Extracellular Vesicles in Epstein-Barr Virus' Life Cycle and Pathogenesis
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
P20 GM121288
NIGMS NIH HHS - United States
U54 GM104940
NIGMS NIH HHS - United States
Faculty research pilot grant
Tulane school of medicine
P20 GM121288
NIH HHS - United States
PubMed
30754656
PubMed Central
PMC6406486
DOI
10.3390/microorganisms7020048
PII: microorganisms7020048
Knihovny.cz E-zdroje
- Klíčová slova
- EBV, EV, Epstein-Barr virus, exosome, extracellular vesicle,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Extracellular vesicles (EVs), including exosomes and microvesicles, are evolutionarily conserved phospholidpid membrane-bound entities secreted from most eukaryotic cell types. They carry bioactive cargos such as protein and nucleic acids derived from their cells of origin. Over the past 10 years, they have been attracting increased attention in many fields of life science, representing a new route for intercellular communication. In this review article, we will discuss the current knowledge of both normal and virally modified EVs in the regulation of Epstein-Barr virus (EBV)'s life cycle and its associated pathogenesis.
Graduate School of Medicine Hokkaido University Sapporo Hokkaido 060 8638 Japan
Tulane University Health Sciences Center and Tulane Cancer Center New Orleans LA 70112 USA
Zobrazit více v PubMed
Colombo M., Raposo G., Thery C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu. Rev. Cell Dev. Biol. 2014;30:255–289. doi: 10.1146/annurev-cellbio-101512-122326. PubMed DOI
Lin Z., Swan K., Zhang X., Cao S., Brett Z., Drury S., Strong M.J., Fewell C., Puetter A., Wang X., et al. Secreted Oral Epithelial Cell Membrane Vesicles Induce Epstein-Barr Virus Reactivation in Latently Infected B Cells. J. Virol. 2016;90:3469–3479. doi: 10.1128/JVI.02830-15. PubMed DOI PMC
Walker J.D., Maier C.L., Pober J.S. Cytomegalovirus-infected human endothelial cells can stimulate allogeneic CD4+ memory T cells by releasing antigenic exosomes. J. Immunol. 2009;182:1548–1559. doi: 10.4049/jimmunol.182.3.1548. PubMed DOI PMC
Escola J.-M., Kleijmeer M.J., Stoorvogel W., Griffith J.M., Yoshie O., Geuze H.J. Selective enrichment of tetraspan proteins on the internal vesicles of multivesicular endosomes and on exosomes secreted by human B-lymphocytes. J. Biol. Chem. 1998;273:20121–20127. doi: 10.1074/jbc.273.32.20121. PubMed DOI
Blanchard N., Lankar D., Faure F., Regnault A., Dumont C., Raposo G., Hivroz C. TCR activation of human T cells induces the production of exosomes bearing the TCR/CD3/zeta complex. J. Immunol. 2002;168:3235–3241. doi: 10.4049/jimmunol.168.7.3235. PubMed DOI
Théry C., Regnault A., Garin J., Wolfers J., Zitvogel L., Ricciardi-Castagnoli P., Raposo G., Amigorena S. Molecular characterization of dendritic cell-derived exosomes. Selective accumulation of the heat shock protein hsc73. J. Cell. Biol. 1999;147:599–610. doi: 10.1083/jcb.147.3.599. PubMed DOI PMC
Comelli L., Rocchiccioli S., Smirni S., Salvetti A., Signore G., Citti L., Trivella M.G., Cecchettini A. Characterization of secreted vesicles from vascular smooth muscle cells. Mol. Biosyst. 2014;10:1146–1152. doi: 10.1039/c3mb70544g. PubMed DOI
Faure J., Lachenal G., Court M., Hirrlinger J., Chatellard-Causse C., Blot B., Grange J., Schoehn G., Goldberg Y., Boyer V., et al. Exosomes are released by cultured cortical neurones. Mol. Cell Neurosci. 2006;31:642–648. doi: 10.1016/j.mcn.2005.12.003. PubMed DOI
Wang G., Dinkins M., He Q., Zhu G., Poirier C., Campbell A., Mayer-Proschel M., Bieberich E. Astrocytes secrete exosomes enriched with proapoptotic ceramide and prostate apoptosis response 4 (PAR-4): Potential mechanism of apoptosis induction in Alzheimer disease (AD) J. Biol. Chem. 2012;287:21384–21395. doi: 10.1074/jbc.M112.340513. PubMed DOI PMC
Kramer-Albers E.M., Bretz N., Tenzer S., Winterstein C., Möbius W., Berger H., Nave K.-A., Schild H., Trotter J. Oligodendrocytes secrete exosomes containing major myelin and stress-protective proteins: Trophic support for axons? Proteomics Clin. Appl. 2007;1:1446–1461. doi: 10.1002/prca.200700522. PubMed DOI
Johnstone R.M., Bianchini A., Teng K. Reticulocyte maturation and exosome release: Transferrin receptor containing exosomes shows multiple plasma membrane functions. Blood. 1989;74:1844–1851. PubMed
Minciacchi V.R., Freeman M.R., Di Vizio D. Extracellular vesicles in cancer: Exosomes, microvesicles and the emerging role of large oncosomes. Semin Cell Dev. Biol. 2015;40:41–51. doi: 10.1016/j.semcdb.2015.02.010. PubMed DOI PMC
Gill S., Catchpole R., Forterre P. Extracellular membrane vesicles (EVs) in the three domains of life and beyond. FEMS Microbiol. Rev. 2018 doi: 10.1093/femsre/fuy042. PubMed DOI PMC
Li M., Zeringer E., Barta T., Schageman J., Cheng A., Vlassov A.V. Analysis of the RNA content of the exosomes derived from blood serum and urine and its potential as biomarkers. Philos Trans. R. Soc. Lond. B Biol. Sci. 2014;369 doi: 10.1098/rstb.2013.0502. PubMed DOI PMC
Lasser C., Alikhani V.S., Ekström K., Eldh M., Paredes P.T., Bossios A., Sjöstrand M., Gabrielsson S., Lötvall J., Valadi H. Human saliva, plasma and breast milk exosomes contain RNA: Uptake by macrophages. J. Transl. Med. 2011;9:9. doi: 10.1186/1479-5876-9-9. PubMed DOI PMC
Madison M.N., Roller R.J., Okeoma C.M. Human semen contains exosomes with potent anti-HIV-1 activity. Retrovirology. 2014;11:102. doi: 10.1186/s12977-014-0102-z. PubMed DOI PMC
Dear J.W., Street J.M., Bailey M.A. Urinary exosomes: A reservoir for biomarker discovery and potential mediators of intrarenal signalling. Proteomics. 2013;13:1572–1580. doi: 10.1002/pmic.201200285. PubMed DOI
Dixon C.L., Sheller-Miller S., Saade G.R., Fortunato S.J., Lai A., Palma C., Guanzon D., Salomon C., Menon R. Amniotic Fluid Exosome Proteomic Profile Exhibits Unique Pathways of Term and Preterm Labor. Endocrinology. 2018;159:2229–2240. doi: 10.1210/en.2018-00073. PubMed DOI PMC
Street J.M., Barran P.E., Mackay C.L., Weidt S., Balmforth C., Walsh T.S., Chalmers R.T.A., Webb D.J., Dear J.W. Identification and proteomic profiling of exosomes in human cerebrospinal fluid. J. Transl. Med. 2012;10:5. doi: 10.1186/1479-5876-10-5. PubMed DOI PMC
Yuan Z., Bedi B., Sadikot R.T. Bronchoalveolar Lavage Exosomes in Lipopolysaccharide-induced Septic Lung Injury. J. Vis. Exp. 2018;135:e57737. doi: 10.3791/57737. PubMed DOI PMC
Peng P., Yan Y., Keng S. Exosomes in the ascites of ovarian cancer patients: Origin and effects on anti-tumor immunity. Oncol. Rep. 2011;25:749–762. PubMed
Cocucci E., Racchetti G., Meldolesi J. Shedding microvesicles: Artefacts no more. Trends Cell Biol. 2009;19:43–51. doi: 10.1016/j.tcb.2008.11.003. PubMed DOI
Yang T., Martin P., Fogarty B., Brown A., Schurman K., Phipps R., Yin V.P., Lockman P., Bai S. Exosome delivered anticancer drugs across the blood-brain barrier for brain cancer therapy in Danio rerio. Pharm Res. 2015;32:2003–2014. doi: 10.1007/s11095-014-1593-y. PubMed DOI PMC
Guo W., Gao Y., Li N., Shao F., Wang C., Wang P., Yang Z., Li R., He J. Exosomes: New players in cancer (Review) Oncol. Rep. 2017;38:665–675. doi: 10.3892/or.2017.5714. PubMed DOI PMC
Young L.S., Yap L.F., Murray P.G. Epstein-Barr virus: More than 50 years old and still providing surprises. Nat. Rev. Cancer. 2016;16:789–802. doi: 10.1038/nrc.2016.92. PubMed DOI
Lin Z., Flemington E.K. Regulation of EBV latency by viral lytic proteins. In: Robertson E., editor. Epstein-Barr virus: Latency and transformation. Caister Academic Press; Wymondham, Norfolk, UK: 2010. pp. 167–192.
Takada K. Cross-linking of cell surface immunoglobulins induces Epstein-Barr virus in Burkitt lymphoma lines. Int. J. Cancer. 1984;33:27–32. doi: 10.1002/ijc.2910330106. PubMed DOI
Takada K., Ono Y. Synchronous and sequential activation of latently infected Epstein-Barr virus genomes. J. Virol. 1989;63:445–449. PubMed PMC
Chasserot-Golaz S., Schuster C., Dietrich J.B., Beck G., Lawrence D.A. Antagonistic action of RU38486 on the activity of transforming growth factor-beta in fibroblasts and lymphoma cells. J. Steroid Biochem. 1988;30:381–385. doi: 10.1016/0022-4731(88)90127-6. PubMed DOI
Hadinoto V., Shapiro M., Sun C.C., Thorley-Lawson D.A. The dynamics of EBV shedding implicate a central role for epithelial cells in amplifying viral output. PLoS Pathog. 2009;5:e1000496. doi: 10.1371/journal.ppat.1000496. PubMed DOI PMC
Hutt-Fletcher L.M. Epstein-Barr virus replicating in epithelial cells. Proc. Natl. Acad. Sci. USA. 2014;111:16242–16243. doi: 10.1073/pnas.1418974111. PubMed DOI PMC
Hutt-Fletcher L.M. The Long and Complicated Relationship between Epstein-Barr Virus and Epithelial Cells. J. Virol. 2017;91 doi: 10.1128/JVI.01677-16. PubMed DOI PMC
Lin Z., Wang X., Fewell C., Cameron J., Yin Q., Flemington E.K. Differential expression of the miR-200 family microRNAs in epithelial and B cells and regulation of Epstein-Barr virus reactivation by the miR-200 family member miR-429. J. Virol. 2010;84:7892–7897. doi: 10.1128/JVI.00379-10. PubMed DOI PMC
Ellis-Connell A.L., Iempridee T., Xu I., Mertz J.E. Cellular microRNAs 200b and 429 regulate the Epstein-Barr virus switch between latency and lytic replication. J. Virol. 2010;84:10329–10343. doi: 10.1128/JVI.00923-10. PubMed DOI PMC
Yu X., Wang Z., Mertz J.E. ZEB1 regulates the latent-lytic switch in infection by Epstein-Barr virus. PLoS Pathog. 2007;3:e194. doi: 10.1371/journal.ppat.0030194. PubMed DOI PMC
Kraus R.J., Perrigoue J.G., Mertz J.E. ZEB negatively regulates the lytic-switch BZLF1 gene promoter of Epstein-Barr virus. J. Virol. 2003;77:199–207. doi: 10.1128/JVI.77.1.199-207.2003. PubMed DOI PMC
Zhang J., Li S., Li L., Li M., Guo C., Yao J., Mi S. Exosome and exosomal microRNA: Trafficking, sorting, and function. Genomics Proteomics Bioinformatics. 2015;13:17–24. doi: 10.1016/j.gpb.2015.02.001. PubMed DOI PMC
Nanbo A., Kawanishi E., Yoshida R., Yoshiyama H. Exosomes derived from Epstein-Barr virus-infected cells are internalized via caveola-dependent endocytosis and promote phenotypic modulation in target cells. J. Virol. 2013;87:10334–10347. doi: 10.1128/JVI.01310-13. PubMed DOI PMC
Nanbo A., Kachi K., Yoshiyama H., Ohba Y. Epstein-Barr virus exploits host endocytic machinery for cell-to-cell viral transmission rather than a virological synapse. J. Gen. Virol. 2016;97:2989–3006. doi: 10.1099/jgv.0.000605. PubMed DOI
Nanbo A., Ohashi M., Yoshiyama H., Ohba Y. The Role of Transforming Growth Factor beta in Cell-to-Cell Contact-Mediated Epstein-Barr Virus Transmission. Front Microbiol. 2018;9:984. doi: 10.3389/fmicb.2018.00984. PubMed DOI PMC
Lin Z., Flemington E.K. miRNAs in the pathogenesis of oncogenic human viruses. Cancer Lett. 2011;305:186–199. doi: 10.1016/j.canlet.2010.08.018. PubMed DOI PMC
Wang M., Yu F., Wu W., Wang Y., Ding H., Qian L. Epstein-Barr virus-encoded microRNAs as regulators in host immune responses. Int. J. Biol. Sci. 2018;14:565–576. doi: 10.7150/ijbs.24562. PubMed DOI PMC
Albanese M., Tagawa T., Bouvet M., Maliqi L., Lutter D., Hoser J., Hastreiter M., Hayes M., Sugden B., Martin L., et al. Epstein-Barr virus microRNAs reduce immune surveillance by virus-specific CD8+ T cells. Proc. Natl. Acad. Sci. USA. 2016;113:E6467–E6475. doi: 10.1073/pnas.1605884113. PubMed DOI PMC
Tagawa T., Albanese M., Bouvet M., Moosmann A., Mautner J., Heissmeyer V., Zielinski C., Lutter D., Hoser J., Hastreiter M., et al. Epstein-Barr viral miRNAs inhibit antiviral CD4+ T cell responses targeting IL-12 and peptide processing. J. Exp. Med. 2016;213:2065–2080. doi: 10.1084/jem.20160248. PubMed DOI PMC
Pegtel D.M., van de Garde M.D., Middeldorp J.M. Viral miRNAs exploiting the endosomal-exosomal pathway for intercellular cross-talk and immune evasion. Biochim. Biophys. Acta. 2011;1809:715–721. doi: 10.1016/j.bbagrm.2011.08.002. PubMed DOI
Gallo A., Vella S., Miele M., Timoneri F., Bella M.D., Bosi S., Sciveres M., Conaldi P.G. Global profiling of viral and cellular non-coding RNAs in Epstein-Barr virus-induced lymphoblastoid cell lines and released exosome cargos. Cancer Lett. 2017;388:334–343. doi: 10.1016/j.canlet.2016.12.003. PubMed DOI
Haneklaus M., Gerlic M., Kurowska-Stolarska M., Rainey A.A., Pich D., McInnes I.B., Hammerschmidt W., O’Neill L.A.J., Masters S.L. Cutting edge: miR-223 and EBV miR-BART15 regulate the NLRP3 inflammasome and IL-1beta production. J. Immunol. 2012;189:3795–3799. doi: 10.4049/jimmunol.1200312. PubMed DOI
Nanbo A., Katano H., Kataoka M., Hoshina S., Sekizuka T., Kuroda M., Ohba Y. Infection of Epstein(-)Barr Virus in Type III Latency Modulates Biogenesis of Exosomes and the Expression Profile of Exosomal miRNAs in the Burkitt Lymphoma Mutu Cell Lines. Cancers. 2018;10 doi: 10.3390/cancers10070237. PubMed DOI PMC
Higuchi H., Yamakawa N., Imadome K.-I., Yahata T., Kotaki R., Ogata J., Kakizaki M., Fujita K., Lu J., Yokoyama K., et al. Role of exosomes as a proinflammatory mediator in the development of EBV-associated lymphoma. Blood. 2018;131:2552–2567. doi: 10.1182/blood-2017-07-794529. PubMed DOI
Meckes D.G., Shair K.H.Y., Marquitz A.R., Kung C.P., Edwards R.H., Raab-Traub N. Human tumor virus utilizes exosomes for intercellular communication. Proc. Natl. Acad. Sci. USA. 2010;107:20370–20375. doi: 10.1073/pnas.1014194107. PubMed DOI PMC
Ramayanti O., Verkuijlen S.A.W.M., Novianti P., Scheepbouwer C., Misovic B., Koppers-Lalic D., Weering J.V., Beckers L., Adham M., Martorelli D., et al. Vesicle-bound EBV-BART13-3p miRNA in circulation distinguishes nasopharyngeal from other head and neck cancer and asymptomatic EBV-infections. Int. J. Cancer. 2018 doi: 10.1002/ijc.31967. PubMed DOI PMC
Elgui de Oliveira D., Muller-Coan B.G., Pagano J.S. Viral Carcinogenesis Beyond Malignant Transformation: EBV in the Progression of Human Cancers. Trends Microbiol. 2016;24:649–664. doi: 10.1016/j.tim.2016.03.008. PubMed DOI PMC
Wang L.W., Jiang S., Gewurz B.E. Epstein-Barr Virus LMP1-Mediated Oncogenicity. J. Virol. 2017;91 doi: 10.1128/JVI.01718-16. PubMed DOI PMC
Kieser A., Sterz K.R. The Latent Membrane Protein 1 (LMP1), in Epstein Barr Virus Volume 2. In: Münz C., editor. Current Topics in Microbiology and Immunology. Springer; Cham, Switzerland: 2015. pp. 119–149. PubMed
Dukers D.F., Meij P., Vervoort M.B.H.J., Vos W., Scheper R.J., Meijer C.J.L.M., Bloemena E., Middeldorp J.M. Direct immunosuppressive effects of EBV-encoded latent membrane protein 1. J. Immunol. 2000;165:663–670. doi: 10.4049/jimmunol.165.2.663. PubMed DOI
Vazirabadi G., Geiger T.R., Coffin W.F., 3rd, Martin J.M. Epstein-Barr virus latent membrane protein-1 (LMP-1) and lytic LMP-1 localization in plasma membrane-derived extracellular vesicles and intracellular virions. J. Gen. Virol. 2003;84:1997–2008. doi: 10.1099/vir.0.19156-0. PubMed DOI
Houali K., Wang X., Shimizu Y., Djennaoui D., Nicholls J., Fiorini S., Bouguermouh A., Ooka T. A new diagnostic marker for secreted Epstein-Barr virus encoded LMP1 and BARF1 oncoproteins in the serum and saliva of patients with nasopharyngeal carcinoma. Clin. Cancer Res. 2007;13:4993–5000. doi: 10.1158/1078-0432.CCR-06-2945. PubMed DOI
Ceccarelli S., Visco V., Raffa S., Wakisaka N., Pagano J.S., Torrisi M.R. Epstein-Barr virus latent membrane protein 1 promotes concentration in multivesicular bodies of fibroblast growth factor 2 and its release through exosomes. Int. J. Cancer. 2007;121:1494–1506. doi: 10.1002/ijc.22844. PubMed DOI
Aga M., Bentz G.L., Raffa S., Torrisi M.R., Kondo S., Wakisaka N., Yoshizaki T., Pagano J.S., Shackelford J. Exosomal HIF1alpha supports invasive potential of nasopharyngeal carcinoma-associated LMP1-positive exosomes. Oncogene. 2014;33:4613–4622. doi: 10.1038/onc.2014.66. PubMed DOI PMC
Kobayashi E., Aga M., Kondo S., Whitehurst C., Yoshizaki T., Pagano J.S., Shackelford J. C-Terminal Farnesylation of UCH-L1 Plays a Role in Transport. of Epstein-Barr Virus Primary Oncoprotein LMP1 to Exosomes. mSphere. 2018;3 doi: 10.1128/mSphere.00030-18. PubMed DOI PMC
Hurwitz S.N., Nkosi D., Conlon M.M., York S.B., Liu X., Tremblay D.C., Meckes D.G. CD63 Regulates Epstein-Barr Virus LMP1 Exosomal Packaging, Enhancement of Vesicle Production, and Noncanonical NF-kappaB Signaling. J. Virol. 2017;91 doi: 10.1128/JVI.02251-16. PubMed DOI PMC
Hurwitz S.N., Cheerathodi M.R., Nkosi D., York S.B., Meckes D.G. Tetraspanin CD63 Bridges Autophagic and Endosomal Processes To Regulate Exosomal Secretion and Intracellular Signaling of Epstein-Barr Virus LMP1. J. Virol. 2018;92 doi: 10.1128/JVI.01969-17. PubMed DOI PMC
Ikeda M., Longnecker R. Cholesterol is critical for Epstein-Barr virus latent membrane protein 2A trafficking and protein stability. Virology. 2007;360:461–468. doi: 10.1016/j.virol.2006.10.046. PubMed DOI PMC
Arrand J.R., Rymo L. Characterization of the major Epstein-Barr virus-specific RNA in Burkitt lymphoma-derived cells. J. Virol. 1982;41:376–389. PubMed PMC
Clarke P.A., Schwemmle M., Schickinger J., Hilse K., Clemens M.J. Binding of Epstein-Barr virus small RNA EBER-1 to the double-stranded RNA-activated protein kinase DAI. Nucleic Acids Res. 1991;19:243–248. doi: 10.1093/nar/19.2.243. PubMed DOI PMC
Lerner M.R., Andrews N.C., Miller G., Steitz J.A. Two small RNAs encoded by Epstein-Barr virus and complexed with protein are precipitated by antibodies from patients with systemic lupus erythematosus. Proc. Natl. Acad. Sci. USA. 1981;78:805–809. doi: 10.1073/pnas.78.2.805. PubMed DOI PMC
Samanta M., Iwakiri D., Kanda T., Imaizumi T., Takada K. EB virus-encoded RNAs are recognized by RIG-I and activate signaling to induce type I IFN. EMBO J. 2006;25:4207–4214. doi: 10.1038/sj.emboj.7601314. PubMed DOI PMC
Nanbo A., Inoue K., Adachi-Takasawa K., Takada K. Epstein-Barr virus RNA confers resistance to interferon-alpha-induced apoptosis in Burkitt’s lymphoma. EMBO J. 2002;21:954–965. doi: 10.1093/emboj/21.5.954. PubMed DOI PMC
Gregorovic G., Bosshard R., Karstegl C.E., White R.E., Pattle S., Chiang A.K.S., Dittrich-Breiholz O., Kracht M., Russ R., Farrell P.J. Cellular gene expression that correlates with EBER expression in Epstein-Barr Virus-infected lymphoblastoid cell lines. J. Virol. 2011;85:3535–3545. doi: 10.1128/JVI.02086-10. PubMed DOI PMC
Ahmed W., Philip P.S., Tariq S., Khan G. Epstein-Barr virus-encoded small RNAs (EBERs) are present in fractions related to exosomes released by EBV-transformed cells. PLoS ONE. 2014;9:e99163. doi: 10.1371/journal.pone.0099163. PubMed DOI PMC
Aromseree S., Middeldorp J.M., Pientong C., Eijndhoven M.V., Ramayanti O., Lougheed S.M., Pegtel D.M., Steenbergen R.D.M., Ekalaksananan T. High Levels of EBV-Encoded RNA 1 (EBER1) Trigger Interferon and Inflammation-Related Genes in Keratinocytes Expressing HPV16 E6/E7. PLoS ONE. 2017;12:e0169290. doi: 10.1371/journal.pone.0169290. PubMed DOI PMC
Vallhov H., Gutzeit C., Johansson S.M., Nagy N., Paul M., Li Q., Friend S., George T.C., Klein E., Scheynius A., et al. Exosomes containing glycoprotein 350 released by EBV-transformed B cells selectively target B cells through CD21 and block EBV infection in vitro. J. Immunol. 2011;186:73–82. doi: 10.4049/jimmunol.1001145. PubMed DOI
Canitano A., Venturi G., Borghi M., Ammendolia M.G., Fais S. Exosomes released in vitro from Epstein-Barr virus (EBV)-infected cells contain EBV-encoded latent phase mRNAs. Cancer Lett. 2013;337:193–199. doi: 10.1016/j.canlet.2013.05.012. PubMed DOI
Meckes D.G., Gunawardena H.P., Dekroon R.M., Heaton P.R., Edwards R.H., Ozgur S., Griffith J.D., Damania B., Raab-Traub N. Modulation of B-cell exosome proteins by gamma herpesvirus infection. Proc. Natl. Acad. Sci. USA. 2013;110:E2925–E2933. doi: 10.1073/pnas.1303906110. PubMed DOI PMC
Lai C.P., Mardini O., Ericsson M., Prabhakar S., Maguire C.A., Chen J.W., Tannous B.A., Breakefield X.O. Dynamic biodistribution of extracellular vesicles in vivo using a multimodal imaging reporter. ACS Nano. 2014;8:483–494. doi: 10.1021/nn404945r. PubMed DOI PMC
Lai C.P., Tannous B.A., Breakefield X.O. Noninvasive in vivo monitoring of extracellular vesicles. Methods Mol. Biol. 2014;1098:249–258. PubMed PMC
Lai C.P., Kim E.Y., Badr C.E., Weissleder R., Mempel T.R., Tannous B.A., Breakefield X.O. Visualization and tracking of tumour extracellular vesicle delivery and RNA translation using multiplexed reporters. Nat. Commun. 2015;6:7029. doi: 10.1038/ncomms8029. PubMed DOI PMC
Witwer K.W., Buzás E.I., Bemis L.T., Bora A., Lässer C., Lötvall J., Nolte-‘t Hoen E.N., Piper M.G., Sivaraman S., Skog J., et al. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J. Extracell Vesicles. 2013;2 doi: 10.3402/jev.v2i0.20360. PubMed DOI PMC
Palma J., Yaddanapudi S.C., Pigati L., Havens M.A., Jeong S., Weiner G.A., Weimer K.M.E., Stern B., Hastings M.L., Duelli D.M. MicroRNAs are exported from malignant cells in customized particles. Nucleic Acids Res. 2012;40:9125–9138. doi: 10.1093/nar/gks656. PubMed DOI PMC
Vickers K.C., Palmisano B.T., Shoucri B.M., Shamburek R.D., Remaley A.T. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat. Cell Biol. 2011;13:423–433. doi: 10.1038/ncb2210. PubMed DOI PMC
Chen X., Liang H., Zhang J., Zen K., Zhang C.-Y. Secreted microRNAs: A new form of intercellular communication. Trends Cell Biol. 2012;22:125–132. doi: 10.1016/j.tcb.2011.12.001. PubMed DOI
Lotvall J., Hill A.F., Hochberg F., Buzás E.I., Vizio D.D., Gardiner C., Gho Y.S., Kurochkin I.V., Mathivanan S., Quesenberry P., et al. Minimal experimental requirements for definition of extracellular vesicles and their functions: A position statement from the International Society for Extracellular Vesicles. J. Extracell Vesicles. 2014;3:26913. doi: 10.3402/jev.v3.26913. PubMed DOI PMC
Kowal J., Arras G., Colombo M., Jouve M., Morath J.P., Primdal-Bengtson B., Dingli F., Loew D., Tkach M., Théry C. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc. Natl. Acad. Sci. USA. 2016;113:E968–E977. doi: 10.1073/pnas.1521230113. PubMed DOI PMC