Occurrence of Thermophilic Microorganisms in Different Full Scale Biogas Plants

. 2019 Dec 31 ; 21 (1) : . [epub] 20191231

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31906223

BACKGROUND: In recent years, various substrates have been tested to increase the sustainable production of biomethane. The effect of these substrates on methanogenesis has been investigated mainly in small volume fermenters and were, for the most part, focused on studying the diversity of mesophilic microorganisms. However, studies of thermophilic communities in large scale operating mesophilic biogas plants do not yet exist. METHODS: Microbiological, biochemical, biophysical methods, and statistical analysis were used to track thermophilic communities in mesophilic anaerobic digesters. RESULTS: The diversity of the main thermophile genera in eight biogas plants located in the Czech Republic using different input substrates was investigated. In total, 19 thermophilic genera were detected after 16S rRNA gene sequencing. The highest percentage (40.8%) of thermophiles was found in the Modřice biogas plant where the input substrate was primary sludge and biological sludge (50/50, w/w %). The smallest percentage (1.87%) of thermophiles was found in the Čejč biogas plant with the input substrate being maize silage and liquid pig manure (80/20, w/w %). CONCLUSIONS: The composition of the anaerobic consortia in anaerobic digesters is an important factor for the biogas plant operator. The present study can help characterizing the impact of input feeds on the composition of microbial communities in these plants.

Zobrazit více v PubMed

Griffin M.E., McMahon K.D., Mackie R.I., Raskin L. Methanogenic population dynamics during start-up of anaerobic digesters treating municipal solid waste and biosolids. Biotechnol. Eng. 2000;57:342–355. doi: 10.1002/(SICI)1097-0290(19980205)57:3<342::AID-BIT11>3.0.CO;2-I. PubMed DOI

Grothenhuis J.T., Smith M., Plugge C.M., Yuansheng X., Lammeren A.A., Stams A.J. Bacteriological composition and structure of granular sludge adapted to different substrates. Appl. Environ. Microbiol. 1991;57:1942–1949. PubMed PMC

Ilyin V.K., Korniushenkova I.N., Starkova L.V., Lauriniavichius K.S. Study of methanogenesis during bioutilization of plant residuals. Acta Astronaut. 2005;56:465–470. doi: 10.1016/j.actaastro.2004.05.077. PubMed DOI

Jäckel U., Thummes K., Kämpfer P. Thermophilic methane production and oxidation in compost. FEMS Microbiol. Ecol. 2005;52:175–184. doi: 10.1016/j.femsec.2004.11.003. PubMed DOI

Sreekrishnan T.R., Kohli S., Rana V. Enhancement of biogas production from solid substrates using different techniques––A review. Bioresour. Technol. 2004;95:1–10. PubMed

Krich K., Augenstein D., Batmale J.P., Benemann J., Rutledge B., Salour D. Biomethane from Dairy Waste: A Sourcebook for the Production and Use of Renewable Natural Gas in California. USDA Rural Development; Washington, DC, USA: 2005.

Conrad R. Contribution of hydrogen to methane production and control of hydrogen concentration in methanogenic soils and sediments. FEMS Microbiol. Ecol. 1999;28:193–202. doi: 10.1111/j.1574-6941.1999.tb00575.x. DOI

Demirel B., Scherer P. The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass to methane: A review. Rev. Environ. Sci. Biotechnol. 2008;7:173–190. doi: 10.1007/s11157-008-9131-1. DOI

Wilkie A. Biomethane from Biomass. In: Harwood C., Demain A., editors. Biowaste and Biofuels. ASM Press; Washington, DC, USA: 2008. pp. 195–205.

Ahring B., Ibrahim A.A., Mladenovska Z. Effect of temperature increase from 55 to 65 °C on performance and microbial population dynamics of an anaerobic reactor treating cattle manure. Water Resour. 2001;35:2446–2452. doi: 10.1016/S0043-1354(00)00526-1. PubMed DOI

Kushkevych I., Vítězová M., Vítěz T., Bartoš M. Production of biogas: Relationship between methanogenic and sulfate-reducing microorganisms. Open Life Sci. 2017;12:82–91. doi: 10.1515/biol-2017-0009. DOI

Kushkevych I., Kováč J., Vítězová M., Vítěz T., Bartoš M. The diversity of sulfate-reducing bacteria in the seven bioreactors. Arch. Microbial. 2018;200:945–950. doi: 10.1007/s00203-018-1510-6. PubMed DOI

Ziemiński K., Frąc M. Methane fermentation process as anaerobic digestion of biomass: Transformations, stages and microorganisms. Afr. J. Biotechnol. 2012;11:4127–4139.

Scherer P.A., Vollmer G.R., Fakhouri T., Martensen S. Development of methanogenic process to degrade exhaustively the organic fraction of municipal grey waste under thermophilic and hyperthermophilic conditions. Water Sci. Technol. 2000;41:83–91. doi: 10.2166/wst.2000.0059. PubMed DOI

Schink B. Energetics of syntrophic cooperation in methanogenic degradation. Microbiol. Mol. Biol. Rev. 1997;61:262–280. PubMed PMC

Weiland P. Biogas production: Current state and perspectives. Appl. Microbiol. Biotechnol. 2010;85:849–860. doi: 10.1007/s00253-009-2246-7. PubMed DOI

Madigan M.T., Martino J.M., Thomas D.B. Brock Biology of Microorganisms. Pearson Prentice Hall; Upper Saddle River, NJ, USA: 2006.

Stetter K. History of discovery of the first hyperthermophiles. Extremophiles. 2006;10:357–362. doi: 10.1007/s00792-006-0012-7. PubMed DOI

Satyanarayana T., Littlechild J., Kawarabayasi Y. Thermophilic Microbes in Environmental and Industrial Biotechnology. Biotechnol. Thermophiles. 2013:3. doi: 10.1007/978-94-007-5899-5. DOI

Barker H.A. On the biochemistry of methane fermentation. Arch. Microbiol. 1936;7:404–419. doi: 10.1007/BF00407413. DOI

Zinder S.H., Koch M. Non-aceticlastic methanogenesis from acetate: Acetate oxidation by a thermophilic syntrophic coculture. Arch. Microbiol. 1984;138:263–272. doi: 10.1007/BF00402133. DOI

Schnurer A., Houwen F.P., Svensson B.H. Mesophilic syntrophic acetate oxidation during methane formation by a triculture at high ammonium concentration. Arch. Microbiol. 1994;162:70–74. doi: 10.1007/BF00264375. DOI

Nazina T.N., Shestakova N.M., Grigor’yan A.A., Mikhailova E.M., Tourova T.P., Poltaraus A.B., Feng C., Ni F., Belyaev S.S. Phylogenetic diversity and activity of anaerobic microorganism of high-temperature horizons of the Dagang oilfield (P. R. China) Microbiology. 2006;75:70–81. doi: 10.1134/S0026261706010115. PubMed DOI

McInerney M.J., Struchtemeyer C.G., Sieber J., Mouttaki H., Stams A.J.M., Schink B., Rohlin L., Gunsalus R.P. Physiology, ecology, phylogeny and genomics of microorganisms capable of syntrophic metabolism. Ann. N. Y. Acad. Sci. USA. 2008;1125:58–72. doi: 10.1196/annals.1419.005. PubMed DOI

Westerholm W., Roos S., Schnurer A. Syntrophaceticus schinkii gen. nov. sp. nov., an anaerobic, syntrophic acetate-oxidizing bacterium isolated fromamesophilic anaerobic filter. FEMS Microbiol. Lett. 2010;309:100–104. PubMed

Itoh T., Yoshikawa N., Takashina T. Thermogymnomonas acidicola gen. nov. sp. nov. a novel thermoacidophilic, cell wall-less archaeon in the order Thermoplasmatales, isolated from a solfataric soil in Hakone, Japan. Int. J. Syst. Evol. Microbiol. 2007;57:2557–2561. doi: 10.1099/ijs.0.65203-0. PubMed DOI

Dong P., Li L., Zhen F., Kong X., Sun Y., Zhang Y. Comparison of dry and wet milling pretreatment methods for improving the anaerobic digestion performance of the Pennisetum hybrid. RSC Adv. 2017;7/21:12610–12619.

Plugge C.M., Balk M., Zoetendal E.G., Stams A.J. Gelria glutamica gen. nov. sp. nov. a thermophilic, obligately syntrophic, glutamate-degrading anaerobe. Int. J. Syst. Evol. Microbiol. 2002;52:401–407. doi: 10.1099/ijs.0.018036-0. PubMed DOI

Jayasinghearachchi H.S., Lal B. Oceanotoga teriensis gen. nov., sp. nov., a thermophilic bacterium isolated from offshore oil-producing wells. Int. J. Syst. Evol. Microbiol. 2011;61:554–560. doi: 10.1099/ijs.0.018036-0. PubMed DOI

Kushkevych I., Vítězová M., Fedrová M., Vochyanová Z., Paráková L., Hošek J. Kinetic properties of growth of intestinal sulphate-reducing bacteria isolated from healthy mice and mice with ulcerative colitis. Acta Vet. Brno. 2017;86:405–411. doi: 10.2754/avb201786040405. DOI

Kushkevych I., Vítězová M., Vítěz T., Kováč J., Kaucká P., Jesionek W., Bartoš M., Barton L. A new combination of substrates: Biogas production and diversity of the methanogenic microorganisms. Open Life Sci. 2018;13:119–128. doi: 10.1515/biol-2018-0017. PubMed DOI PMC

Kushkevych I.V. Kinetic Properties of Pyruvate Ferredoxin Oxidoreductase of Intestinal Sulfate-Reducing Bacteria Desulfovibrio piger Vib-7 and Desulfomicrobium sp. Rod-9. Pol. J. Microbiol. 2015;64:107–114. doi: 10.33073/pjm-2015-016. PubMed DOI

Kushkevych I., Fafula R., Parak T., Bartos M. Activity of Na+/K+-activated Mg2+-dependent ATP hydrolase in the cell-free extracts of the sulfate-reducing bacteria Desulfovibrio piger Vib-7 and Desulfomicrobium sp. Rod-9. Acta Vet. Brno. 2015;84:3–12. doi: 10.2754/avb201585010003. DOI

Kushkevych I.V. Activity and kinetic properties of phosphotransacetylase from intestinal sulfate-reducing bacteria. Acta Biochim. Pol. 2015;62:1037–1108. doi: 10.18388/abp.2014_845. PubMed DOI

Kushkevych I., Dordević D., Vítězová M. Analysis of pH dose-dependent growth of sulfate-reducing bacteria. Open Med. 2019;14:66–74. doi: 10.1515/med-2019-0010. PubMed DOI PMC

Kushkevych I., Dordević D., Vítězová M. Toxicity of hydrogen sulfide toward sulfate-reducing bacteria Desulfovibrio piger Vib-7. Arch. Microbiol. 2019;201:389–397. doi: 10.1007/s00203-019-01625-z. PubMed DOI

Kushkevych I., Kobzová E., Vítězová M., Vítěz T., Dordević D., Bartoš M. Acetogenic microorganisms in operating biogas plants depending on substrate combinations. Biologia. 2019;74:1229–1236. doi: 10.2478/s11756-019-00283-2. DOI

Kushkevych I., Kollar P., Suchy P., Parak K., Pauk K., Imramovsky A. Activity of selected salicylamides against intestinal sulfate-reducing bacteria. Neuroendocrinol Lett. 2015;36:106–113. PubMed

Kushkevych I., Kollar P., Ferreira A.L., Palma D. Antimicrobial effect of salicylamide derivatives against intestinal sulfate-reducing bacteria. J. Appl. Biomed. 2016;14:125–130. doi: 10.1016/j.jab.2016.01.005. DOI

Kushkevych I., Vítězová M., Kos J., Kollár P., Jampílek J. Effect of selected 8-hydroxyquinoline-2-carboxanilides on viability and sulfate metabolism of Desulfovibrio piger. J. App. Biomed. 2018;16:241–246. doi: 10.1016/j.jab.2018.01.004. DOI

Kushkevych I., Dordević D., Kollar P. Analysis of physiological parameters of Desulfovibrio strains from individuals with colitis. Open Life Sci. 2018;13:481–488. doi: 10.1515/biol-2018-0057. PubMed DOI PMC

Kushkevych I., Dordević D., Vítězová M., Kollar P. Cross-correlation analysis of the Desulfovibrio growth parameters of intestinal species isolated from people with colitis. Biologia. 2018;73:1137–1143. doi: 10.2478/s11756-018-0118-2. DOI

CSN EN 14346 Characterization of Waste–Calculation of Dry Matter by Determination of Dry Residue or Water Content. Czech Standards Institute; Prague, Czech Republic: 2007.

CSN EN 15169 Characterization of Waste–Determination of Loss on Ignition in Waste, Sludge and Sediments. Czech Standards Institute; Prague, Czech Republic: 2007.

CSN EN 12176 Characterization of Sludge–Determination of pH-value. Czech Standards Institute; Prague, Czech Republic: 1999.

Bailey N.T.J. Statistical Methods in Biology. Cambridge University Press; Cambridge, UK: 1995.

Nossa C.W., Oberdorf W.E., Yang L., Aas J.A., Paster B.J., Desantis T.Z. Design of 16S rRNA gene primers for 454 pyrosequencing of the human foregut microbiome. World J. Gastroenterol. 2010;16:4135–4144. doi: 10.3748/wjg.v16.i33.4135. PubMed DOI PMC

Caporaso J.G., Kuczynski J., Stombaugh J. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods. 2010;7:335–336. doi: 10.1038/nmeth.f.303. PubMed DOI PMC

Altschul S.F., Gish W., Mille W., Myers E.W., Lipman D.J. Basic local alignment search tool. J. Mol. Biol. 1990;215:403–410. doi: 10.1016/S0022-2836(05)80360-2. PubMed DOI

Kearse M., Moir R., Wilson A., Stones-Havas S., Cheung M., Sturrock S. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–1649. doi: 10.1093/bioinformatics/bts199. PubMed DOI PMC

Larkin M.A., Blackshields G., Brown N.P., Chenna R., McGettigan P.A., McWilliam H. Clustal W and Clustal X version 2.0. Bioinformatics. 2007;23:2947–2948. doi: 10.1093/bioinformatics/btm404. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...