MicroRNA and Other Non-Coding RNAs in Epstein-Barr Virus-Associated Cancers
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
34359809
PubMed Central
PMC8345394
DOI
10.3390/cancers13153909
PII: cancers13153909
Knihovny.cz E-zdroje
- Klíčová slova
- Burkitt lymphoma, EBV, carcinogenesis, classical Hodgkin’s lymphoma, diffuse large B-cell lymphoma, gastric carcinoma, immune evasion, miRNA, microRNAome, nasopharyngeal carcinoma,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
EBV is a direct causative agent in around 1.5% of all cancers. The oncogenic properties of EBV are related to its ability to activate processes needed for cellular proliferation, survival, migration, and immune evasion. The EBV latency program is required for the immortalization of infected B cells and involves the expression of non-coding RNAs (ncRNAs), including viral microRNAs. These ncRNAs have different functions that contribute to virus persistence in the asymptomatic host and to the development of EBV-associated cancers. In this review, we discuss the function and potential clinical utility of EBV microRNAs and other ncRNAs in EBV-associated malignancies. This review is not intended to be comprehensive, but rather to provide examples of the importance of ncRNAs.
Department of Medical Biotechnologies Section of Pathology University of Siena 53100 Siena Italy
Faculty of Medicine and Surgery University of Santo Tomas Manila 1008 Philippines
Health Research Institute University of Limerick V94 T9PX Limerick Ireland
Institute of Immunology and Immunotherapy University of Birmingham Birmingham B15 2TT UK
Mater Misericordiae University Hospital D07AX57 Dublin Ireland
Zobrazit více v PubMed
de Martel C., Georges D., Bray F., Ferlay J., Clifford G.M. Global burden of cancer attributable to infections in 2018: A worldwide incidence analysis. Lancet Glob. Health. 2020;8:e180–e190. doi: 10.1016/S2214-109X(19)30488-7. PubMed DOI
de Elgui Oliveira D., Müller-Coan B.G., Pagano J.S. Viral carcinogenesis beyond malignant transformation: EBV in the progression of human cancers. Trends Microbiol. 2016;24:649–664. doi: 10.1016/j.tim.2016.03.008. PubMed DOI PMC
Krump N.A., You J. Molecular mechanisms of viral oncogenesis in humans. Nat. Rev. Microbiol. 2018;16:684–698. doi: 10.1038/s41579-018-0064-6. PubMed DOI PMC
Wang L.W., Jiang S., Gewurz B.E. Epstein-Barr virus LMP1-mediated oncogenicity. J. Virol. 2017;91:e01718-16. doi: 10.1128/JVI.01718-16. PubMed DOI PMC
Jenson H.B. Epstein-Barr virus. Pediatr. Rev. 2011;32:375–383. doi: 10.1542/pir.32-9-375. PubMed DOI
Smatti M.K., Al-Sadeq D.W., Ali N.H., Pintus G., Abou-Saleh H., Nasrallah G.K. Epstein-barr virus epidemiology, serology, and genetic variability of LMP-1 oncogene among healthy population: An update. Front. Oncol. 2018;8 doi: 10.3389/fonc.2018.00211. PubMed DOI PMC
Farrell P.J. Epstein–Barr virus and cancer. Annu. Rev. Pathol. Mech. Dis. 2019;14:29–53. doi: 10.1146/annurev-pathmechdis-012418-013023. PubMed DOI
Ko Y.H. EBV and human cancer. Exp. Mol. Med. 2015;47:e130. doi: 10.1038/emm.2014.109. PubMed DOI PMC
Guidry J.T., Birdwell C.E., Scott R.S. Epstein–Barr virus in the pathogenesis of oral cancers. Oral Dis. 2018;24:497–508. doi: 10.1111/odi.12656. PubMed DOI PMC
Chen J., Longnecker R. Epithelial cell infection by Epstein–Barr virus. FEMS MicroBiol. Rev. 2019;43:674–683. doi: 10.1093/femsre/fuz023. PubMed DOI PMC
Tugizov S.M., Berline J.W., Palefsky J.M. Epstein-Barr virus infection of polarized tongue and nasopharyngeal epithelial cells. Nat. Med. 2003;9:307–314. doi: 10.1038/nm830. PubMed DOI
Shannon-Lowe C., Rowe M. Epstein-Barr virus infection of polarized epithelial cells via the basolateral surface by memory B cell-mediated transfer infection. PLoS Pathog. 2011;7:e1001338. doi: 10.1371/journal.ppat.1001338. PubMed DOI PMC
Yin H., Qu J., Peng Q., Gan R. Molecular mechanisms of EBV-driven cell cycle progression and oncogenesis. Med. MicroBiol. Immunol. 2019;208:573–583. doi: 10.1007/s00430-018-0570-1. PubMed DOI PMC
Fernandez A.F., Rosales C., Lopez-Nieva P., Grana O., Ballestar E., Ropero S., Espada J., Melo S.A., Lujambio A., Fraga M.F., et al. The dynamic DNA methylomes of double-stranded DNA viruses associated with human cancer. Genome Res. 2009;19:438–451. doi: 10.1101/gr.083550.108. PubMed DOI PMC
Kang M.S., Kieff E. Epstein-Barr virus latent genes. Exp. Mol. Med. 2015;47 doi: 10.1038/emm.2014.84. PubMed DOI PMC
Zhao M., Nanbo A., Sun L., Lin Z. Extracellular vesicles in Epstein-Barr virus’ life cycle and pathogenesis. Microorganisms. 2019;7:48. doi: 10.3390/microorganisms7020048. PubMed DOI PMC
Laichalk L.L., Thorley-Lawson D.A. Terminal differentiation into plasma cells initiates the replicative cycle of Epstein-Barr virus in vivo. J. Virol. 2005;79:1296–1307. doi: 10.1128/JVI.79.2.1296-1307.2005. PubMed DOI PMC
Reusch J.A., Nawandar D.M., Wright K.L., Kenney S.C., Mertz J. Cellular differentiation regulator BLIMP1 induces Epstein–Barr virus lytic reactivation in epithelial and B cells by activating transcription from both the R and Z promoters. J. Virol. 2015;89:1731–1743. doi: 10.1128/JVI.02781-14. PubMed DOI PMC
Howe J.G., Steitz J.A. Localization of Epstein-Barr virus-encoded small RNAs by in situ hybridization. Proc. Natl. Acad. Sci. USA. 1986;83:9006–9010. doi: 10.1073/pnas.83.23.9006. PubMed DOI PMC
Clarke P.A., Sharp N.A., Clemens M.J. Expression of genes for the Epstein-Barr virus small RNAs EBER-1 and EBER-2 in Daudi Burkitt’s lymphoma cells: Effects of interferon treatment. J. Gen. Virol. 1992;73:3169–3175. doi: 10.1099/0022-1317-73-12-3169. PubMed DOI
Wu T.C., Mann R.B., Charache P., Hayward S.D., Staal S., Lambe B.C., Ambinder R.F. Detection of EBV gene expression in Reed-Sternberg cells of Hodgkin’s disease. Int. J. Cancer. 1990;46:801–804. doi: 10.1002/ijc.2910460509. PubMed DOI
Lerner M.R., Andrews N.C., Miller G., Steitz J.A. Two small RNAs encoded by Epstein-Barr virus and complexed with protein are precipitated by antibodies from patients with systemic lupus erythematosus. Proc. Natl. Acad. Sci. USA. 1981;78:805–809. doi: 10.1073/pnas.78.2.805. PubMed DOI PMC
Toczyski D.P., Matera A.G., Ward D.C., Steitz J.A. The Epstein-Barr virus (EBV) small RNA EBER1 binds and relocalizes ribosomal protein L22 in EBV-infected human B lymphocytes. Proc. Natl. Acad. Sci. USA. 1994;91:3463–3467. doi: 10.1073/pnas.91.8.3463. PubMed DOI PMC
Clemens M.J., Laing K.G., Jeffrey I.W., Schofield A., Sharp T.V., Elia A., Matys V., James M.C., Tilleray V.J. Regulation of the interferon-inducible eIF-2 alpha protein kinase by small RNAs. Biochimie. 1994;76:770–778. doi: 10.1016/0300-9084(94)90081-7. PubMed DOI
Gregorovic G., Boulden E.A., Bosshard R., Elgueta Karstegl C., Skalsky R., Cullen B.R., Gujer C., Rämer P., Münz C., Farrell P.J. Epstein–Barr viruses (EBVs) deficient in EBV-encoded RNAs have higher levels of latent membrane protein 2RNAexpression in lymphoblastoid cell lines and efficiently establish persistent infections in humanized mice. J. Virol. 2015;89:11711–11714. doi: 10.1128/JVI.01873-15. PubMed DOI PMC
Lee N., Moss W.N., Yario T.A., Steitz J.A. EBV noncoding RNA binds nascent RNA to drive host PAX5 to viral DNA. Cell. 2015;160:607–618. doi: 10.1016/j.cell.2015.01.015. PubMed DOI PMC
Kheimar A., Kaufer B.B. Epstein-Barr virus-encoded RNAs (EBERs) complement the loss of herpesvirus telomerase RNA (vTR) in virus-induced tumor formation. Sci. Rep. 2018;8:209. doi: 10.1038/s41598-017-18638-7. PubMed DOI PMC
Calin G.A., Croce C.M. MicroRNA-cancer connection: The beginning of a new tale. Cancer Res. 2006;66:7390–7394. doi: 10.1158/0008-5472.CAN-06-0800. PubMed DOI
Macfarlane L.A., Murphy P.R. MicroRNA: Biogenesis; Function and Role in Cancer. Curr. Genom. 2010;11:537–561. doi: 10.2174/138920210793175895. PubMed DOI PMC
Jansson M.D., Lund A.H. MicroRNA and cancer. Mol. Oncol. 2012;6:590–610. doi: 10.1016/j.molonc.2012.09.006. PubMed DOI PMC
Lin S., Gregory R.I. MicroRNA biogenesis pathways in cancer. Nat. Rev. Cancer. 2015;15:321–333. doi: 10.1038/nrc3932. PubMed DOI PMC
Di Leva G., Croce C.M. miRNA profiling of cancer. Curr. Opin. Genet. Dev. 2013;23:3–11. doi: 10.1016/j.gde.2013.01.004. PubMed DOI PMC
Eis P.S., Tam W., Sun L., Chadburn A., Li Z., Gomez M.F., Lund E., Dahlberg J.E. Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc. Natl. Acad. Sci. USA. 2005;102:3627–3632. doi: 10.1073/pnas.0500613102. PubMed DOI PMC
Cimmino A., Calin G.A., Fabbri M., Iorio M.V., Ferracin M., Shimizu M., Wojcik S.E., Aqeilan R.I., Zupo S., Dono M., et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc. Natl. Acad. Sci. USA. 2005;102:13944–13949. doi: 10.1073/pnas.0506654102. PubMed DOI PMC
Yanaihara N., Caplen N., Bowman E., Seike M., Kumamoto K., Yi M., Stephens R.M., Okamoto A., Yokota J., Tanaka T., et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell. 2006;9:189–198. doi: 10.1016/j.ccr.2006.01.025. PubMed DOI
Hayashita Y., Osada H., Tatematsu Y., Yamada H., Yanagisawa K., Tomida S., Yatabe Y., Kawahara K., Sekido Y., Takahashi T. A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res. 2005;65:9628–9632. doi: 10.1158/0008-5472.CAN-05-2352. PubMed DOI
Moi L., Braaten T., Al-Shibli K., Lund E., Busund L.T.R. Differential expression of the miR-17-92 cluster and miR-17 family in breast cancer according to tumor type; results from the Norwegian Women and Cancer (NOWAC) study. J. Transl. Med. 2019;17:334. doi: 10.1186/s12967-019-2086-x. PubMed DOI PMC
Gupta R., Shah N., Wang K., Kim J., Horlings H.M., Wong D.J., Tsai M.C., Hung T., Argani P., Rinn J.L., et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature. 2010;464:1071–1076. doi: 10.1038/nature08975. PubMed DOI PMC
Ji P., Diederichs S., Wang W., Böing S., Metzger R., Schneider P.M., Tidow N., Brandt B., Buerger H., Bulk E., et al. MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene. 2003;22:8031–8041. doi: 10.1038/sj.onc.1206928. PubMed DOI
Xu C., Yang M., Tian J., Wang X., Li Z. MALAT-1: A long non-coding RNA and its important 3’ end functional motif in colorectal cancer metastasis. Int. J. Oncol. 2011;39:169–175. doi: 10.3892/ijo.2011.1007. PubMed DOI
Reddy K.B. MicroRNA (miRNA) in cancer. Cancer Cell Int. 2015;15 doi: 10.1186/s12935-015-0185-1. PubMed DOI PMC
Kosaka N., Iguchi H., Ochiya T. Circulating microRNA in body fluid: A new potential biomarker for cancer diagnosis and prognosis. Cancer Sci. 2010;101:2087–2092. doi: 10.1111/j.1349-7006.2010.01650.x. PubMed DOI PMC
Harris N.L., Jaffe E.S., Stein H., Banks P.M., Chan J.K., Cleary M.L., Delsol G., De Wolf-Peeters C., Falini B., Gatter K.C., et al. A revised European-American classification of lymphoid neoplasms: A proposal from the International Lymphoma Study Group. Blood. 1994;84:1361–1392. doi: 10.1182/blood.V84.5.1361.1361. PubMed DOI
Mathas S., Hartmann S., Küppers R. Hodgkin lymphoma: Pathology and biology. Semin. Hematol. 2016;53:139–147. doi: 10.1053/j.seminhematol.2016.05.007. PubMed DOI
Küppers R. The biology of Hodgkin’s lymphoma. Nat. Rev. Cancer. 2009;9:15–27. doi: 10.1038/nrc2542. PubMed DOI
Bargou R.C., Emmerich F., Krappmann D., Bommert K., Mapara M.Y., Arnold W., Royer H.D., Grinstein E., Greiner A., Scheidereit C., et al. Constitutive nuclear factor-B-RelA activation is required for proliferation and survival of Hodgkin’s disease tumor cells. J. Clin. Investig. 1997;100:2961–2969. doi: 10.1172/JCI119849. PubMed DOI PMC
Hinz M., Löser P., Mathas S., Krappmann D., Dörken B., Scheidereit C. Constitutive NF-κB maintains high expression of a characteristic gene network; including CD40; CD86; and a set of antiapoptotic genes in Hodgkin/Reed-Sternberg cells. Blood. 2001;97:2798–2807. doi: 10.1182/blood.V97.9.2798. PubMed DOI
Kilger E., Kieser A., Baumann M., Hammerschmidt W. Epstein-Barr virus-mediated B-cell proliferation is dependent upon latent membrane protein 1; which simulates an activated CD40 receptor. EMBO J. 1998;17:1700–1709. doi: 10.1093/emboj/17.6.1700. PubMed DOI PMC
Deacon E.M., Pallesen G., Niedobitek G., Crocker J., Brooks L., Rickinson A.B., Young L.S. Epstein-Barr virus and Hodgkin’s disease: Transcriptional analysis of virus latency in the malignant cells. J. Exp. Med. 1993;177:339–349. doi: 10.1084/jem.177.2.339. PubMed DOI PMC
Grässer F.A., Murray P.G., Kremmer E., Klein K., Remberger K., Feiden W., Reynolds G., Niedobitek G., Young L.S., Mueller-Lantzsch N. Monoclonal antibodies directed against the Epstein-Barr virus-encoded nuclear antigen 1 (EBNA1): Immunohistologic detection of EBNA1 in the malignant cells of Hodgkin’s disease. Blood. 1994;84:3792–3798. doi: 10.1182/blood.V84.11.3792.bloodjournal84113792. PubMed DOI
Murray P.G., Young L.S., Rowe M., Crocker J. Immunohistochemical demonstration of the Epstein–Barr virus-encoded latent membrane protein in paraffin sections of Hodgkin’s disease. J. Pathol. 1992;166:1–5. doi: 10.1002/path.1711660102. PubMed DOI
Niedobitek G., Kremmer E., Herbst H., Whitehead L., Dawson C.W., Niedobitek E., von Ostau C., Rooney N., Grässer F.A., Young L.S. Immunohistochemical detection of the Epstein-Barr Virus-encoded latent membrane protein 2A in Hodgkin’s disease and infectious mononucleosis. Blood. 1997;90:1664–1672. doi: 10.1182/blood.V90.4.1664. PubMed DOI
Murray P.G., Young L.S. An etiological role for the Epstein-Barr virus in the pathogenesis of classical Hodgkin lymphoma. Blood. 2019;134:591–596. doi: 10.1182/blood.2019000568. PubMed DOI
Babcock G.J., Thorley-Lawson D.A. Tonsillar memory B cells; latently infected with Epstein-Barr virus; express the restricted pattern of latent genes previously found only in Epstein-Barr virus-associated tumors. Proc. Natl. Acad. Sci. USA. 2000;97:12250–12255. doi: 10.1073/pnas.200366597. PubMed DOI PMC
Babcock G.J., Hochberg D., Thorley-Lawson A.D. The expression pattern of Epstein-Barr virus latent genes in vivo is dependent upon the differentiation stage of the infected B cell. Immunity. 2000;13:497–506. doi: 10.1016/S1074-7613(00)00049-2. PubMed DOI
Thorley-Lawson D.A., Babcock G.J. A model for persistent infection with Epstein-Barr virus: The stealth virus of human B cells. Life Sci. 1999;65:1433–1453. doi: 10.1016/S0024-3205(99)00214-3. PubMed DOI
Hochberg D., Middeldorp J.M., Catalina M., Sullivan J.L., Luzuriaga K., Thorley-Lawson D.A. Demonstration of the Burkitt’s lymphoma Epstein-Barr virus phenotype in dividing latently infected memory cells in vivo. Proc. Natl. Acad. Sci. USA. 2004;101:239–244. doi: 10.1073/pnas.2237267100. PubMed DOI PMC
Qiu J., Cosmopoulos K., Pegtel M., Hopmans E., Murray P., Middeldorp J., Shapiro M., Thorley-Lawson D.A. A novel persistence associated EBV miRNA expression profile is disrupted in neoplasia. PLoS Pathog. 2011;7 doi: 10.1371/journal.ppat.1002193. PubMed DOI PMC
Navari M., Etebari M., Ibrahimi M., Leoncini L., Piccaluga P.P. Pathobiologic roles of Epstein-Barr virus-encoded microRNAs in human lymphomas. Int. J. Mol. Sci. 2018;19:1168. doi: 10.3390/ijms19041168. PubMed DOI PMC
Amoroso R., Fitzsimmons L., Thomas W.A., Kelly G.L., Rowe M., Bell A.I. Quantitative studies of Epstein-Barr virus-encoded microRNAs provide novel insights into their Regulation. J. Virol. 2011;85:996–1010. doi: 10.1128/JVI.01528-10. PubMed DOI PMC
Sakamoto K., Sekizuka T., Uehara T., Hishima T., Mine S., Fukumoto H., Sato Y., Hasegawa H., Kuroda M., Katano H. Next-generation sequencing of miRNAs in clinical samples of Epstein–Barr virus-associated B-cell lymphomas. Cancer Med. 2017;6:605–618. doi: 10.1002/cam4.1006. PubMed DOI PMC
Tsai M.H., Lin X., Shumilov A., Bernhardt K., Feederle R., Poirey R., Kopp-Schneider A., Pereira B., Almeida R., Delecluse H.J. The biological properties of different Epstein-Barr virus strains explain their association with various types of cancers. Oncotarget. 2017;8:10238–10254. doi: 10.18632/oncotarget.14380. PubMed DOI PMC
Marques S.C., Ranjbar B., Laursen M.B., Falgreen S., Bilgrau A.E., Bødker J.S., Jørgensen L.K., Primo M.N., Schmitz A., Ettrup M.S., et al. High miR-34a expression improves response to doxorubicin in diffuse large B-cell lymphoma. Exp. Hematol. 2016;44:238–246.e2. doi: 10.1016/j.exphem.2015.12.007. PubMed DOI
Delecluse S., Yu J., Bernhardt K., Haar J., Poirey R., Tsai M.H., Kiblawi R., Kopp-Schneider A., Schnitzler P., Zeier M., et al. Spontaneous lymphoblastoid cell lines from patients with Epstein-Barr virus infection show highly variable proliferation characteristics that correlate with the expression levels of viral microRNAs. PLoS ONE. 2019;14 doi: 10.1371/journal.pone.0222847. PubMed DOI PMC
Barth S., Pfuhl T., Mamiani A., Ehses C., Roemer K., Kremmer E., Jäker C., Höck J., Meister G., Grässer F.A. Epstein-Barr virus-encoded microRNA miR-BART2 downregulates the viral DNA polymerase BALF5. Nucleic Acids Res. 2008;36:666–675. doi: 10.1093/nar/gkm1080. PubMed DOI PMC
Vrzalikova K., Vockerodt M., Leonard S., Bell A., Wei W., Schrader A., Wright K.L., Kube D., Rowe M., Woodman C.B., et al. Downregulation of BLIMP1α by the EBV oncogene; LMP-1; disrupts the plasma cell differentiation program and prevents viral replication in B cells: Implications for the pathogenesis of EBV-associated B-cell lymphomas. Blood. 2011;117:5907–5917. doi: 10.1182/blood-2010-09-307710. PubMed DOI PMC
Chen Y., Fachko D., Ivanov N.S., Skinner C.M., Skalsky R.L. Epstein-Barr virus microRNAs regulate B cell receptor signal transduction and lytic reactivation. PLoS Pathog. 2019;15:e1007535. doi: 10.1371/journal.ppat.1007535. PubMed DOI PMC
Vockerodt M., Morgan S.L., Kuo M., Wei W., Chukwuma M.B., Arrand J.R., Kube D., Gordon J., Young L.S., Woodman C.B., et al. The Epstein-Barr virus oncoprotein; latent membrane protein-1; reprograms germinal centre B cells towards a Hodgkin’s Reed-Sternberg-like phenotype. J. Pathol. 2008;216:83–92. doi: 10.1002/path.2384. PubMed DOI
Pegtel D.M., Cosmopoulos K., Thorley-Lawson D.A., van Eijndhoven M.A., Hopmans E.S., Lindenberg J.L., de Grujil T.D., Würdinger T., Middeldorp J.M. Functional delivery of viral miRNAs via exosomes. Proc. Natl. Acad. Sci. USA. 2010;107:6328–6333. doi: 10.1073/pnas.0914843107. PubMed DOI PMC
Higuchi H., Yamakawa N., Imadome K.I., Yahata T., Kotaki R., Ogata J., Kakizaki M., Fujita K., Lu J., Yokoyama K., et al. Role of exosomes as a proinflammatory mediator in the development of EBV-associated lymphoma. Blood. 2018;131:2552–2567. doi: 10.1182/blood-2017-07-794529. PubMed DOI
Tan K.L., Scott D.W., Hong F., Kahl B.S., Fisher R.I., Bartlett N.L., Advani R.H., Buckstein R., Rimsza L.M., Connors J.M., et al. Tumor-associated macrophages predict inferior outcomes in classic Hodgkin lymphoma: A correlative study from the E2496 Intergroup trial. Blood. 2012;120:3280–3287. doi: 10.1182/blood-2012-04-421057. PubMed DOI PMC
Navarro A., Gaya A., Martinez A., Urbano-Ispizua A., Pons A., Balagué O., Gel B., Abrisqueta P. Lopez-Guillermo, A.; Artells, R.; et al. MicroRNA expression profiling in classic Hodgkin lymphoma. Blood. 2008;111:2825–2832. doi: 10.1182/blood-2007-06-096784. PubMed DOI
Sanchez-Espiridion B., Martin-Moreno A.M., Montalban C., Figueroa V., Vega F., Younes A., Medeiros L.J., Alvés F.J., Canales M., Estévez M., et al. MicroRNA signatures and treatment response in patients with advanced classical Hodgkin lymphoma. Br. J. Haematol. 2013;162:336–347. doi: 10.1111/bjh.12390. PubMed DOI PMC
Dhiab M.B., Ziadi S., Ksiaa F., Louhichi T., Gacem R.B., Zineb A.B., Amara K., Hachana M., Trimeche M. Methylation of miR124a-1, miR124a-2, and miR124a-3 in Hodgkin lymphoma. Tumor Biol. 2015;36:1963–1971. doi: 10.1007/s13277-014-2802-3. PubMed DOI
Tayari M., Kok K., Kortman G., Sietzema J., de Jong D., Terpstra M., Visser L., Diepstra A., Kluiver J., Van den Berg A. Long non-coding RNAs are commonly deregulated in Hodgkin lymphoma. Blood. 2013;122:628. doi: 10.1182/blood.V122.21.628.628. DOI
Tayari M.M., Winkle M., Kortman G., Sietzema J., de Jong D., Terpstra M., Mestdagh P., Kroese F.G., Visser L., Diepstra A., et al. Long noncoding RNA expression profiling in normal B-cell subsets and Hodgkin lymphoma reveals Hodgkin and Reed-Sternberg cell-specific long noncoding RNAs. Am. J. Pathol. 2016;186:2462–2472. doi: 10.1016/j.ajpath.2016.05.011. PubMed DOI
Fan C.B., Yan X.H., Tian M., Zhang S., Liu J.L., Sheng Y.X., Dong L., Zhang W.L. Long non-coding RNA NEAT1 regulates Hodgkin’s lymphoma cell proliferation and invasion via miR-448 mediated regulation of DCLK1. Eur. Rev. Med. Pharm. Sci. 2020;24:6219–6227. doi: 10.26355/eurrev_202006_21518. PubMed DOI
Liang Y., Zhu H., Chen J., Lin W., Li B., Guo Y. Construction of relapse-related lncRNA-mediated ceRNA networks in Hodgkin lymphoma. Arch. Med. Sci. 2020;16:1411–1418. doi: 10.5114/aoms.2020.98839. PubMed DOI PMC
Wang Y., Wang L., Sui M. Long non-coding RNA H19 promotes proliferation of Hodgkin’s lymphoma via AKT pathway. J. Buon. 2018;23:1825–1831. PubMed
Magrath I. Epidemiology: Clues to the pathogenesis of Burkitt lymphoma. Br. J. Haematol. 2012;156:744–756. doi: 10.1111/j.1365-2141.2011.09013.x. PubMed DOI
Swerdlow S.H., Campo E., Pileri S.A., Harris N.L., Stein H., Siebert R., Advani R., Ghielmini M., Salles G.A., Zelenetz A.D., et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127:2375–2390. doi: 10.1182/blood-2016-01-643569. PubMed DOI PMC
Atallah-Yunes S.A., Murphy D.J., Noy A. HIV-associated Burkitt lymphoma. Lancet Haematol. 2020;7:e594–e600. doi: 10.1016/S2352-3026(20)30126-5. PubMed DOI
Leucci E., Onnis A., Cocco M., De Falco G., Imperatore F., Giuseppina A., Costanzo V., Cerino G., Mannucci S., Cantisani R., et al. B-cell differentiation in EBV-positive Burkitt lymphoma is impaired at posttranscriptional level by miRNA-altered expression. Int. J. Cancer. 2010;126:1316–1326. doi: 10.1002/ijc.24655. PubMed DOI
Robertus J.L., Kluiver J., Weggemans C., Harms G., Reijmers R.M., Swart Y., Kok K., Rosati S., Schuuring E., van Imhoff G., et al. MiRNA profiling in B non-Hodgkin lymphoma: A MYC-related miRNA profile characterizes Burkitt lymphoma. Br. J. Haematol. 2010;149:896–899. doi: 10.1111/j.1365-2141.2010.08111.x. PubMed DOI
Ambrosio M.R., Mundo L., Gazaneo S., Picciolini M., Vara P.S., Sayed S., Ginori A., Lo Bello G., Del Porro L., Navari M., et al. MicroRNAs sequencing unveils distinct molecular subgroups of plasmablastic lymphoma. Oncotarget. 2017;8:107356–107373. doi: 10.18632/oncotarget.22219. PubMed DOI PMC
Oduor C.I., Kaymaz Y., Chelimo K., Otieno J.A., Ong’echa J.M., Moormann A.M., Bailey J.A. Integrative microRNA and mRNA deep-sequencing expression profiling in endemic Burkitt lymphoma. BMC Cancer. 2017;17 doi: 10.1186/s12885-017-3711-9. PubMed DOI PMC
De Falco G., Ambrosio M.R., Fuligni F., Onnis A., Bellan C., Rocca B.J., Navari M., Etebari M., Mundo L., Gazaneo S., et al. Burkitt lymphoma beyond MYC translocation: N-MYC and DNA methyltransferases dysregulation. BMC Cancer. 2015;15 doi: 10.1186/s12885-015-1661-7. PubMed DOI PMC
Lenze D., Leoncini L., Hummel M., Volinia S., Liu C.G., Amato T., De Falco G., Githanga J., Horn H., Nyagol J., et al. The different epidemiologic subtypes of Burkitt lymphoma share a homogenous micro RNA profile distinct from diffuse large B-cell lymphoma. Leukemia. 2011;25:1869–1876. doi: 10.1038/leu.2011.156. PubMed DOI PMC
Iqbal J., Shen Y., Huang X., Liu Y., Wake L., Liu C., Deffenbacher K., Lachel C.M., Wang C., Rohr J., et al. Global microRNA expression profiling uncovers molecular markers for classification and prognosis in aggressive B-cell lymphoma. Blood. 2015;125:1137–1145. doi: 10.1182/blood-2014-04-566778. PubMed DOI PMC
Robaina M.C., Faccion R.S., Mazzoccoli L., Rezende L.M., Queiroga E., Bacchi C.E., Thomas-Tikhonenko A., Klumb C.E. miR-17-92 cluster components analysis in Burkitt lymphoma: Overexpression of miR-17 is associated with poor prognosis. Ann. Hematol. 2016;95:881–891. doi: 10.1007/s00277-016-2653-7. PubMed DOI
Liu M., Zhu H., Yang S., Wang Z., Bai J., Xu N. c-Myc suppressed E-cadherin through miR-9 at the post-transcriptional level. Cell Biol. Int. 2013;37:197–202. doi: 10.1002/cbin.10039. PubMed DOI
Onnis A., De Falco G., Antonicelli G., Onorati M., Bellan C., Sherman O., Sayed S., Leoncini L. Alteration of MicroRNAs Regulated by c-Myc in Burkitt Lymphoma. PLoS ONE. 2010;5:e12960. doi: 10.1371/journal.pone.0012960. PubMed DOI PMC
Sampson V.B., Rong N.H., Han J., Yang Q., Aris V., Soteropoulos P., Petrelli N.J., Dunn S.P., Krueger L.J. MicroRNA let-7a downregulates MYC and reverts MYC-induced growth in Burkitt lymphoma cells. Cancer Res. 2007;67:9762–9770. doi: 10.1158/0008-5472.CAN-07-2462. PubMed DOI
Han B., Wang S., Zhao H. MicroRNA-21 and microRNA-155 promote the progression of Burkitt’s lymphoma by the PI3K/AKT signaling pathway. Int. J. Clin. Exp. Pathol. 2020;13:89–98. PubMed PMC
Bornkamm G.W. Epstein-Barr virus and the pathogenesis of Burkitt’s lymphoma: More questions than answers. Int. J. Cancer. 2009;124:1745–1755. doi: 10.1002/ijc.24223. PubMed DOI
Panea R.I., Love C.L., Shingleton J.R., Reddy A., Bailey J.A., Moormann A.M., Otieno J.A., Ong’echa J.M., Oduor C.I., Schroeder K.M.S., et al. The whole-genome landscape of Burkitt lymphoma subtypes. Blood. 2019;134:1598–1607. doi: 10.1182/blood.2019001880. PubMed DOI PMC
Rowe M., Rowe D.T., Gregory C.D., Young L.S., Farrell P.J., Rupani H., Rickinson A.B. Differences in B cell growth phenotype reflect novel patterns of Epstein-Barr virus latent gene expression in Burkitt’s lymphoma cells. EMBO J. 1987;6:2743–2751. doi: 10.1002/j.1460-2075.1987.tb02568.x. PubMed DOI PMC
Abate F., Ambrosio M., Mundo L., Laginestra M., Fuligni F., Rossi M., Zairis S., Gazaneo S., De Falco G., Lazzi S., et al. Distinct viral and mutational spectrum of endemic Burkitt lymphoma. PLoS Pathog. 2015;11:e1005158. doi: 10.1371/journal.ppat.1005158. PubMed DOI PMC
Kelly G.L., Long H.M., Stylianou J., Thomas W.A., Leese A., Bell A.I., Bornkamm G.W., Mautner J., Rickinson A.B., Rowe M. An Epstein-Barr Virus Anti-Apoptotic Protein Constitutively Expressed in Transformed Cells and Implicated in Burkitt Lymphomagenesis: The Wp/BHRF1 Link. PLoS Pathog. 2009;5:e1000341. doi: 10.1371/journal.ppat.1000341. PubMed DOI PMC
Kelly G.L., Milner A.E., Baldwin G.S., Bell A.I., Rickinson A.B. Three restricted forms of Epstein-Barr virus latency counteracting apoptosis in c-myc-expressing Burkitt lymphoma cells. Proc. Natl. Acad. Sci. USA. 2006;103:14935–14940. doi: 10.1073/pnas.0509988103. PubMed DOI PMC
Tierney R.J., Shannon-Lowe C.D., Fitzsimmons L., Bell A.I., Rowe M. Unexpected patterns of Epstein-Barr virus transcription revealed by a high throughput PCR array for absolute quantification of viral Mrna. Virology. 2015;474:117–130. doi: 10.1016/j.virol.2014.10.030. PubMed DOI PMC
Ruf I.K., Rhyne P.W., Yang C., Cleveland J.L., Sample J.T. Epstein-Barr virus small RNAs potentiate tumorigenicity of Burkitt lymphoma cells independently of an effect on apoptosis. J. Virol. 2000;74:10223–10228. doi: 10.1128/JVI.74.21.10223-10228.2000. PubMed DOI PMC
Kim S.M., Hur D.Y., Hong S.W., Kim J.H. EBV-encoded EBNA1 regulates cell viability by modulating miR34a-NOX2-ROS signaling in gastric cancer cells. Biochem. Biophys. Res. Commun. 2017;494:550–555. doi: 10.1016/j.bbrc.2017.10.095. PubMed DOI
Onnis A., Navari M., Antonicelli G., Morettini F., Mannucci S., De Falco G., Vigorito E., Leoncini L. Epstein-Barr nuclear antigen 1 induces expression of the cellular microRNA hsa-miR-127 and impairing B-cell differentiation in EBV-infected memory B cells. New insights into the pathogenesis of Burkitt lymphoma. Blood Cancer J. 2012;2 doi: 10.1038/bcj.2012.29. PubMed DOI PMC
Nanbo A., Takada K. The role of Epstein–Barr virus-encoded small RNAs (EBERs) in oncogenesis. Rev. Med. Virol. 2002;12:321–326. doi: 10.1002/rmv.363. PubMed DOI
Dong M., Chen J.N., Huang J.T., Gong L.P., Shao C.K. The roles of EBV-encoded microRNAs in EBV-associated tumors. Crit. Rev. Oncol. Hematol. 2019;135:30–38. doi: 10.1016/j.critrevonc.2019.01.014. PubMed DOI
Oduor C.I., Movassagh M., Kaymaz Y., Chelimo K., Otieno J., Ong’echa J.M., Moormann A.M., Bailey J.A. Human and Epstein-Barr virus miRNA profiling as predictive biomarkers. Front. Microbiol. 2017;8 doi: 10.3389/fmicb.2017.00501. PubMed DOI PMC
Pratt Z.L., Kuzembayeva M., Sengupta S., Sugden B. The microRNAs of Epstein-Barr Virus are expressed at dramatically differing levels among cell lines. Virology. 2009;386:387–397. doi: 10.1016/j.virol.2009.01.006. PubMed DOI PMC
Vereide D.T., Seto E., Chiu Y.F., Hayes M., Tagawa T., Grundhoff A., Hammerschmidt W., Sugden B. Epstein-Barr virus maintains lymphomas via its miRNAs. Oncogene. 2014;33:1258–1264. doi: 10.1038/onc.2013.71. PubMed DOI PMC
Zhang Y.M., Yu Y., Zhao H.P. EBV-BART-6-3p and cellular microRNA197 compromise the immune defense of host cells in EBV-positive Burkitt lymphoma. Mol. Med. Rep. 2017;15:1877–1883. doi: 10.3892/mmr.2017.6173. PubMed DOI
Zhou L., Bu Y., Liang Y., Zhang F., Zhang H., Li S. Epstein-Barr Virus (EBV)-BamHI-A Rightward Transcript (BART)-6 and Cellular MicroRNA-142 Synergistically Compromise Immune Defense of Host Cells in EBV-Positive Burkitt Lymphoma. Med. Sci. Monit. 2016;22:4114–4120. doi: 10.12659/MSM.897306. PubMed DOI PMC
Piccaluga P.P., Navari M., De Falco G., Ambrosio M.R., Lazzi S., Fuligni F., Bellan C., Rossi M., Sapienza M.R., Laginestra M.A., et al. Virus-encoded microRNA contributes to the molecular profile of EBV-positive Burkitt lymphomas. Oncotarget. 2016;7:224–240. doi: 10.18632/oncotarget.4399. PubMed DOI PMC
Ambrosio M.R., Navari M., Di Lisio L., Leon E.A., Onnis A., Gazaneo S., Mundo L., Ulivieri C., Gomez G., Lazzi S., et al. The Epstein Barr-encoded BART-6-3p microRNA affects regulation of cell growth and immuno response in Burkitt lymphoma. Infect. Agent Cancer. 2014;9:12. doi: 10.1186/1750-9378-9-12. PubMed DOI PMC
Riley K.J., Rabinowitz G.S., Yario T.A., Luna J.M., Darnell R.B., Steitz J.A. EBV and human microRNAs co-target oncogenic and apoptotic viral and human genes during latency. EMBO J. 2012;31:2207–2221. doi: 10.1038/emboj.2012.63. PubMed DOI PMC
Li J., Zhai X.W., Wang H.S., Qian X.W., Miao H., Zhu X.H. Circulating microRNA-21; microRNA-23a; and microRNA-125b as biomarkers for diagnosis and prognosis of Burkitt lymphoma in children. Med. Sci. Monit. 2016;22:4992–5002. doi: 10.12659/MSM.897417. PubMed DOI PMC
Doose G., Haake A., Bernhart S.H., López C., Duggimpudi S., Wojciech F., Bergmann A.K., Borkhardt A., Burkhardt B., Claviez A., et al. MINCR is a MYC-induced lncRNA able to modulate MYC’s transcriptional network in Burkitt lymphoma cells. Proc. Natl. Acad. Sci. USA. 2015;112:E5261–E5270. doi: 10.1073/pnas.1505753112. PubMed DOI PMC
Zheng C., Xiao Y., Li Y., He D. Knockdown of long non-coding RNA PVT1 inhibits the proliferation of Raji cells through cell cycle regulation. Oncol. Lett. 2019;18:1225–1234. doi: 10.3892/ol.2019.10450. PubMed DOI PMC
Mao S., Jin J., Li Z., Yang W. Knockdown of long non coding RNA ANRIL inhibits the proliferation and promotes the apoptosis of Burkitt lymphoma cells through the TGF β1 signaling pathway. Mol. Med. Rep. 2021;23:146. doi: 10.3892/mmr.2020.11785. PubMed DOI PMC
Deng W., Zhang Y., Cai J., Zhang J., Liu X., Yin J., Bai Z., Yao H., Zhang Z. LncRNA-ANRIL promotes gastric cancer progression by enhancing NF-kB signaling. Exp. Biol. Med. 2019;244:953–959. doi: 10.1177/1535370219860207. PubMed DOI PMC
Ji Y., Sun H., Liang H., Wang Y., Lu M., Guo Z., Lv Z., Ren W. Evaluation of LncRNA ANRIL Potential in Hepatic Cancer Progression. J. Environ. Pathol. Toxicol. Oncol. 2019;38:119–131. doi: 10.1615/JEnvironPatholToxicolOncol.2019028282. PubMed DOI
Guo C., Gong M., Li Z. Knockdown of lncRNA MCM3AP-AS1 Attenuates Chemoresistance of Burkitt Lymphoma to Doxorubicin Treatment via Targeting the miR-15a/EIF4E Axis. Cancer Manag. Res. 2020;12:5845–5855. doi: 10.2147/CMAR.S248698. PubMed DOI PMC
Lee S., Luo W., Shah T., Yin C., O’Connell T., Chung T.H., Perkins S.L., Miles R.R., Ayello J., Morris E., et al. The effects of DLEU1 gene expression in Burkitt lymphoma (BL): Potential mechanism of chemoimmunotherapy resistance in BL. Oncotarget. 2017;8:27839–27853. doi: 10.18632/oncotarget.15711. PubMed DOI PMC
Di Lisio L., Sánchez-Beato M., Gómez-López G., Rodríguez M.E., Montes-Moreno S., Mollejo M., Menárguez J., Martínez M.A., Alves F.J., Pisano D.G., et al. MicroRNA signatures in B-cell lymphomas. Blood Cancer J. 2012;2:e57. doi: 10.1038/bcj.2012.1. PubMed DOI PMC
Campo E., Swerdlow S.H., Harris N.L., Pileri S., Stein H., Jaffe E.S. The 2008 WHO classification of lymphoid neoplasms and beyond: Evolving concepts and practical applications. Blood. 2011;117:5019–5032. doi: 10.1182/blood-2011-01-293050. PubMed DOI PMC
Wright G., Tan B., Rosenwald A., Hurt E.H., Wiestner A., Staudt L.M. A gene expression-based method to diagnose clinically distinct subgroups of diffuse large B cell lymphoma. Proc. Natl. Acad. Sci. USA. 2003;100:9991–9996. doi: 10.1073/pnas.1732008100. PubMed DOI PMC
Alizadeh A.A., Elsen M.B., Davis R.E., Ma C., Lossos I.S., Rosenwald A., Boldrick J.C., Sabet H., Tran T., Yu X., et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature. 2000;403:503–511. doi: 10.1038/35000501. PubMed DOI
Zhang J., Grubor V., Love C.L., Banerjee A., Richards K.L., Mieczkowski P.A., Dunphy C., Choi W., Au W.Y., Srivastava G., et al. Genetic heterogeneity of diffuse large B-cell lymphoma. Proc. Natl. Acad. Sci. USA. 2013;110:1398–1403. doi: 10.1073/pnas.1205299110. PubMed DOI PMC
Coiffier B., Sarkozy C. Diffuse large B-cell lymphoma: R-CHOP failure—what to do? Am. Soc. Hematol. Educ. Program. 2016;2016:366–378. doi: 10.1182/asheducation-2016.1.366. PubMed DOI PMC
Alencar A.J., Malumbres R., Kozloski G.A., Advani R., Talreja N., Chinichian S., Briones J., Natkunam Y., Sehn L.H., Gascoyne R.D., et al. MicroRNAs are Independent Predictors of Outcome in Diffuse Large B-cell Lymphoma Patients Treated with R-CHOP. Clin. Cancer Res. 2011;17:4125–4135. doi: 10.1158/1078-0432.CCR-11-0224. PubMed DOI PMC
Lawrie C.H., Soneji S., Marafioti T., Cooper C.D., Palazzo S., Paterson J.C., Cattan H., Enver T., Mager R., Boultwood J., et al. MicroRNA expression distinguishes between germinal center B cell-like and activated B cell-like subtypes of diffuse large B cell lymphoma. Int. J. Cancer. 2007;121:1156–1161. doi: 10.1002/ijc.22800. PubMed DOI
Malumbres R., Sarosiek K.A., Cubedo E., Ruiz J.W., Jiang X., Gascoyne R.D., Tibshirani R., Lossos I.S. Differentiation stage-specific expression of microRNAs in B lymphocytes and diffuse large B-cell lymphomas. Blood. 2009;113:3754–3764. doi: 10.1182/blood-2008-10-184077. PubMed DOI PMC
Roehle A., Hoefig K.P., Repsilber D., Thorns C., Ziepert M., Wesche K.O., Thiere M., Loeffler M., Klapper W., Pfreundschuh M., et al. MicroRNA signatures characterize diffuse large B-cell lymphomas and follicular lymphomas. Br. J. Haematol. 2008;142:732–744. doi: 10.1111/j.1365-2141.2008.07237.x. PubMed DOI
Bradshaw G., Sutherland H.G., Haupt L.M., Griffiths L.R. Dysregulated MicroRNA expression profiles and potential cellular; circulating and polymorphic biomarkers in non-Hodgkin lymphoma. Genes. 2016;7:130. doi: 10.3390/genes7120130. PubMed DOI PMC
Imig J., Motsch N., Zhu J.Y., Barth S., Okoniewski M., Reineke T., Tinguely M., Faggioni A., Trivedi P., Meister G., et al. MicroRNA profiling in Epstein-Barr virus-associated B-cell lymphoma. Nucleic Acids Res. 2011;39:1880–1893. doi: 10.1093/nar/gkq1043. PubMed DOI PMC
Forte E., Salinas R.E., Chang C., Zhou T., Linnstaedt S.D., Gottwein E., Jacobs C., Jima D., Li Q.J., Dave S.S., et al. The Epstein-Barr virus (EBV)-induced tumor suppressor microRNA MiR-34a is growth promoting in EBV-infected B cells. J. Virol. 2012;86:6889–6898. doi: 10.1128/JVI.07056-11. PubMed DOI PMC
Motsch N., Pfuhl T., Mrazek J., Barth S., Grässer F.A. Epstein-Barr virus-encoded latent membrane protein 1 (LMP1) induces the expression of the cellular microRNA miR-146a. RNA Biol. 2007;4:131–137. doi: 10.4161/rna.4.3.5206. PubMed DOI
Wu X., Wang F., Li Y., Wang X., Liu P., Zhang H., Ge Z., Zhang X., Gao C., Chen B. Evaluation of latent membrane protein 1 and microRNA-155 for the prognostic prediction of diffuse large B cell lymphoma. Oncol. Lett. 2018;15:9725–9734. doi: 10.3892/ol.2018.8560. PubMed DOI PMC
Pérez D.M., Vargiu P., Montes-Moreno S., A León E., Rodríguez-Pinilla S.M., Lisio L.D., Martinez N., Rodríguez R., Mollejo M., Castellvi J., et al. Epstein-Barr virus microRNAs repress BCL6 expression in diffuse large B-cell lymphoma. Leukemia. 2012;26:180–183. doi: 10.1038/leu.2011.189. PubMed DOI
Song G., Gu L., Li J., Tang Z., Liu H., Chen B., Sun X., He B., Pan Y., Wang S., et al. Serum microRNA expression profiling predict response to R-CHOP treatment in diffuse large B cell lymphoma patients. Ann. Hematol. 2014;93:1735–1743. doi: 10.1007/s00277-014-2111-3. PubMed DOI
Dousti F., Shahrisa A., Ansari H., Hajjari M., Tahmasebi Birgani Y., Mohammadiasl J., Tahmasebi Birgani M. Long non-coding RNAs expression levels in diffuse large B-cell lymphoma: An in silico analysis. Pathol. Res. Pract. 2018;214:1462–1466. doi: 10.1016/j.prp.2018.08.006. PubMed DOI
Zhu D., Fang C., Li X., Geng Y., Li R., Wu C., Jiang J., Wu C. Predictive analysis of long non-coding RNA expression profiles in diffuse large B-cell lymphoma. Oncotarget. 2017;8:23228–23236. doi: 10.18632/oncotarget.15571. PubMed DOI PMC
Gao H.Y., Wu B., Yan W., Gong Z.M., Sun Q., Wang H.H., Yang W. Microarray expression profiles of long non-coding RNAs in germinal center-like diffuse large B-cell lymphoma. Oncol. Rep. 2017;38:1363–1372. doi: 10.3892/or.2017.5821. PubMed DOI PMC
Xu P., Chen X., Su P. A Pooled Analysis of The Clinical Utilities of Long Non-Coding RNA Based Molecular Signature for Diffuse Large B Cell Lymphoma. Clin. Lab. 2017;63:1831–1840. doi: 10.7754/Clin.Lab.2017.170605. PubMed DOI
Zhou M., Zhao H., Xu W., Bao S., Cheng L., Sun J. Discovery and validation of immune-associated long non-coding RNA biomarkers associated with clinically molecular subtype and prognosis in diffuse large B cell lymphoma. Mol. Cancer. 2017;16:16. doi: 10.1186/s12943-017-0580-4. PubMed DOI PMC
Verma A., Jiang Y., Du W., Fairchild L., Melnick A., Elemento O. Transcriptome sequencing reveals thousands of novel long non-coding RNAs in B cell lymphoma. Genome Med. 2015;7:110. doi: 10.1186/s13073-015-0230-7. PubMed DOI PMC
Sun J., Cheng L., Shi H., Zhang Z., Zhao H., Wang Z., Zhou M. A potential panel of six-long non-coding RNA signature to improve survival prediction of diffuse large-B-cell lymphoma. Sci. Rep. 2016;6:27842. doi: 10.1038/srep27842. PubMed DOI PMC
Zhu Q., Li Y., Guo Y., Hu L., Xiao Z., Liu X., Wang J., Xu Q., Tong X. Long non-coding RNA SNHG16 promotes proliferation and inhibits apoptosis of diffuse large B-cell lymphoma cells by targeting miR-497-5p/PIM1 axis. J. Cell Mol. Med. 2019;23:7395–7405. doi: 10.1111/jcmm.14601. PubMed DOI PMC
Zhao L., Liu Y., Zhang J., Liu Y., Qi Q. LncRNA SNHG14/miR-5590-3p/ZEB1 positive feedback loop promoted diffuse large B cell lymphoma progression and immune evasion through regulating PD-1/PD-L1 checkpoint. Cell Death Dis. 2019;10:731. doi: 10.1038/s41419-019-1886-5. PubMed DOI PMC
Yan Y., Han J., Li Z., Yang H., Sui Y., Wang M. Elevated RNA expression of long non-coding HOTAIR promotes cell proliferation and predicts a poor prognosis in patients with diffuse large B cell lymphoma. Mol. Med. Rep. 2016;13:5125–5131. doi: 10.3892/mmr.2016.5190. PubMed DOI PMC
Deng L., Jiang L., Tseng K.F., Liu Y., Zhang X., Dong R., Lu Z., Wang X. Aberrant NEAT1_1 expression may be a predictive marker of poor prognosis in diffuse large B cell lymphoma. Cancer Biomark. 2018;23:157–164. doi: 10.3233/CBM-160221. PubMed DOI
Zhao S., Fang S., Liu Y., Li X., Liao S., Chen J., Liu J., Zhao L., Li H., Zhou W., et al. The long non-coding RNA NONHSAG026900 predicts prognosis as a favorable biomarker in patients with diffuse large B-cell lymphoma. Oncotarget. 2017;8:34374–34386. doi: 10.18632/oncotarget.16163. PubMed DOI PMC
Wang Q.M., Lian G.Y., Song Y., Huang Y.F., Gong Y. LncRNA MALAT1 promotes tumorigenesis and immune escape of diffuse large B cell lymphoma by sponging miR-195. Life Sci. 2019;231:116335. doi: 10.1016/j.lfs.2019.03.040. PubMed DOI
Zhao J., Su L., Jiang J. Long Non-Coding RNA Paternally Expressed Imprinted Gene 10 (PEG10) Elevates Diffuse Large B-Cell Lymphoma Progression by Regulating Kinesin Family Member 2A (KIF2A) via Targeting MiR-101-3p. Med. Sci. Monit. 2020;25 doi: 10.12659/MSM.922810. PubMed DOI PMC
Peng W., Fan H., Wu G., Wu J., Feng J. Upregulation of long noncoding RNA PEG10 associates with poor prognosis in diffuse large B cell lymphoma with facilitating tumorigenicity. Clin. Exp. Med. 2016;16:177–182. doi: 10.1007/s10238-015-0350-9. PubMed DOI
Ahmadvand M., Eskandari M., Pashaiefar H., Yaghmaie M., Manoochehrabadi S., Khakpour G., Sheikhsaran F., Montazer Zohour M. Over expression of circulating miR-155 predicts prognosis in diffuse large B-cell lymphoma. Leuk. Res. 2018;70:45–48. doi: 10.1016/j.leukres.2018.05.006. PubMed DOI
Zhong H., Xu L., Zhong J.H., Xiao F., Liu Q., Huang H.H., Chen F.Y. Clinical and prognostic significance of miR-155 and miR-146a expression levels in formalin-fixed/paraffin-embedded tissue of patients with diffuse large B-cell lymphoma. Exp. Ther. Med. 2012;3:763–770. doi: 10.3892/etm.2012.502. PubMed DOI PMC
Wu P.Y., Zhang X.D., Zhu J., Guo X.Y., Wang J.F. Low expression of microRNA-146b-5p and microRNA-320d predicts poor outcome of large B-cell lymphoma treated with cyclophosphamide, doxorubicin, vincristine, and prednisone. Hum. Pathol. 2014;45:1664–1673. doi: 10.1016/j.humpath.2014.04.002. PubMed DOI
Beheshti A., Stevenson K., Vanderburg C., Ravi D., McDonald J.T., Christie A.L., Shigemori K., Jester H., Weinstock D.M., Evens A.M. Identification of Circulating Serum Multi-MicroRNA Signatures in Human DLBCL Models. Sci. Rep. 2019;9:17161. doi: 10.1038/s41598-019-52985-x. PubMed DOI PMC
Li J., Fu R., Yang L., Tu W. miR-21 expression predicts prognosis in diffuse large B-cell lymphoma. Int. J. Clin. Exp. Pathol. 2015;8:15019–15024. PubMed PMC
Kozloski G.A., Jiang X., Bhatt S., Ruiz J., Vega F., Shaknovich R., Melnick A., Lossos I.S. miR-181a negatively regulates NF-κB signaling and affects activated B-cell-like diffuse large B-cell lymphoma pathogenesis. Blood. 2016;127:2856–2866. doi: 10.1182/blood-2015-11-680462. PubMed DOI
Young L.S., Yap L.F., Murray P.G. Epstein-Barr virus: More than 50 years old and still providing surprises. Nat. Rev. Cancer. 2016;16:789–802. doi: 10.1038/nrc.2016.92. PubMed DOI
El-Sharkawy A., Al Zaidan L., Malki A. Epstein-Barr virus-associated malignancies: Roles of viral oncoproteins in carcinogenesis. Front. Oncol. 2018;8 doi: 10.3389/fonc.2018.00265. PubMed DOI PMC
Young L.S., Dawson C.W. Epstein-Barr virus and nasopharyngeal carcinoma. Chin. J. Cancer. 2014;33:581–590. doi: 10.5732/cjc.014.10197. PubMed DOI PMC
Yoshizaki T., Endo K., Ren Q., Wakisaka N., Murono S., Kondo S., Sato H., Furukawa M. Oncogenic role of Epstein-Barr virus-encoded small RNAs (EBERs) in nasopharyngeal carcinoma. Auris Nasus Larynx. 2007;34:73–78. doi: 10.1016/j.anl.2006.09.025. PubMed DOI
Li Z., Duan Y., Cheng S., Chen Y., Hu Y., Zhang L., He J., Liao Q., Yang L., Sun L.Q. EBV-encoded RNA via TLR3 induces inflammation in nasopharyngeal carcinoma. Oncotarget. 2015;6:24291–24303. doi: 10.18632/oncotarget.4552. PubMed DOI PMC
Zhang W., Huang C., Gong Z., Zhao Y., Tang K., Li X., Fan S., Shi L., Li X., Zhang P. Expression of LINC00312; a long intergenic non-coding RNA; is negatively correlated with tumor size but positively correlated with lymph node metastasis in nasopharyngeal carcinoma. J. Mol. Histol. 2013;44:545–554. doi: 10.1007/s10735-013-9503-x. PubMed DOI
He B., Zeng J., Chao W., Chen X., Huang Y., Deng K., Huang Z., Li J., Dai M., Chen S., et al. Serum long non-coding RNAs MALAT1; AFAP1-AS1 and AL359062 as diagnostic and prognostic biomarkers for nasopharyngeal carcinoma. Oncotarget. 2017;8:41166–41177. doi: 10.18632/oncotarget.17083. PubMed DOI PMC
Chen S.J., Chen G.H., Chen Y.H., Liu C.Y., Chang K.P., Chang Y.S., Chen H.C. Characterization of Epstein-Barr virus miRNAome in nasopharyngeal carcinoma by deep sequencing. PLoS ONE. 2010;5:e12745. doi: 10.1371/journal.pone.0012745. PubMed DOI PMC
Katoh T., Sakaguchi Y., Miyauchi K., Suzuki T., Kashiwabara S., Baba T., Suzuki T. Selective stabilization of mammalian microRNAs by 3′ adenylation mediated by the cytoplasmic poly(A) polymerase GLD-2. Genes Dev. 2009;23:433–438. doi: 10.1101/gad.1761509. PubMed DOI PMC
Kuchenbauer F., Morin R.D., Argiropoulos B., Petriv O.I., Griffith M., Heuser M., Yung E., Piper J., Delaney A., Prabhu A.L., et al. In-depth characterization of the microRNA transcriptome in a leukemia progression model. Genome Res. 2008;18:1787–1797. doi: 10.1101/gr.077578.108. PubMed DOI PMC
Choy E.Y.W., Siu K.L., Kok K.H., Lung R.W., Tsang C.M., To K.F., Kwong D.L., Tsao S.W., Jin D.Y. An Epstein-Barr virus-encoded microRNA targets PUMA to promote host cell survival. J. Exp. Med. 2008;205:2551–2560. doi: 10.1084/jem.20072581. PubMed DOI PMC
Cai L., Long Y., Chong T., Cai W., Tsang C.M., Zhou X., Lin Y., Ding T., Zhou W., Zhao H., et al. EBV-miR-BART7-3p imposes stemness in nasopharyngeal carcinoma cells by suppressing SMAD7. Front. Genet. 2019;10:939. doi: 10.3389/fgene.2019.00939. PubMed DOI PMC
Cai L.M., Lyu X.M., Luo W.R., Cui X.F., Ye Y.F., Yuan C.C., Peng Q.X., Wu D.H., Liu T.F., Wang E., et al. EBV-miR-BART7-3p promotes the EMT and metastasis of nasopharyngeal carcinoma cells by suppressing the tumor suppressor PTEN. Oncogene. 2015;34:2156–2166. doi: 10.1038/onc.2014.341. PubMed DOI
Ye Y., Zhou Y., Zhang L., Chen Y., Lyu X., Cai L., Lu Y., Deng Y., Wang J., Yao K., et al. EBV-miR-BART1 is involved in regulating metabolism-associated genes in nasopharyngeal carcinoma. Biochem. Biophys. Res. Commun. 2013;436:19–24. doi: 10.1016/j.bbrc.2013.05.008. PubMed DOI
Cai L., Ye Y., Jiang Q., Chen Y., Lyu X., Li J., Wang S., Liu T., Cai H., Yao K., et al. Epstein-Barr virus-encoded microRNA BART1 induces tumour metastasis by regulating PTEN-dependent pathways in nasopharyngeal carcinoma. Nat. Commun. 2015;6:7353. doi: 10.1038/ncomms8353. PubMed DOI PMC
Cai L., Li J., Zhang X., Lu Y., Wang J., Lyu X., Chen Y., Liu J., Cai H., Wang Y., et al. Gold nano-particles (AuNPs) carrying anti-EBV-miR-BART7-3p inhibit growth of EBV-positive nasopharyngeal carcinoma. Oncotarget. 2015;6:7838–7850. doi: 10.18632/oncotarget.3046. PubMed DOI PMC
Zhou X., Zheng J., Tang Y., Lin Y., Wang L., Li Y., Liu C., Wu D., Cai L. EBV encoded miRNA BART8-3p promotes radioresistance in nasopharyngeal carcinoma by regulating ATM/ATR signaling pathway. Biosci. Rep. 2019;39:BSR20190415. doi: 10.1042/BSR20190415. PubMed DOI PMC
Hsu C.Y., Yi Y.H., Chang K.P., Chang Y.S., Chen S.J., Chen H.C. The Epstein-Barr virus-encoded microRNA MiR-BART9 promotes tumor metastasis by targeting E-cadherin in nasopharyngeal carcinoma. PLoS Pathog. 2014;10:e1003974. doi: 10.1371/journal.ppat.1003974. PubMed DOI PMC
Yan Q., Zeng Z., Gong Z., Zhang W., Li X., He B., Song Y., Li Q., Zeng Y., Liao Q., et al. EBV-miR-BART10-3p facilitates epithelial-mesenchymal transition and promotes metastasis of nasopharyngeal carcinoma by targeting BTRC. Oncotarget. 2015;6:41766–41782. doi: 10.18632/oncotarget.6155. PubMed DOI PMC
Jiang C., Li L., Xiang Y.Q., Lung M.L., Zeng T., Lu J., Tsao S.W., Zeng M.S., Yun J.P., Kwong D.L., et al. Epstein-Barr virus miRNA BART2-5p promotes metastasis of nasopharyngeal carcinoma by suppressing RND3. Cancer Res. 2020;80:1957–1969. doi: 10.1158/0008-5472.CAN-19-0334. PubMed DOI
Zou X., Zhu D., Zhang H., Zhang S., Zhou X., He X., Zhu J., Zhu W. MicroRNA expression profiling analysis in serum for nasopharyngeal carcinoma diagnosis. Gene. 2020;727:144243. doi: 10.1016/j.gene.2019.144243. PubMed DOI
Gao W., Wong T.S., Lv K.X., Zhang M.J., Tsang R.K., Chan J.Y. Detection of Epstein-Barr virus (EBV)—encoded microRNAs in plasma of patients with nasopharyngeal carcinoma. Head Neck. 2019;41:780–792. doi: 10.1002/hed.25544. PubMed DOI
Wu L., Wang J., Zhu D., Zhang S., Zhou X., Zhu W., Zhu J., He X. Circulating Epstein-Barr virus microRNA profile reveals novel biomarker for nasopharyngeal carcinoma diagnosis. Cancer Biomark. 2020;27:365–375. doi: 10.3233/CBM-190160. PubMed DOI
Wen W., Mai S.J., Lin H.X., Zhang M.Y., Huang J.L., Hua X., Lin C., Long Z.Q., Lu Z.J., Sun X.Q., et al. Identification of two microRNA signatures in whole blood as novel biomarkers for diagnosis of nasopharyngeal carcinoma. J. Transl. Med. 2019;17:1–13. doi: 10.1186/s12967-019-1923-2. PubMed DOI PMC
Polakovicova I., Jerez S., Wichmann I.A., Sandoval-Bórquez A., Carrasco-Véliz N., Corvalán A.H. Role of microRNAs and exosomes in Helicobacter pylori and Epstein-Barr virus associated gastic cancers. Front. Microbiol. 2018;9 doi: 10.3389/fmicb.2018.00636. PubMed DOI PMC
Iizasa H., Nanbo A., Nishikawa J., Jinushi M., Yoshiyama H. Epstein-barr virus (EBV)-associated gastric carcinoma. Viruses. 2012;4:3420–3439. doi: 10.3390/v4123420. PubMed DOI PMC
Nishikawa J., Yoshiyama H., Iizasa H., Kanehiro Y., Nakamura M., Nishimura J., Saito M., Okamoto T., Sakai K., Suehiro Y., et al. Epstein-Barr virus in gastric carcinoma. Cancers. 2014;6:2259–2274. doi: 10.3390/cancers6042259. PubMed DOI PMC
Yau T.O., Tang C.M., Yu J. Epigenetic dysregulation in Epstein-Barr virus-associated gastric carcinoma: Disease and treatments. World J. Gastroenterol. 2014;20:6448–6456. doi: 10.3748/wjg.v20.i21.6448. PubMed DOI PMC
van Beek J., zur Hausen A., Klein Kranenbarg E., van de Velde C.J., Middeldorp J.M., van den Brule A.J., Meijer C.J., Bloemena E. EBV-positive gastric adenocarcinomas: A distinct clinicopathologic entity with a low frequency of lymph node involvement. J. Clin. Oncol. 2004;22:664–670. doi: 10.1200/JCO.2004.08.061. PubMed DOI
Yanagi A., Nishikawa J., Shimokuri K., Shuto T., Takagi T., Takagi F., Kobayashi Y., Yamamoto M., Miura O., Yanai H., et al. Clinicopathologic Characteristics of Epstein-Barr Virus-Associated Gastric Cancer Over the Past Decade in Japan. Microorganisms. 2019;7:305. doi: 10.3390/microorganisms7090305. PubMed DOI PMC
Tsai J.H., Jeng Y.M., Chen K.H., Lee C.H., Yuan C.T., Liau J.Y. An Integrative Morphomolecular Classification System of Gastric Carcinoma with Distinct Clinical Outcomes. Am. J. Surg. Pathol. 2020;44:1017–1030. doi: 10.1097/PAS.0000000000001521. PubMed DOI
Genitsch V., Novotny A., Seiler C.A., Kröll D., Walch A., Langer R. Epstein–Barr virus in gastro-esophageal adenocarcinomas–single center experiences in the context of current literature. Front. Oncol. 2015;26:73. doi: 10.3389/fonc.2015.00073. PubMed DOI PMC
Lee J.S., Won H.S., Sun S., Hong J.H., Ko Y.H. Prognostic role of tumor-infiltrating lymphocytes in gastric cancer: A systematic review and meta-analysis. Medicine. 2018;97:e11769. doi: 10.1097/MD.0000000000011769. PubMed DOI PMC
Zhang N., Cao M., Duan Y., Bai H., Li X., Wang Y. Prognostic role of tumor-infiltrating lymphocytes in gastric cancer: A meta-analysis and experimental validation. Arch. Med. Sci. 2019;16:1092–1103. doi: 10.5114/aoms.2019.86101. PubMed DOI PMC
Derks S., Liao X., Chiaravalli A.M., Xu X., Camargo M.C., Solcia E., Sessa F., Fleitas T., Freeman G.J., Rodig S.J., et al. Abundant PD-L1 expression in Epstein-Barr Virus-infected gastric cancers. Oncotarget. 2016;7:32925–32932. doi: 10.18632/oncotarget.9076. PubMed DOI PMC
Muro K., Chung H.C., Shankaran V., Geva R., Catenacci D., Gupta S., Eder J.P., Golan T., Le D.T., Burtness B., et al. Pembrolizumab for patients with PD-L1-positive advanced gastric cancer (KEYNOTE-012): A multicentre, open-label, phase 1b trial. Lancet Oncol. 2016;17:717–726. doi: 10.1016/S1470-2045(16)00175-3. PubMed DOI
Imai S., Koizumi S., Sugiura M., Tokunaga M., Uemura Y., Yamamoto N., Tanaka S., Sato E., Osato T. Gastric carcinoma: Monoclonal epithelial malignant cells expressing Epstein-Barr virus latent infection protein. Proc. Natl. Acad. Sci. USA. 1994;91:9131–9135. doi: 10.1073/pnas.91.19.9131. PubMed DOI PMC
Giudice A., D’Arena G., Crispo A., Tecce M.F., Nocerino F., Grimaldi M., Rotondo E., D’Ursi A.M., Scrima M., Galdiero M., et al. Role of Viral miRNAs and Epigenetic Modifications in Epstein-Barr Virus-Associated Gastric Carcinogenesis. Oxidative Med. Cell. Longev. 2016;2016:6021934. doi: 10.1155/2016/6021934. PubMed DOI PMC
Wood V.H., O’Neil J.D., Wei W., Stewart S.E., Dawson C.W., Young L.S. Epstein-Barr virus-encoded EBNA1 regulates cellular gene transcription and modulates the STAT1 and TGFbeta signaling pathways. Oncogene. 2007;26:4135–4147. doi: 10.1038/sj.onc.1210496. PubMed DOI
Sivachandran N., Sarkari F., Frappier L. Epstein-Barr nuclear antigen 1 contributes to nasopharyngeal carcinoma through disruption of PML nuclear bodies. PLoS Pathog. 2008;4:e1000170. doi: 10.1371/journal.ppat.1000170. PubMed DOI PMC
Chung G.T., Lou W.P., Chow C., To K.F., Choy K.W., Leung A.W., Tong C.Y., Yuen J.W., Ko C.W., Yip T.T., et al. Constitutive activation of distinct NF-κB signals in EBV-associated nasopharyngeal carcinoma. J. Pathol. 2013;231:311–322. doi: 10.1002/path.4239. PubMed DOI
Iwakiri D., Eizuru Y., Tokunaga M., Takada K. Autocrine growth of Epstein-Barr virus-positive gastric carcinoma cells mediated by an Epstein-Barr virus-encoded small RNA. Cancer Res. 2003;63:7062–7067. PubMed
Iwakiri D., Sheen T.S., Chen J.Y., Huang D.P., Takada K. Epstein-Barr virus-encoded small RNA induces insulin-like growth factor 1 and supports growth of nasopharyngeal carcinoma-derived cell lines. Oncogene. 2005;24:1767–1773. doi: 10.1038/sj.onc.1208357. PubMed DOI
Iwakiri D., Takada K. Role of EBERs in the pathogenesis of EBV infection. Adv. Cancer Res. 2010;107:119–136. doi: 10.1016/S0065-230X(10)07004-1. PubMed DOI
Shinozaki A., Sakatani T., Ushiku T., Hino R., Isogai M., Ishikawa S., Uozaki H., Takada K., Fukayama M. Downregulation of MicroRNA-200 in EBV-associated gastric carcinoma. Cancer Res. 2010;70:4719–4727. doi: 10.1158/0008-5472.CAN-09-4620. PubMed DOI
Shinozaki-Ushiku A., Kunita A., Isogai M., Hibiya T., Ushiku T., Takada K., Fukayama M. Profiling of Virus-Encoded MicroRNAs in Epstein-Barr Virus-Associated Gastric Carcinoma and Their Roles in Gastric Carcinogenesis. J. Virol. 2015;89:5581–5591. doi: 10.1128/JVI.03639-14. PubMed DOI PMC
Zheng X., Wang J., Wei L., Peng Q., Gao Y., Fu Y., Lu Y., Qin Z., Zhang X., Lu J., et al. Epstein-Barr virus microRNA miR-BART5-3p inhibits p53 expression. J. Virol. 2018;92:e01022-18. doi: 10.1128/JVI.01022-18. PubMed DOI PMC
Marquitz A.R., Mathur A., Nam C.S., Raab-Traub N. The Epstein–Barr Virus BART microRNAs target the pro-apoptotic protein Bim. Virology. 2011;412:392–400. doi: 10.1016/j.virol.2011.01.028. PubMed DOI PMC
Kim H., Choi H., Lee S.K. Epstein–Barr virus miR-BART20-5p regulates cell proliferation and apoptosis by targeting BAD. Cancer Lett. 2015;356:733–742. doi: 10.1016/j.canlet.2014.10.023. PubMed DOI
Dong M., Gong L.P., Chen J.N., Zhang X.F., Zhang Y.W., Hui D.Y., Zhao X.X., Wu X.Y., Shao C.K. EBV-miR-BART10-3p and EBV-miR-BART22 promote metastasis of EBV-associated gastric carcinoma by activating the canonical Wnt signaling pathway. Cell Oncol. 2020;43:901–913. doi: 10.1007/s13402-020-00538-0. PubMed DOI
Treece A.L., Duncan D.L., Tang W., Elmore S., Morgan D.R., Dominguez R.L., Speck O., Meyers M.O., Gulley M.L. Gastric adenocarcinoma microRNA profiles in fixed tissue and in plasma reveal cancer-associated and Epstein-Barr virus-related expression patterns. Lab. Investig. 2016;96:661–671. doi: 10.1038/labinvest.2016.33. PubMed DOI PMC
Huang T., Ji Y., Hu D., Chen B., Zhang H., Li C., Chen G., Luo X., Zheng X.W., Lin X. SNHG8 is identified as a key regulator of epstein-barr virus(EBV)-associated gastric cancer by an integrative analysis of lncRNA and mRNA expression. Oncotarget. 2016;7:80990–81002. doi: 10.18632/oncotarget.13167. PubMed DOI PMC
Yoon C.J., Chang M.S., Kim D.H., Kim W., Koo B.K., Yun S.C., Kim S.H., Kim Y.S., Woo J.H. Epstein–Barr virus-encoded miR-BART5-5p upregulates PD-L1 through PIAS3/pSTAT3 modulation; worsening clinical outcomes of PD-L1-positive gastric carcinomas. Gastric Cancer. 2020;23:780–795. doi: 10.1007/s10120-020-01059-3. PubMed DOI
Kang B.W., Choi Y.H., Kwon O.K., Lee S.S., Chung H.Y., Yu W., Bae H.I., Seo A.N., Kang H., Lee S.K., et al. High level of viral microRNA-BART20-5p expression is associated with worse survival of patients with Epstein-Barr virus-associated gastric cancer. Oncotarget. 2017;8:14988–14994. doi: 10.18632/oncotarget.14744. PubMed DOI PMC
Pandya D., Mariani M., He S., Andreoli M., Spennato M., Dowell-Martino C., Fiedler P., Ferlini C. Epstein-Barr virus microRNA expression increases aggressiveness of solid malignancies. PLoS ONE. 2015;10:e0136058. doi: 10.1371/journal.pone.0136058. PubMed DOI PMC
Lu Y., Qin Z., Wang J., Zheng X., Lu J., Zhang X., Wei L., Peng Q., Zheng Y., Ou C., et al. Epstein-Barr Virus miR-BART6-3p Inhibits the RIG-I Pathway. J. Innate Immun. 2017;9:574–586. doi: 10.1159/000479749. PubMed DOI
Haneklaus M., Gerlic M., Kurowska-Stolarska M., Rainey A.A., Pich D., McInnes I.B., Hammerschmidt W., O’Neill L.A., Masters S.L. Cutting edge: miR-223 and EBV miR-BART15 regulate the NLRP3 inflammasome and IL-1β production. J. Immunol. 2012;189:3795–3799. doi: 10.4049/jimmunol.1200312. PubMed DOI
Huang W.T., Lin C.W. EBV-encoded miR-BART20-5p and miR-BART8 inhibit the IFN-γ-STAT1 pathway associated with disease progression in nasal NK-cell lymphoma. Am. J. Pathol. 2014;184:1185–1197. doi: 10.1016/j.ajpath.2013.12.024. PubMed DOI
Ungerleider N., Bullard W., Kara M., Wang X., Roberts C., Renne R., Tibbetts S., Flemington E.K. EBV miRNAs are potent effectors of tumor cell transcriptome remodeling in promoting immune escape. PLoS Pathog. 2021;17 doi: 10.1371/journal.ppat.1009217. PubMed DOI PMC
Tagawa T., Albanese M., Bouvet M., Moosmann A., Mautner J., Heissmeyer V., Zielinski C., Lutter D., Hoser J., Hastreiter M., et al. Epstein-Barr viral miRNAs inhibit antiviral CD4+ T cell responses targeting IL-12 and peptide processing. J. Exp. Med. 2016;213:2065–2080. doi: 10.1084/jem.20160248. PubMed DOI PMC
Albanese M., Tagawa T., Bouvet M., Maliqi L., Lutter D., Hoser J., Hastreiter M., Hayes M., Sugden B., Martin L., et al. Epstein-Barr virus microRNAs reduce immune surveillance by virus-specific CD8+ T cells. Proc. Natl. Acad. Sci. USA. 2016;113:E6467–E6475. doi: 10.1073/pnas.1605884113. PubMed DOI PMC
Saito R., Abe H., Kunita A., Yamashita H., Seto Y., Fukayama M. Overexpression and gene amplification of PD-L1 in cancer cells and PD-L1 + immune cells in Epstein-Barr virus-associated gastric cancer: The prognostic implications. Mod. Pathol. 2017;30:427–439. doi: 10.1038/modpathol.2016.202. PubMed DOI
Fang W., Zhang J., Hong S., Zhan J., Chen N., Qin T., Tang Y., Zhang Y., Kang S., Zhou T., et al. EBV-driven LMP1 and IFN-γ upregulate PD-L1 in nasopharyngeal carcinoma: Implications for oncotargeted therapy. Oncotarget. 2014;5:12189–12202. doi: 10.18632/oncotarget.2608. PubMed DOI PMC
Green M.R., Rodig S., Juszczynski P., Ouyang J., Sinha P., O’Donnell E., Neuberg D., Shipp M.A. Constitutive AP-1 activity and EBV infection induce PD-l1 in Hodgkin lymphomas and posttransplant lymphoproliferative disorders: Implications for targeted therapy. Clin. Cancer Res. 2012;18:1611–1618. doi: 10.1158/1078-0432.CCR-11-1942. PubMed DOI PMC
Huang P.Y., Guo S.S., Zhang Y., Lu J.B., Chen Q.Y., Tang L.Q., Zhang L., Liu L.T., Zhang L., Mai H.Q. Tumor CTLA-4 overexpression predicts poor survival in patients with nasopharyngeal carcinoma. Oncotarget. 2016;7:13060–13068. doi: 10.18632/oncotarget.7421. PubMed DOI PMC
Gu A.D., Lu L.X., Xie Y.B., Chen L.Z., Feng Q.S., Kang T., Jia W.H., Zeng Y.X. Clinical values of multiple Epstein-Barr virus (EBV) serological biomarkers detected by xMAP technology. J. Transl. Med. 2009;7:73. doi: 10.1186/1479-5876-7-73. PubMed DOI PMC
Kanakry J.A., Hegde A.M., Durand C.M., Massie A.B., Greer A.E., Ambinder R.F., Valsamakis A. The clinical significance of EBV DNA in the plasma and peripheral blood mononuclear cells of patients with or without EBV diseases. Blood. 2016;127:2007–2017. doi: 10.1182/blood-2015-09-672030. PubMed DOI PMC
Kim K.Y., Le Q.T., Yom S.S., Pinsky B.A., Bratman S.V., Ng R.H., El Mubarak H.S., Chan K.C., Sander M., Conley B.A. Current state of PCR-based Epstein-barr virus DNA testing for nasopharyngeal cancer. J. Natl. Cancer Inst. 2017;109:djx007. doi: 10.1093/jnci/djx007. PubMed DOI PMC
Kondo S., Horikawa T., Takeshita H., Kanegane C., Kasahara Y., Sheen T.S., Sato H., Furukawa M., Yoshizaki T. Diagnostic value of serum EBV-DNA quantification and antibody to viral capsid antigen in nasopharyngeal carcinoma patients. Cancer Sci. 2004;95:508–513. doi: 10.1111/j.1349-7006.2004.tb03241.x. PubMed DOI PMC
Komabayashi Y., Kishibe K., Nagato T., Ueda S., Takahara M., Harabuchi Y. Circulating Epstein-Barr virus–encoded micro-RNAs as potential biomarkers for nasal natural killer/T-cell lymphoma. Hematol. Oncol. 2017;35:655–663. doi: 10.1002/hon.2360. PubMed DOI
Zhang G., Zong J., Lin S., Verhoeven R.J., Tong S., Chen Y., Ji M., Cheng W., Tsao S.W., Lung M., et al. Circulating Epstein-Barr virus microRNAs miR-BART7 and miR-BART13 as biomarkers for nasopharyngeal carcinoma diagnosis and treatment. Int. J. Cancer. 2015;136:E301–E312. doi: 10.1002/ijc.29206. PubMed DOI
Hirai N., Wakisaka N., Kondo S., Aga M., Moriyama-Kita M., Ueno T., Nakanishi Y., Endo K., Sugimoto H., Murono S., et al. Potential interest in circulating miR-BART17-5p as a post-treatment biomarker for prediction of recurrence in Epstein-Barr virus-related nasopharyngeal carcinoma. PLoS ONE. 2016;11:e0163609. doi: 10.1371/journal.pone.0163609. PubMed DOI PMC
Jiang C., Chen J., Xie S., Zhang L., Xiang Y., Lung M., Kam N.W., Kwong D.L., Cao S., Guan X.Y. Evaluation of circulating EBV microRNA BART2-5p in facilitating early detection and screening of nasopharyngeal carcinoma. Int. J. Cancer. 2018;143:3209–3217. doi: 10.1002/ijc.31642. PubMed DOI
Lu T., Guo Q., Lin K., Chen H., Chen Y., Xu Y., Lin C., Su Y., Chen Y., Zheng Y., et al. Circulating Epstein-Barr virus microRNAs BART7-3p and BART13-3p as novel biomarkers in nasopharyngeal carcinoma. Cancer Sci. 2020;111:1711–1723. doi: 10.1111/cas.14381. PubMed DOI PMC
Ramayanti O., Verkuijlen S.A.W.M., Novianti P., Scheepbouwer C., Misovic B., Koppers-Lalic D., van Weering J., Beckers L., Adham M., Martorelli D., et al. Vesicle-bound EBV-BART13-3p miRNA in circulation distinguishes nasopharyngeal from other head and neck cancer and asymptomatic EBV-infections. Int. J. Cancer. 2019;144:2555–2566. doi: 10.1002/ijc.31967. PubMed DOI PMC
Tan L.P., Tan G.W., Sivanesan V.M., Goh S.L., Ng X.J., Lim C.S., Kim W.R., Mohidin T.B.B.M., Mohd Dali N.S., Ong S.H., et al. Systematic comparison of plasma EBV DNA; anti-EBV antibodies and miRNA levels for early detection and prognosis of nasopharyngeal carcinoma. Int. J. Cancer. 2020;146:2336–2347. doi: 10.1002/ijc.32656. PubMed DOI PMC
Zheng X.H., Lu L.X., Cui C., Chen M.Y., Li X.Z., Jia W.H. Epstein-Barr virus mir-bart1-5p detection via nasopharyngeal brush sampling is effective for diagnosing nasopharyngeal carcinoma. Oncotarget. 2016;7:4972–4980. doi: 10.18632/oncotarget.6649. PubMed DOI PMC
Chan J.Y., Gao W., Ho W.K., Wei W.I., Wong T.S. Overexpression of epstein-barr virus-encoded microRNA-BART7 in undifferentiated nasopharyngeal carcinoma. Anticancer Res. 2012;32:3201–3210. PubMed
Choy E.Y., Kok K.H., Tsao S.W., Jin D.Y. Utility of Epstein-Barr virus-encoded small RNA promoters for driving the expression of fusion transcripts harboring short hairpin RNAs. Gene Ther. 2008;15:191–202. doi: 10.1038/sj.gt.3303055. PubMed DOI
Wang X., Xiang Z., Liu Y., Huang C., Pei Y., Wang X., Zhi H., Wong W.H., Wei H., Ng I.O., et al. Exosomes derived from Vδ2-T cells control Epstein-Barr virus-associated tumors and induce T cell antitumor immunity. Sci. Transl. Med. 2020;12 doi: 10.1126/scitranslmed.aaz3426. PubMed DOI
Deng M., Tang H., Zhou Y., Zhou M., Xiong W., Zheng Y., Ye Q., Zeng X., Liao Q., Guo X., et al. Mir-216b suppresses tumor growth and invasion by targeting KRAS in nasopharyngeal carcinoma. J. Cell Sci. 2011;124:2997–3005. doi: 10.1242/jcs.085050. PubMed DOI
Ungerleider N., Concha M., Lin Z., Roberts C., Wang X., Cao S. The Epstein-Barr virus circRNAome. PLoS Pathog. 2019;14:e1007206. doi: 10.1371/journal.ppat.1007206. PubMed DOI PMC
Toptan T., Abere B., Nalesnik M.A., Swerdlow S.H., Ranganathan S., Lee N., Shair K.H., Moore P.S., Chang Y. Circular DNA tumor viruses make circular RNAs. Proc. Natl. Acad. Sci. USA. 2018;115:E8737–E8745. doi: 10.1073/pnas.1811728115. PubMed DOI PMC
Bullard W.L., Flemington E.K., Renne R., Tibbetts S.A. Connivance, complicity, or collusion? The role of noncoding RNAs in promoting gamma herpesvirus tumorigenesis. Trends Cancer. 2018;4:729–740. doi: 10.1016/j.trecan.2018.09.005. PubMed DOI PMC
Qiao Y., Zhao X., Liu J., Yang W. Epstein-Barr virus circRNAome as host miRNA sponge regulates virus infection, cell cycle, and oncogenesis. Bioengineered. 2019;10:593–603. doi: 10.1080/21655979.2019.1679698. PubMed DOI PMC
Avilala J., Becnel D., Abdelghani R. Role of virally encoded circular RNAs in the pathogenicity of human oncogenic viruses. Front. Microbiol. 2021;12:657036. doi: 10.3389/fmicb.2021.657036. PubMed DOI PMC
Gong L.P., Chen J.N., Dong M., Xiao Z.D., Feng Z.Y., Pan Y.H., Zhang Y., Du Y., Zhang J.Y., Bi Y.H., et al. Epstein-Barr virus-derived circular RNA LMP2A induces stemness in EBV-associated gastric cancer. EMBO Rep. 2020;21:e49689. doi: 10.15252/embr.201949689. PubMed DOI PMC
Liu Q., Shuai M., Xia Y. Knockdown of EBV-encoded circRNA circRPMS1 suppresses nasopharyngeal carcinoma cell proliferation and metastasis through sponging multiple miRNAs. Cancer Manag. Res. 2019;11:8023–8031. doi: 10.2147/CMAR.S218967. PubMed DOI PMC
Zhang J., Li X., Hu J. Long noncoding RNAs involvement in Epstein-Barr virus infection and tumorigenesis. Virol. J. 2020;17:51. doi: 10.1186/s12985-020-01308-y. PubMed DOI PMC
Anti-Epstein-Barr Virus Activities of Flavones and Flavonols with Effects on Virus-Related Cancers