Quality control and quantification in IG/TR next-generation sequencing marker identification: protocols and bioinformatic functionalities by EuroClonality-NGS
Language English Country England, Great Britain Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
31227779
PubMed Central
PMC6756032
DOI
10.1038/s41375-019-0499-4
PII: 10.1038/s41375-019-0499-4
Knihovny.cz E-resources
- MeSH
- Genetic Markers genetics MeSH
- Gene Rearrangement genetics MeSH
- Immunoglobulins genetics MeSH
- Humans MeSH
- Receptors, Antigen, T-Cell genetics MeSH
- Reproducibility of Results MeSH
- Neoplasm, Residual genetics MeSH
- Quality Control MeSH
- Computational Biology methods MeSH
- High-Throughput Nucleotide Sequencing methods MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Genetic Markers MeSH
- Immunoglobulins MeSH
- Receptors, Antigen, T-Cell MeSH
Assessment of clonality, marker identification and measurement of minimal residual disease (MRD) of immunoglobulin (IG) and T cell receptor (TR) gene rearrangements in lymphoid neoplasms using next-generation sequencing (NGS) is currently under intensive development for use in clinical diagnostics. So far, however, there is a lack of suitable quality control (QC) options with regard to standardisation and quality metrics to ensure robust clinical application of such approaches. The EuroClonality-NGS Working Group has therefore established two types of QCs to accompany the NGS-based IG/TR assays. First, a central polytarget QC (cPT-QC) is used to monitor the primer performance of each of the EuroClonality multiplex NGS assays; second, a standardised human cell line-based DNA control is spiked into each patient DNA sample to work as a central in-tube QC and calibrator for MRD quantification (cIT-QC). Having integrated those two reference standards in the ARResT/Interrogate bioinformatic platform, EuroClonality-NGS provides a complete protocol for standardised IG/TR gene rearrangement analysis by NGS with high reproducibility, accuracy and precision for valid marker identification and quantification in diagnostics of lymphoid malignancies.
Bristol Genetics Laboratory Southmead Hospital Bristol UK
Central European Institute of Technology Masaryk University Brno Czech Republic
Centre for Cancer Research and Cell Biology Queen's University Belfast Belfast UK
Centro Ricerca Tettamanti University of Milano Bicocca Monza Italy
Department of Hematology APHP Necker Enfants Malades and Paris Descartes University Paris France
Department of Hematology Hopital Pitié Salpêtrière Paris France
Department of Hematology University Hospital Schleswig Holstein Kiel Germany
Department of Paediatric Haematology Great Ormond Street Hospital London UK
Department of Pathology Radboud University Medical Center Nijmegen The Netherlands
Department of Pediatric Haematology Bristol Royal Hospital for Children Bristol UK
IBMCC CSIC Hospital Universitario de Salamanca IBSAL Salamanca Spain
Insititute of Pathology Charité Universitätsmedizin Berlin Berlin Germany
Institute of Applied Biosciences Centre for Research and Technology Hellas Thessaloniki Greece
See more in PubMed
Pott C. Minimal residual disease detection in mantle cell lymphoma: technical aspects and clinical relevance. Semin Hematol. 2011;48:172–84. doi: 10.1053/j.seminhematol.2011.05.002. PubMed DOI
Ferrero S, Drandi D, Mantoan B, Ghione P, Omedè P, Ladetto M. Minimal residual disease detection in lymphoma and multiple myeloma: Impact on therapeutic paradigms. Hematol Oncol. 2011;29:167–76. doi: 10.1002/hon.989. PubMed DOI
Brüggemann M, Gökbuget N, Kneba M. Acute lymphoblastic leukemia: monitoring minimal residual disease as a therapeutic principle. Semin Oncol. 2012;39:47–57. doi: 10.1053/j.seminoncol.2011.11.009. PubMed DOI
Brüggemann M, Raff T, Kneba M. Has MRD monitoring superseded other prognostic factors in adult ALL? Blood. 2012;120:4470–81. doi: 10.1182/blood-2012-06-379040. PubMed DOI
Van Dongen JJM, Seriu T, Panzer-Grümayer ER, Biondi A, Pongers-Willemse MJ, Corral L, et al. Prognostic value of minimal residual disease in acute lymphoblastic leukaemia in childhood. Lancet. 1998;352:1731–8. doi: 10.1016/S0140-6736(98)04058-6. PubMed DOI
Brüggemann Monika, Kotrova Michaela. Minimal residual disease in adult ALL: technical aspects and implications for correct clinical interpretation. Hematology. 2017;2017(1):13–21. doi: 10.1182/asheducation-2017.1.13. PubMed DOI PMC
Kotrova M, Van Der Velden VHJ, Van Dongen JJM, Formankova R, Sedlacek P, Brüggemann M, et al. Next-generation sequencing indicates false-positive MRD results and better predicts prognosis after SCT in patients with childhood ALL. Bone Marrow Transplant. 2017;52:962–8. doi: 10.1038/bmt.2017.16. PubMed DOI
Logan AC, Vashi N, Faham M, Carlton V, Kong K, Buño I, et al. Immunoglobulin and t cell receptor gene high-throughput sequencing quantifies minimal residual disease in acute lymphoblastic leukemia and predicts post-transplantation relapse and survival. Biol Blood Marrow Transplant. 2014;20:1307–13. doi: 10.1016/j.bbmt.2014.04.018. PubMed DOI PMC
Faham M, Zheng J, Moorhead M, Carlton VEH, Stow P, Coustan-Smith E, et al. Deep-sequencing approach for minimal residual disease detection in acute lymphoblastic leukemia. Blood. 2012;120:5173–80. doi: 10.1182/blood-2012-07-444042. PubMed DOI PMC
Logan AC, Zhang B, Narasimhan B, Carlton V, Zheng J, Moorhead M, et al. Minimal residual disease quantification using consensus primers and high-throughput IGH sequencing predicts post-transplant relapse in chronic lymphocytic leukemia. Leukemia. 2013;27:1659–65. doi: 10.1038/leu.2013.52. PubMed DOI PMC
Logan AC, Gao H, Wang C, Sahaf B, Jones CD, Marshall EL, et al. High-throughput VDJ sequencing for quantification of minimal residual disease in chronic lymphocytic leukemia and immune reconstitution assessment. Proc Natl Acad Sci USA. 2011;108:21194–9. doi: 10.1073/pnas.1118357109. PubMed DOI PMC
Ladetto M, Brüggemann M, Monitillo L, Ferrero S, Pepin F, Drandi D, et al. Next-generation sequencing and real-time quantitative PCR for minimal residual disease detection in B-cell disorders. Leukemia. 2014;28:1299–307. doi: 10.1038/leu.2013.375. PubMed DOI
Wren D, Walker BA, Brüggemann M, Catherwood MA, Pott C, Stamatopoulos K, et al. Comprehensive translocation and clonality detection in lymphoproliferative disorders by next-generation sequencing. Haematologica. 2017;102:e57–e60. doi: 10.3324/haematol.2016.155424. PubMed DOI PMC
Hardwick SA, Deveson IW, Mercer TR. Reference standards for next-generation sequencing. Nat Rev Genet. 2017;18:473–84. doi: 10.1038/nrg.2017.44. PubMed DOI
Gargis AS, Kalman L, Lubin IM. Assuring the quality of next-generation sequencing in clinical microbiology and public health laboratories. J Clin Microbiol. 2016;54:2857–65. doi: 10.1128/JCM.00949-16. PubMed DOI PMC
Endrullat C, Glökler J, Franke P, Frohme M. Standardization and quality management in next-generation sequencing. Appl Transl Genom. 2016;10:2–9. doi: 10.1016/j.atg.2016.06.001. PubMed DOI PMC
Kotrova Michaela, Trka Jan, Kneba Michael, Brüggemann Monika. Is Next-Generation Sequencing the way to go for Residual Disease Monitoring in Acute Lymphoblastic Leukemia? Molecular Diagnosis & Therapy. 2017;21(5):481–492. doi: 10.1007/s40291-017-0277-9. PubMed DOI
Kurtz DM, Green MR, Bratman SV, Scherer F, Liu CL, Kunder CA, et al. Noninvasive monitoring of diffuse large B-cell lymphoma by immunoglobulin high-throughput sequencing. Blood. 2015;125:3679–87. doi: 10.1182/blood-2015-03-635169. PubMed DOI PMC
Pulsipher Ma, Carlson C, Langholz B, Wall Da, Schultz KR, Bunin N, et al. IgH-V (D) J NGS-MRD measurement pre- and early post-allotransplant de fi nes very low- and very high-risk ALL patients. Blood. 2015;125:3501–9. doi: 10.1182/blood-2014-12-615757. PubMed DOI PMC
Langerak Anton W., Brüggemann Monika, Davi Frédéric, Darzentas Nikos, van Dongen Jacques J. M., Gonzalez David, Cazzaniga Gianni, Giudicelli Véronique, Lefranc Marie-Paule, Giraud Mathieu, Macintyre Elizabeth A., Hummel Michael, Pott Christiane, Groenen Patricia J. T. A., Stamatopoulos Kostas. High-Throughput Immunogenetics for Clinical and Research Applications in Immunohematology: Potential and Challenges. The Journal of Immunology. 2017;198(10):3765–3774. doi: 10.4049/jimmunol.1602050. PubMed DOI
Brüggemann M, Kotrova M, Knecht H, Bartram J, Boudjoghra M, Bystry, V et al. Next-generation sequencing of immunoglobulin and T-cell receptor gene rearrangements for MRD marker identification in acute lymphoblastic leukemia: a validation study by EuroClonality-NGS. Leukemia. 2019. In press. PubMed PMC
Scheijen B, Meijers RW, Rijntjes J, van der Klift MY, Möbs M, Steinhilber J et al. Next-generation sequencing of immunoglobulin gene rearrangements for clonality assessment: a technical feasibility study by EuroClonality-NGS. Leukemia. 2019. In press. PubMed PMC
Bystry V, Reigl T, Krejci A, Demko M, Hanakova B, Grioni A, et al. ARResT/Interrogate: an interactive immunoprofiler for IG/TR NGS data. Bioinformatics. 2017;33:435–7. PubMed
van Dongen JJM, Langerak AW, Brüggemann M, Evans PAS, Hummel M, Lavender FL, et al. Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: Report of the BIOMED-2 concerted action BMH4-CT98-3936. Leukemia. 2003;17:2257–317. doi: 10.1038/sj.leu.2403202. PubMed DOI
Langerak a W, Szczepański T, Van Der Burg M, ILM Wolvers-Tettero, JJM VanDongen. Heteroduplex PCR analysis of rearranged T cell receptor genes for clonality assessment in suspect T cell proliferations. Leukemia. 1997;11:2192–9. doi: 10.1038/sj.leu.2400887. PubMed DOI
Grupp SA, Kalos M, Barrett D, Aplenc R, Porter DL, Rheingold SR, et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med. 2013;368:1509–18. doi: 10.1056/NEJMoa1215134. PubMed DOI PMC
Salson M, Giraud M, Caillault A, Grardel N, Duployez N, Ferret Y, et al. High-throughput sequencing in acute lymphoblastic leukemia: follow-up of minimal residual disease and emergence of new clones. Leuk Res. 2017;53:1–7. doi: 10.1016/j.leukres.2016.11.009. PubMed DOI
Takamatsu Hiroyuki, Wee Rachel K., Zaimoku Yoshitaka, Murata Ryoichi, Zheng Jianbiao, Moorhead Martin, Carlton Victoria E. H., Kong Katherine A., Takezako Naoki, Ito Shigeki, Miyamoto Toshihiro, Yokoyama Kenji, Matsue Kosei, Sato Tsutomu, Kurokawa Toshiro, Yagi Hideo, Terasaki Yasushi, Ohata Kinya, Matsumoto Morio, Yoshida Takashi, Faham Malek, Nakao Shinji. A comparison of minimal residual disease detection in autografts among ASO-qPCR, droplet digital PCR, and next-generation sequencing in patients with multiple myeloma who underwent autologous stem cell transplantation. British Journal of Haematology. 2017;183(4):664–668. doi: 10.1111/bjh.15002. PubMed DOI
Wood B, Wu D, Crossley B, Dai Y, Williamson D, Gawad C, et al. Measurable residual disease detection by high-throughput sequencing improves risk stratification for pediatric B-ALL. Blood. 2018;131:1350–9. doi: 10.1182/blood-2017-09-806521. PubMed DOI PMC
Quality Control for IG /TR Marker Identification and MRD Analysis