• This record comes from PubMed

Quality control and quantification in IG/TR next-generation sequencing marker identification: protocols and bioinformatic functionalities by EuroClonality-NGS

. 2019 Sep ; 33 (9) : 2254-2265. [epub] 20190621

Language English Country England, Great Britain Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Links

PubMed 31227779
PubMed Central PMC6756032
DOI 10.1038/s41375-019-0499-4
PII: 10.1038/s41375-019-0499-4
Knihovny.cz E-resources

Assessment of clonality, marker identification and measurement of minimal residual disease (MRD) of immunoglobulin (IG) and T cell receptor (TR) gene rearrangements in lymphoid neoplasms using next-generation sequencing (NGS) is currently under intensive development for use in clinical diagnostics. So far, however, there is a lack of suitable quality control (QC) options with regard to standardisation and quality metrics to ensure robust clinical application of such approaches. The EuroClonality-NGS Working Group has therefore established two types of QCs to accompany the NGS-based IG/TR assays. First, a central polytarget QC (cPT-QC) is used to monitor the primer performance of each of the EuroClonality multiplex NGS assays; second, a standardised human cell line-based DNA control is spiked into each patient DNA sample to work as a central in-tube QC and calibrator for MRD quantification (cIT-QC). Having integrated those two reference standards in the ARResT/Interrogate bioinformatic platform, EuroClonality-NGS provides a complete protocol for standardised IG/TR gene rearrangement analysis by NGS with high reproducibility, accuracy and precision for valid marker identification and quantification in diagnostics of lymphoid malignancies.

Bristol Genetics Laboratory Southmead Hospital Bristol UK

Central European Institute of Technology Masaryk University Brno Czech Republic

Centre for Cancer Research and Cell Biology Queen's University Belfast Belfast UK

Centro Ricerca Tettamanti University of Milano Bicocca Monza Italy

CLIP Childhood Leukaemia Investigation Prague Department of Paediatric Haematology and Oncology 2nd Faculty of Medicine Charles University University Hospital Motol Prague Czech Republic

Department of Hematology APHP Necker Enfants Malades and Paris Descartes University Paris France

Department of Hematology Hopital Pitié Salpêtrière Paris France

Department of Hematology University Hospital Schleswig Holstein Kiel Germany

Department of Immunohematology and Blood Transfusion Leiden University Medical Center Leiden The Netherlands

Department of Immunology Laboratory Medical Immunology Erasmus MC University Medical Center Rotterdam The Netherlands

Department of Internal Medicine Hematology and Oncology University Hospital Brno and Faculty of Medicine Masaryk University Brno Czech Republic

Department of Paediatric Haematology Great Ormond Street Hospital London UK

Department of Pathology Radboud University Medical Center Nijmegen The Netherlands

Department of Pediatric Haematology Bristol Royal Hospital for Children Bristol UK

IBMCC CSIC Hospital Universitario de Salamanca IBSAL Salamanca Spain

Insititute of Pathology Charité Universitätsmedizin Berlin Berlin Germany

Institute of Applied Biosciences Centre for Research and Technology Hellas Thessaloniki Greece

See more in PubMed

Pott C. Minimal residual disease detection in mantle cell lymphoma: technical aspects and clinical relevance. Semin Hematol. 2011;48:172–84. doi: 10.1053/j.seminhematol.2011.05.002. PubMed DOI

Ferrero S, Drandi D, Mantoan B, Ghione P, Omedè P, Ladetto M. Minimal residual disease detection in lymphoma and multiple myeloma: Impact on therapeutic paradigms. Hematol Oncol. 2011;29:167–76. doi: 10.1002/hon.989. PubMed DOI

Brüggemann M, Gökbuget N, Kneba M. Acute lymphoblastic leukemia: monitoring minimal residual disease as a therapeutic principle. Semin Oncol. 2012;39:47–57. doi: 10.1053/j.seminoncol.2011.11.009. PubMed DOI

Brüggemann M, Raff T, Kneba M. Has MRD monitoring superseded other prognostic factors in adult ALL? Blood. 2012;120:4470–81. doi: 10.1182/blood-2012-06-379040. PubMed DOI

Van Dongen JJM, Seriu T, Panzer-Grümayer ER, Biondi A, Pongers-Willemse MJ, Corral L, et al. Prognostic value of minimal residual disease in acute lymphoblastic leukaemia in childhood. Lancet. 1998;352:1731–8. doi: 10.1016/S0140-6736(98)04058-6. PubMed DOI

Brüggemann Monika, Kotrova Michaela. Minimal residual disease in adult ALL: technical aspects and implications for correct clinical interpretation. Hematology. 2017;2017(1):13–21. doi: 10.1182/asheducation-2017.1.13. PubMed DOI PMC

Kotrova M, Van Der Velden VHJ, Van Dongen JJM, Formankova R, Sedlacek P, Brüggemann M, et al. Next-generation sequencing indicates false-positive MRD results and better predicts prognosis after SCT in patients with childhood ALL. Bone Marrow Transplant. 2017;52:962–8. doi: 10.1038/bmt.2017.16. PubMed DOI

Logan AC, Vashi N, Faham M, Carlton V, Kong K, Buño I, et al. Immunoglobulin and t cell receptor gene high-throughput sequencing quantifies minimal residual disease in acute lymphoblastic leukemia and predicts post-transplantation relapse and survival. Biol Blood Marrow Transplant. 2014;20:1307–13. doi: 10.1016/j.bbmt.2014.04.018. PubMed DOI PMC

Faham M, Zheng J, Moorhead M, Carlton VEH, Stow P, Coustan-Smith E, et al. Deep-sequencing approach for minimal residual disease detection in acute lymphoblastic leukemia. Blood. 2012;120:5173–80. doi: 10.1182/blood-2012-07-444042. PubMed DOI PMC

Logan AC, Zhang B, Narasimhan B, Carlton V, Zheng J, Moorhead M, et al. Minimal residual disease quantification using consensus primers and high-throughput IGH sequencing predicts post-transplant relapse in chronic lymphocytic leukemia. Leukemia. 2013;27:1659–65. doi: 10.1038/leu.2013.52. PubMed DOI PMC

Logan AC, Gao H, Wang C, Sahaf B, Jones CD, Marshall EL, et al. High-throughput VDJ sequencing for quantification of minimal residual disease in chronic lymphocytic leukemia and immune reconstitution assessment. Proc Natl Acad Sci USA. 2011;108:21194–9. doi: 10.1073/pnas.1118357109. PubMed DOI PMC

Ladetto M, Brüggemann M, Monitillo L, Ferrero S, Pepin F, Drandi D, et al. Next-generation sequencing and real-time quantitative PCR for minimal residual disease detection in B-cell disorders. Leukemia. 2014;28:1299–307. doi: 10.1038/leu.2013.375. PubMed DOI

Wren D, Walker BA, Brüggemann M, Catherwood MA, Pott C, Stamatopoulos K, et al. Comprehensive translocation and clonality detection in lymphoproliferative disorders by next-generation sequencing. Haematologica. 2017;102:e57–e60. doi: 10.3324/haematol.2016.155424. PubMed DOI PMC

Hardwick SA, Deveson IW, Mercer TR. Reference standards for next-generation sequencing. Nat Rev Genet. 2017;18:473–84. doi: 10.1038/nrg.2017.44. PubMed DOI

Gargis AS, Kalman L, Lubin IM. Assuring the quality of next-generation sequencing in clinical microbiology and public health laboratories. J Clin Microbiol. 2016;54:2857–65. doi: 10.1128/JCM.00949-16. PubMed DOI PMC

Endrullat C, Glökler J, Franke P, Frohme M. Standardization and quality management in next-generation sequencing. Appl Transl Genom. 2016;10:2–9. doi: 10.1016/j.atg.2016.06.001. PubMed DOI PMC

Kotrova Michaela, Trka Jan, Kneba Michael, Brüggemann Monika. Is Next-Generation Sequencing the way to go for Residual Disease Monitoring in Acute Lymphoblastic Leukemia? Molecular Diagnosis & Therapy. 2017;21(5):481–492. doi: 10.1007/s40291-017-0277-9. PubMed DOI

Kurtz DM, Green MR, Bratman SV, Scherer F, Liu CL, Kunder CA, et al. Noninvasive monitoring of diffuse large B-cell lymphoma by immunoglobulin high-throughput sequencing. Blood. 2015;125:3679–87. doi: 10.1182/blood-2015-03-635169. PubMed DOI PMC

Pulsipher Ma, Carlson C, Langholz B, Wall Da, Schultz KR, Bunin N, et al. IgH-V (D) J NGS-MRD measurement pre- and early post-allotransplant de fi nes very low- and very high-risk ALL patients. Blood. 2015;125:3501–9. doi: 10.1182/blood-2014-12-615757. PubMed DOI PMC

Langerak Anton W., Brüggemann Monika, Davi Frédéric, Darzentas Nikos, van Dongen Jacques J. M., Gonzalez David, Cazzaniga Gianni, Giudicelli Véronique, Lefranc Marie-Paule, Giraud Mathieu, Macintyre Elizabeth A., Hummel Michael, Pott Christiane, Groenen Patricia J. T. A., Stamatopoulos Kostas. High-Throughput Immunogenetics for Clinical and Research Applications in Immunohematology: Potential and Challenges. The Journal of Immunology. 2017;198(10):3765–3774. doi: 10.4049/jimmunol.1602050. PubMed DOI

Brüggemann M, Kotrova M, Knecht H, Bartram J, Boudjoghra M, Bystry, V et al. Next-generation sequencing of immunoglobulin and T-cell receptor gene rearrangements for MRD marker identification in acute lymphoblastic leukemia: a validation study by EuroClonality-NGS. Leukemia. 2019. In press. PubMed PMC

Scheijen B, Meijers RW, Rijntjes J, van der Klift MY, Möbs M, Steinhilber J et al. Next-generation sequencing of immunoglobulin gene rearrangements for clonality assessment: a technical feasibility study by EuroClonality-NGS. Leukemia. 2019. In press. PubMed PMC

Bystry V, Reigl T, Krejci A, Demko M, Hanakova B, Grioni A, et al. ARResT/Interrogate: an interactive immunoprofiler for IG/TR NGS data. Bioinformatics. 2017;33:435–7. PubMed

van Dongen JJM, Langerak AW, Brüggemann M, Evans PAS, Hummel M, Lavender FL, et al. Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: Report of the BIOMED-2 concerted action BMH4-CT98-3936. Leukemia. 2003;17:2257–317. doi: 10.1038/sj.leu.2403202. PubMed DOI

Langerak a W, Szczepański T, Van Der Burg M, ILM Wolvers-Tettero, JJM VanDongen. Heteroduplex PCR analysis of rearranged T cell receptor genes for clonality assessment in suspect T cell proliferations. Leukemia. 1997;11:2192–9. doi: 10.1038/sj.leu.2400887. PubMed DOI

Grupp SA, Kalos M, Barrett D, Aplenc R, Porter DL, Rheingold SR, et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med. 2013;368:1509–18. doi: 10.1056/NEJMoa1215134. PubMed DOI PMC

Salson M, Giraud M, Caillault A, Grardel N, Duployez N, Ferret Y, et al. High-throughput sequencing in acute lymphoblastic leukemia: follow-up of minimal residual disease and emergence of new clones. Leuk Res. 2017;53:1–7. doi: 10.1016/j.leukres.2016.11.009. PubMed DOI

Takamatsu Hiroyuki, Wee Rachel K., Zaimoku Yoshitaka, Murata Ryoichi, Zheng Jianbiao, Moorhead Martin, Carlton Victoria E. H., Kong Katherine A., Takezako Naoki, Ito Shigeki, Miyamoto Toshihiro, Yokoyama Kenji, Matsue Kosei, Sato Tsutomu, Kurokawa Toshiro, Yagi Hideo, Terasaki Yasushi, Ohata Kinya, Matsumoto Morio, Yoshida Takashi, Faham Malek, Nakao Shinji. A comparison of minimal residual disease detection in autografts among ASO-qPCR, droplet digital PCR, and next-generation sequencing in patients with multiple myeloma who underwent autologous stem cell transplantation. British Journal of Haematology. 2017;183(4):664–668. doi: 10.1111/bjh.15002. PubMed DOI

Wood B, Wu D, Crossley B, Dai Y, Williamson D, Gawad C, et al. Measurable residual disease detection by high-throughput sequencing improves risk stratification for pediatric B-ALL. Blood. 2018;131:1350–9. doi: 10.1182/blood-2017-09-806521. PubMed DOI PMC

Newest 20 citations...

See more in
Medvik | PubMed

Insights into IGH clonal evolution in BCP-ALL: frequency, mechanisms, associations, and diagnostic implications

. 2023 ; 14 () : 1125017. [epub] 20230418

NGS better discriminates true MRD positivity for the risk stratification of childhood ALL treated on an MRD-based protocol

. 2023 Feb 02 ; 141 (5) : 529-533.

IGH Rearrangement Evolution in Adult KMT2A-rearranged B-cell Precursor ALL: Implications for Cell-of-origin and MRD Monitoring

. 2023 Jan ; 7 (1) : e820. [epub] 20221220

Quality Control for IG /TR Marker Identification and MRD Analysis

Potential and pitfalls of whole transcriptome-based immunogenetic marker identification in acute lymphoblastic leukemia; a EuroMRD and EuroClonality-NGS Working Group study

. 2021 Mar ; 35 (3) : 924-928. [epub] 20210219

Standardized next-generation sequencing of immunoglobulin and T-cell receptor gene recombinations for MRD marker identification in acute lymphoblastic leukaemia; a EuroClonality-NGS validation study

. 2019 Sep ; 33 (9) : 2241-2253. [epub] 20190626

Next-generation sequencing of immunoglobulin gene rearrangements for clonality assessment: a technical feasibility study by EuroClonality-NGS

. 2019 Sep ; 33 (9) : 2227-2240. [epub] 20190613

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...