJ, USA: 2006.
Stetter K. History of discovery of the first hyperthermophiles. Extremophiles. 2006;10:357–362. doi: 10.1007/s00792-006-0012-7. PubMed DOI
Satyanarayana T., Littlechild J., Kawarabayasi Y. Thermophilic Microbes in Environmental and Industrial Biotechnology. Biotechnol. Thermophiles. 2013:3. doi: 10.1007/978-94-007-5899-5. DOI
Barker H.A. On the biochemistry of methane fermentation. Arch. Microbiol. 1936;7:404–419. doi: 10.1007/BF00407413. DOI
Zinder S.H., Koch M. Non-aceticlastic methanogenesis from acetate: Acetate oxidation by a thermophilic syntrophic coculture. Arch. Microbiol. 1984;138:263–272. doi: 10.1007/BF00402133. DOI
Schnurer A., Houwen F.P., Svensson B.H. Mesophilic syntrophic acetate oxidation during methane formation by a triculture at high ammonium concentration. Arch. Microbiol. 1994;162:70–74. doi: 10.1007/BF00264375. DOI
Nazina T.N., Shestakova N.M., Grigor’yan A.A., Mikhailova E.M., Tourova T.P., Poltaraus A.B., Feng C., Ni F., Belyaev S.S. Phylogenetic diversity and activity of anaerobic microorganism of high-temperature horizons of the Dagang oilfield (P. R. China) Microbiology. 2006;75:70–81. doi: 10.1134/S0026261706010115. PubMed DOI
McInerney M.J., Struchtemeyer C.G., Sieber J., Mouttaki H., Stams A.J.M., Schink B., Rohlin L., Gunsalus R.P. Physiology, ecology, phylogeny and genomics of microorganisms capable of syntrophic metabolism. Ann. N. Y. Acad. Sci. USA. 2008;1125:58–72. doi: 10.1196/annals.1419.005. PubMed DOI
Westerholm W., Roos S., Schnurer A. Syntrophaceticus schinkii gen. nov. sp. nov., an anaerobic, syntrophic acetate-oxidizing bacterium isolated fromamesophilic anaerobic filter. FEMS Microbiol. Lett. 2010;309:100–104. PubMed
Itoh T., Yoshikawa N., Takashina T. Thermogymnomonas acidicola gen. nov. sp. nov. a novel thermoacidophilic, cell wall-less archaeon in the order Thermoplasmatales, isolated from a solfataric soil in Hakone, Japan. Int. J. Syst. Evol. Microbiol. 2007;57:2557–2561. doi: 10.1099/ijs.0.65203-0. PubMed DOI
Dong P., Li L., Zhen F., Kong X., Sun Y., Zhang Y. Comparison of dry and wet milling pretreatment methods for improving the anaerobic digestion performance of the Pennisetum hybrid. RSC Adv. 2017;7/21:12610–12619.
Plugge C.M., Balk M., Zoetendal E.G., Stams A.J. Gelria glutamica gen. nov. sp. nov. a thermophilic, obligately syntrophic, glutamate-degrading anaerobe. Int. J. Syst. Evol. Microbiol. 2002;52:401–407. doi: 10.1099/ijs.0.018036-0. PubMed DOI
Jayasinghearachchi H.S., Lal B. Oceanotoga teriensis gen. nov., sp. nov., a thermophilic bacterium isolated from offshore oil-producing wells. Int. J. Syst. Evol. Microbiol. 2011;61:554–560. doi: 10.1099/ijs.0.018036-0. PubMed DOI
Kushkevych I., Vítězová M., Fedrová M., Vochyanová Z., Paráková L., Hošek J. Kinetic properties of growth of intestinal sulphate-reducing bacteria isolated from healthy mice and mice with ulcerative colitis. Acta Vet. Brno. 2017;86:405–411. doi: 10.2754/avb201786040405. DOI
Kushkevych I., Vítězová M., Vítěz T., Kováč J., Kaucká P., Jesionek W., Bartoš M., Barton L. A new combination of substrates: Biogas production and diversity of the methanogenic microorganisms. Open Life Sci. 2018;13:119–128. doi: 10.1515/biol-2018-0017. PubMed DOI PMC
Kushkevych I.V. Kinetic Properties of Pyruvate Ferredoxin Oxidoreductase of Intestinal Sulfate-Reducing Bacteria Desulfovibrio piger Vib-7 and Desulfomicrobium sp. Rod-9. Pol. J. Microbiol. 2015;64:107–114. doi: 10.33073/pjm-2015-016. PubMed DOI
Kushkevych I., Fafula R., Parak T., Bartos M. Activity of Na+/K+-activated Mg2+-dependent ATP hydrolase in the cell-free extracts of the sulfate-reducing bacteria Desulfovibrio piger Vib-7 and Desulfomicrobium sp. Rod-9. Acta Vet. Brno. 2015;84:3–12. doi: 10.2754/avb201585010003. DOI
Kushkevych I.V. Activity and kinetic properties of phosphotransacetylase from intestinal sulfate-reducing bacteria. Acta Biochim. Pol. 2015;62:1037–1108. doi: 10.18388/abp.2014_845. PubMed DOI
Kushkevych I., Dordević D., Vítězová M. Analysis of pH dose-dependent growth of sulfate-reducing bacteria. Open Med. 2019;14:66–74. doi: 10.1515/med-2019-0010. PubMed DOI PMC
Kushkevych I., Dordević D., Vítězová M. Toxicity of hydrogen sulfide toward sulfate-reducing bacteria Desulfovibrio piger Vib-7. Arch. Microbiol. 2019;201:389–397. doi: 10.1007/s00203-019-01625-z. PubMed DOI
Kushkevych I., Kobzová E., Vítězová M., Vítěz T., Dordević D., Bartoš M. Acetogenic microorganisms in operating biogas plants depending on substrate combinations. Biologia. 2019;74:1229–1236. doi: 10.2478/s11756-019-00283-2. DOI
Kushkevych I., Kollar P., Suchy P., Parak K., Pauk K., Imramovsky A. Activity of selected salicylamides against intestinal sulfate-reducing bacteria. Neuroendocrinol Lett. 2015;36:106–113. PubMed
Kushkevych I., Kollar P., Ferreira A.L., Palma D. Antimicrobial effect of salicylamide derivatives against intestinal sulfate-reducing bacteria. J. Appl. Biomed. 2016;14:125–130. doi: 10.1016/j.jab.2016.01.005. DOI
Kushkevych I., Vítězová M., Kos J., Kollár P., Jampílek J. Effect of selected 8-hydroxyquinoline-2-carboxanilides on viability and sulfate metabolism of Desulfovibrio piger. J. App. Biomed. 2018;16:241–246. doi: 10.1016/j.jab.2018.01.004. DOI
Kushkevych I., Dordević D., Kollar P. Analysis of physiological parameters of Desulfovibrio strains from individuals with colitis. Open Life Sci. 2018;13:481–488. doi: 10.1515/biol-2018-0057. PubMed DOI PMC
Kushkevych I., Dordević D., Vítězová M., Kollar P. Cross-correlation analysis of the Desulfovibrio growth parameters of intestinal species isolated from people with colitis. Biologia. 2018;73:1137–1143. doi: 10.2478/s11756-018-0118-2. DOI
CSN EN 14346 Characterization of Waste–Calculation of Dry Matter by Determination of Dry Residue or Water Content. Czech Standards Institute; Prague, Czech Republic: 2007.
CSN EN 15169 Characterization of Waste–Determination of Loss on Ignition in Waste, Sludge and Sediments. Czech Standards Institute; Prague, Czech Republic: 2007.
CSN EN 12176 Characterization of Sludge–Determination of pH-value. Czech Standards Institute; Prague, Czech Republic: 1999.
Bailey N.T.J. Statistical Methods in Biology. Cambridge University Press; Cambridge, UK: 1995.
Nossa C.W., Oberdorf W.E., Yang L., Aas J.A., Paster B.J., Desantis T.Z. Design of 16S rRNA gene primers for 454 pyrosequencing of the human foregut microbiome. World J. Gastroenterol. 2010;16:4135–4144. doi: 10.3748/wjg.v16.i33.4135. PubMed DOI PMC
Caporaso J.G., Kuczynski J., Stombaugh J. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods. 2010;7:335–336. doi: 10.1038/nmeth.f.303. PubMed DOI PMC
Altschul S.F., Gish W., Mille W., Myers E.W., Lipman D.J. Basic local alignment search tool. J. Mol. Biol. 1990;215:403–410. doi: 10.1016/S0022-2836(05)80360-2. PubMed DOI
Kearse M., Moir R., Wilson A., Stones-Havas S., Cheung M., Sturrock S. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–1649. doi: 10.1093/bioinformatics/bts199. PubMed DOI PMC
Larkin M.A., Blackshields G., Brown N.P., Chenna R., McGettigan P.A., McWilliam H. Clustal W and Clustal X version 2.0. Bioinformatics. 2007;23:2947–2948. doi: 10.1093/bioinformatics/btm404. PubMed DOI
Recent Advances in Metabolic Pathways of Sulfate Reduction in Intestinal Bacteria