Influence of Exogenous 24-Epicasterone on the Hormonal Status of Soybean Plants
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
№ 13-03-20/21
NAS Ukraine
2.1.10.32-20-24
NAS Ukraine
BRFFR X20УKA-023
The Belarusian Republican Foundation for Fundamental Research
No. CZ.02.1.01/ 0.0/0.0/16_019/0000738
The European Regional Development Fund-Project "Centre for Experimental Plant Biology"
PubMed
37896049
PubMed Central
PMC10609748
DOI
10.3390/plants12203586
PII: plants12203586
Knihovny.cz E-zdroje
- Klíčová slova
- 24-epicastasterone, auxins, hormones, salicylic acid, soybean,
- Publikační typ
- časopisecké články MeSH
Brassinosteroids (BRs) are key phytohormones involved in the regulation of major processes of cell metabolism that guide plant growth. In the past decades, new evidence has made it clear that BRs also play a key role in the orchestration of plant responses to many abiotic and biotic stresses. In the present work, we analyzed the impact of foliar treatment with 24-epicastasterone (ECS) on the endogenous content of major phytohormones (auxins, salicylic acid, jasmonic acid, and abscisic acid) and their intermediates in soybean leaves 7 days following the treatment. Changes in the endogenous content of phytohormones have been identified and quantified by LC/MS. The obtained results point to a clear role of ECS in the upregulation of auxin content (indole-3-acetic acid, IAA) and downregulation of salicylic, jasmonic, and abscisic acid levels. These data confirm that under optimal conditions, ECS in tested concentrations of 0.25 µM and 1 µM might promote growth in soybeans by inducing auxin contents. Benzoic acid (a precursor of salicylic acid (SA)), but not SA itself, has also been highly accumulated under ECS treatment, which indicates an activation of the adaptation strategies of cell metabolism to possible environmental challenges.
Zobrazit více v PubMed
Šimura J., Antoniadi I., Široká J., Tarkowská D.E., Strnad M., Ljung K., Novák O. Plant Hormonomics: Multiple Phytohormone Profiling by Targeted Metabolomics. Plant Physiol. 2018;177:476–489. doi: 10.1104/pp.18.00293. PubMed DOI PMC
Marková H., Tarkowská D., Čečetka P., Kočová M., Rothová O., Holá D. Contents of endogenous brassinosteroids and the response to drought and/or exogenously applied 24-epibrassinolide in two different maize leaves. Front. Plant Sci. 2023;14:1848. doi: 10.3389/fpls.2023.1139162. PubMed DOI PMC
Nolan T.M., Vukašinović N., Liu D., Russinova E., Yin Y. Brassinosteroids: Multidimensional Regulators of Plant Growth, Development, and Stress Responses. Plant Cell. 2020;32:295–318. doi: 10.1105/tpc.19.00335. PubMed DOI PMC
Bajguz A., Chmur M., Gruszka D. Comprehensive Overview of the Brassinosteroid Biosynthesis Pathways: Substrates, Products, Inhibitors, and Connections. Front. Plant Sci. 2020;11:1034. doi: 10.3389/fpls.2020.01034. PubMed DOI PMC
Gruszka D., Bajguz A., Li Q.-F., Hayat S., Hansson M., Wang X., Li J. Editorial: An Update on Brassinosteroids: Homeostasis, Crosstalk, and Adaptation to Environmental Stress. Front. Plant Sci. 2021;12:1194566. doi: 10.3389/fpls.2021.673587. PubMed DOI PMC
Neubus Claus L.A., Liu D., Hohmann U., Vukašinović N., Pleskot R., Liu J., Schiffner A., Jaillais Y., Wu G., Wolf S., et al. BRASSINOSTEROID INSENSITIVE1 internalization can occur independent of ligand binding. Plant Physiol. 2023;192:65–76. doi: 10.1093/plphys/kiad005. PubMed DOI PMC
Park C.-H., Park Y.J., Youn J.-H., Roh J., Kim S.-K. Brassinosteroids and Salicylic Acid Mutually Enhance Endogenous Content and Signaling to Show a Synergistic Effect on Pathogen Resistance in Arabidopsis thaliana. J. Plant Biol. 2023;66:181–192. doi: 10.1007/s12374-023-09390-9. DOI
Vukašinović N., Wang Y., Vanhoutte I., Fendrych M., Guo B., Kvasnica M., Jiroutová P., Oklestkova J., Strnad M., Russinova E. Local brassinosteroid biosynthesis enables optimal root growth. Nat. Plants. 2021;7:619–632. doi: 10.1038/s41477-021-00917-x. PubMed DOI
Bajguz A., Orczyk W., Gołębiewska A., Chmur M., Piotrowska-Niczyporuk A. Occurrence of brassinosteroids and influence of 24-epibrassinolide with brassinazole on their content in the leaves and roots of Hordeum vulgare L. cv. Golden Promise. Planta. 2019;249:123–137. doi: 10.1007/s00425-018-03081-3. PubMed DOI
Wang W., Bai M.-Y., Wang Z.-Y. The brassinosteroid signaling network—A paradigm of signal integration. Curr. Opin. Plant Biol. 2014;21:147–153. doi: 10.1016/j.pbi.2014.07.012. PubMed DOI PMC
Janeczko A., Pociecha E., Dziurka M., Jurczyk B., Libik-Konieczny M., Oklestkova J., Novák O., Pilarska M., Filek M., Rudolphi-Skórska E., et al. Changes in content of steroid regulators during cold hardening of winter wheat—Steroid physiological/biochemical activity and impact on frost tolerance. Plant Physiol. Biochem. 2019;139:215–228. doi: 10.1016/j.plaphy.2019.03.020. PubMed DOI
Gruszka D. Exploring the Brassinosteroid Signaling in Monocots Reveals Novel Components of the Pathway and Implications for Plant Breeding. Int. J. Mol. Sci. 2020;21:354. doi: 10.3390/ijms21010354. PubMed DOI PMC
Malaga S., Janeczko A., Janowiak F., Waligórski P., Oklestkova J., Dubas E., Krzewska M., Nowicka A., Surówka E., Rapacz M., et al. Involvement of homocastasterone, salicylic and abscisic acids in the regulation of drought and freezing tolerance in doubled haploid lines of winter barley. Plant Growth Regul. 2020;90:173–188. doi: 10.1007/s10725-019-00544-9. DOI
Sadura I., Janeczko A. Brassinosteroids and the Tolerance of Cereals to Low and High Temperature Stress: Photosynthesis and the Physicochemical Properties of Cell Membranes. Int. J. Mol. Sci. 2022;23:342. doi: 10.3390/ijms23010342. PubMed DOI PMC
Derevyanchuk M., Kretynin S., Iakovenko O., Litvinovskaya R., Zhabinskii V., Martinec J., Blume Y., Khripach V., Kravets V. Effect of 24-epibrassinolide on Brassica napus alternative respiratory pathway, guard cells movements and phospholipid signaling under salt stress. Steroids. 2017;117:16–24. doi: 10.1016/j.steroids.2016.11.006. PubMed DOI
Janeczko A., Gruszka D., Pociecha E., Dziurka M., Filek M., Jurczyk B., Kalaji H.M., Kocurek M., Waligórski P. Physiological and biochemical characterisation of watered and drought-stressed barley mutants in the HvDWARF gene encoding C6-oxidase involved in brassinosteroid biosynthesis. Plant Physiol. Biochem. 2016;99:126–141. doi: 10.1016/j.plaphy.2015.12.003. PubMed DOI
Li Y., Qiu L., Liu X., Zhang Q., Zhuansun X., Fahima T., Krugman T., Sun Q., Xie C. Glycerol-Induced Powdery Mildew Resistance in Wheat by Regulating Plant Fatty Acid Metabolism, Plant Hormones Cross-Talk, and Pathogenesis-Related Genes. Int. J. Mol. Sci. 2020;21:673. doi: 10.3390/ijms21020673. PubMed DOI PMC
Zhu J.-Y., Li Y., Cao D.-M., Yang H., Oh E., Bi Y., Zhu S., Wang Z.-Y. The F-box Protein KIB1 Mediates Brassinosteroid-Induced Inactivation and Degradation of GSK3-like Kinases in Arabidopsis. Mol. Cell. 2017;66:648–657.e644. doi: 10.1016/j.molcel.2017.05.012. PubMed DOI PMC
Moon J., Park C.-H., Son S.-H., Youn J.-H., Kim S.-K. Endogenous level of abscisic acid down-regulated by brassinosteroids signaling via BZR1 to control the growth of Arabidopsis thaliana. Plant Signal. Behav. 2021;16:1926130. doi: 10.1080/15592324.2021.1926130. PubMed DOI PMC
Mouchel C.F., Osmont K.S., Hardtke C.S. BRX mediates feedback between brassinosteroid levels and auxin signalling in root growth. Nature. 2006;443:458–461. doi: 10.1038/nature05130. PubMed DOI
Youn J.-H., Kim M.K., Kim E.-J., Son S.-H., Lee J.E., Jang M.-S., Kim T.-W., Kim S.-K. ARF7 increases the endogenous contents of castasterone through suppression of BAS1 expression in Arabidopsis thaliana. Phytochemistry. 2016;122:34–44. doi: 10.1016/j.phytochem.2015.11.006. PubMed DOI
Jia Z., Giehl R.F.H., von Wirén N. Local auxin biosynthesis acts downstream of brassinosteroids to trigger root foraging for nitrogen. Nat. Commun. 2021;12:5437. doi: 10.1038/s41467-021-25250-x. PubMed DOI PMC
Devi L.L., Pandey A., Gupta S., Singh A.P. The interplay of auxin and brassinosteroid signaling tunes root growth under low and different nitrogen forms. Plant Physiol. 2022;189:1757–1773. doi: 10.1093/plphys/kiac157. PubMed DOI PMC
Hu S., Wang C., Sanchez D.L., Lipka A.E., Liu P., Yin Y., Blanco M., Lübberstedt T. Gibberellins Promote Brassinosteroids Action and Both Increase Heterosis for Plant Height in Maize (Zea mays L.) Front. Plant Sci. 2017;8:1039. doi: 10.3389/fpls.2017.01039. PubMed DOI PMC
Unterholzner S.J., Rozhon W., Papacek M., Ciomas J., Lange T., Kugler K.G., Mayer K.F., Sieberer T., Poppenberger B. Brassinosteroids Are Master Regulators of Gibberellin Biosynthesis in Arabidopsis. Plant Cell. 2015;27:2261–2272. doi: 10.1105/tpc.15.00433. PubMed DOI PMC
Liao K., Peng Y.-J., Yuan L.-B., Dai Y.-S., Chen Q.-F., Yu L.-J., Bai M.-Y., Zhang W.-Q., Xie L.-J., Xiao S. Brassinosteroids Antagonize Jasmonate-Activated Plant Defense Responses through BRI1-EMS-SUPPRESSOR1 (BES1) Plant Physiol. 2020;182:1066–1082. doi: 10.1104/pp.19.01220. PubMed DOI PMC
Zhao N., Zhao M., Tian Y., Wang Y., Han C., Fan M., Guo H., Bai M.-Y. Interaction between BZR1 and EIN3 mediates signalling crosstalk between brassinosteroids and ethylene. New Phytol. 2021;232:2308–2323. doi: 10.1111/nph.17694. PubMed DOI
Janda M., Ruelland E. Magical mystery tour: Salicylic acid signalling. Environ. Exp. Bot. 2014;114:117–128. doi: 10.1016/j.envexpbot.2014.07.003. DOI
Choudhary S.P., Yu J.-Q., Yamaguchi-Shinozaki K., Shinozaki K., Tran L.-S.P. Benefits of brassinosteroid crosstalk. Trends Plant Sci. 2012;17:594–605. doi: 10.1016/j.tplants.2012.05.012. PubMed DOI
Gruszka D. The Brassinosteroid Signaling Pathway—New Key Players and Interconnections with Other Signaling Networks Crucial for Plant Development and Stress Tolerance. Int. J. Mol. Sci. 2013;14:8740–8774. PubMed PMC
Li C., Xu M., Cai X., Han Z., Si J., Chen D. Jasmonate Signaling Pathway Modulates Plant Defense, Growth, and Their Trade-Offs. Int. J. Mol. Sci. 2022;23:3945. doi: 10.3390/ijms23073945. PubMed DOI PMC
Graeff M., Rana S., Marhava P., Moret B., Hardtke C.S. Local and Systemic Effects of Brassinosteroid Perception in Developing Phloem. Curr. Biol. 2020;30:1626–1638.e1623. doi: 10.1016/j.cub.2020.02.029. PubMed DOI
Anwar A., Bai L., Miao L., Liu Y., Li S., Yu X., Li Y. 24-Epibrassinolide Ameliorates Endogenous Hormone Levels to Enhance Low-Temperature Stress Tolerance in Cucumber Seedlings. Int. J. Mol. Sci. 2018;19:2497. doi: 10.3390/ijms19092497. PubMed DOI PMC
Ackerman-Lavert M., Savaldi-Goldstein S. Growth models from a brassinosteroid perspective. Curr. Opin. Plant Biol. 2020;53:90–97. doi: 10.1016/j.pbi.2019.10.008. PubMed DOI
Fujioka S., Yokota T. Biosynthesis and metabolism of brassinosteroids. Annu. Rev. Plant Biol. 2003;54:137–164. doi: 10.1146/annurev.arplant.54.031902.134921. PubMed DOI
Bajguz A., Tretyn A. The Chemical Structures and Occurrence of Brassinosteroids in Plants. In: Hayat S., Ahmad A., editors. Brassinosteroids: Bioactivity and Crop Productivity. Springer; Dordrecht, The Netherlands: 2003. pp. 1–44.
Cheng L., Li M., Min W., Wang M., Chen R., Wang W. Optimal Brassinosteroid Levels Are Required for Soybean Growth and Mineral Nutrient Homeostasis. Int. J. Mol. Sci. 2021;22:8400. doi: 10.3390/ijms22168400. PubMed DOI PMC
Tan S., Luschnig C., Friml J. Pho-view of Auxin: Reversible Protein Phosphorylation in Auxin Biosynthesis, Transport and Signaling. Mol. Plant. 2021;14:151–165. doi: 10.1016/j.molp.2020.11.004. PubMed DOI
Yu Z., Ma J., Zhang M., Li X., Sun Y., Zhang M., Ding Z. Auxin promotes hypocotyl elongation by enhancing BZR1 nuclear accumulation in Arabidopsis. Sci. Adv. 2023;9:eade2493. doi: 10.1126/sciadv.ade2493. PubMed DOI PMC
Sugawara S., Mashiguchi K., Tanaka K., Hishiyama S., Sakai T., Hanada K., Kinoshita-Tsujimura K., Yu H., Dai X., Takebayashi Y., et al. Distinct Characteristics of Indole-3-Acetic Acid and Phenylacetic Acid, Two Common Auxins in Plants. Plant Cell Physiol. 2015;56:1641–1654. doi: 10.1093/pcp/pcv088. PubMed DOI PMC
Perez V.C., Zhao H., Lin M., Kim J. Occurrence, Function, and Biosynthesis of the Natural Auxin Phenylacetic Acid (PAA) in Plants. Plants. 2023;12:266. PubMed PMC
Shahzad R., Harlina P.W., Ewas M., Zhenyuan P., Nie X., Gallego P.P., Ullah Khan S., Nishawy E., Khan A.H., Jia H. Foliar applied 24-epibrassinolide alleviates salt stress in rice (Oryza sativa L.) by suppression of ABA levels and upregulation of secondary metabolites. J. Plant Interact. 2021;16:533–549. doi: 10.1080/17429145.2021.2002444. DOI
Ackerman-Lavert M., Fridman Y., Matosevich R., Khandal H., Friedlander-Shani L., Vragović K., Ben El R., Horev G., Tarkowská D., Efroni I., et al. Auxin requirements for a meristematic state in roots depend on a dual brassinosteroid function. Curr. Biol. 2021;31:4462–4472.e4466. doi: 10.1016/j.cub.2021.07.075. PubMed DOI
Chung Y., Maharjan P.M., Lee O., Fujioka S., Jang S., Kim B., Takatsuto S., Tsujimoto M., Kim H., Cho S., et al. Auxin stimulates DWARF4 expression and brassinosteroid biosynthesis in Arabidopsis. Plant J. 2011;66:564–578. doi: 10.1111/j.1365-313X.2011.04513.x. PubMed DOI
Xiong Y., Wu B., Du F., Guo X., Tian C., Hu J., Lü S., Long M., Zhang L., Wang Y., et al. A crosstalk between auxin and brassinosteroid regulates leaf shape by modulating growth anisotropy. Mol. Plant. 2021;14:949–962. doi: 10.1016/j.molp.2021.03.011. PubMed DOI
Hacham Y., Sela A., Friedlander L., Savaldi-Goldstein S. BRI1 activity in the root meristem involves post-transcriptional regulation of PIN auxin efflux carriers. Plant Signal. Behav. 2012;7:68–70. doi: 10.4161/psb.7.1.18657. PubMed DOI PMC
Sharma N., Chaudhary C., Khurana P. Transcriptome profiling of somatic embryogenesis in wheat (Triticum aestivum L.) influenced by auxin, calcium and brassinosteroid. Plant Growth Regul. 2022;98:599–612. doi: 10.1007/s10725-022-00883-0. DOI
Sakamoto T., Fujioka S. Auxins increase expression of the brassinosteroid receptor and brassinosteroid-responsive genes in Arabidopsis. Plant Signal. Behav. 2013;8:e23509. doi: 10.4161/psb.23509. PubMed DOI PMC
Hruz T., Laule O., Szabo G., Wessendorp F., Bleuler S., Oertle L., Widmayer P., Gruissem W., Zimmermann P. Genevestigator v3: A reference expression database for the meta-analysis of transcriptomes. Adv. Bioinform. 2008;2008:420747. doi: 10.1155/2008/420747. PubMed DOI PMC
Walker M., Pérez M., Steinbrecher T., Gawthrop F., Pavlović I., Novák O., Tarkowská D., Strnad M., Marone F., Nakabayashi K., et al. Molecular mechanisms and hormonal regulation underpinning morphological dormancy: A case study using Apium graveolens (Apiaceae) Plant J. 2021;108:1020–1036. doi: 10.1111/tpj.15489. PubMed DOI
Kurepa J., Smalle J.A. Auxin/Cytokinin Antagonistic Control of the Shoot/Root Growth Ratio and Its Relevance for Adaptation to Drought and Nutrient Deficiency Stresses. Int. J. Mol. Sci. 2022;23:1933. doi: 10.3390/ijms23041933. PubMed DOI PMC
Sun L., Feraru E., Feraru M.I., Waidmann S., Wang W., Passaia G., Wang Z.-Y., Wabnik K., Kleine-Vehn J. PIN-LIKES Coordinate Brassinosteroid Signaling with Nuclear Auxin Input in Arabidopsis thaliana. Curr. Biol. 2020;30:1579–1588.e1576. doi: 10.1016/j.cub.2020.02.002. PubMed DOI PMC
Lu Q., Zhang Y., Hellner J., Giannini C., Xu X., Pauwels J., Ma Q., Dejonghe W., Han H., Cotte B.V.d., et al. Proteome-wide cellular thermal shift assay reveals unexpected cross-talk between brassinosteroid and auxin signaling. Proc. Natl. Acad. Sci. USA. 2022;119:e2118220119. doi: 10.1073/pnas.2118220119. PubMed DOI PMC
Vert G., Walcher C.L., Chory J., Nemhauser J.L. Integration of auxin and brassinosteroid pathways by Auxin Response Factor 2. Proc. Natl. Acad. Sci. USA. 2008;105:9829–9834. doi: 10.1073/pnas.0803996105. PubMed DOI PMC
Chaiwanon J., Wang Z.-Y. Spatiotemporal Brassinosteroid Signaling and Antagonism with Auxin Pattern Stem Cell Dynamics in Arabidopsis Roots. Curr. Biol. 2015;25:1031–1042. doi: 10.1016/j.cub.2015.02.046. PubMed DOI PMC
Saini S., Sharma I., Pati P.K. Versatile roles of brassinosteroid in plants in the context of its homoeostasis, signaling and crosstalks. Front. Plant Sci. 2015;6:950. doi: 10.3389/fpls.2015.00950. PubMed DOI PMC
Nemhauser J.L., Hong F., Chory J. Different Plant Hormones Regulate Similar Processes through Largely Nonoverlapping Transcriptional Responses. Cell. 2006;126:467–475. doi: 10.1016/j.cell.2006.05.050. PubMed DOI
Zhang S., Cai Z., Wang X. The primary signaling outputs of brassinosteroids are regulated by abscisic acid signaling. Proc. Natl. Acad. Sci. USA. 2009;106:4543–4548. doi: 10.1073/pnas.0900349106. PubMed DOI PMC
Ha Y.M., Shang Y., Yang D., Nam K.H. Brassinosteroid reduces ABA accumulation leading to the inhibition of ABA-induced stomatal closure. Biochem. Biophys. Res. Commun. 2018;504:143–148. doi: 10.1016/j.bbrc.2018.08.146. PubMed DOI
Hu Y., Yu D. BRASSINOSTEROID INSENSITIVE2 Interacts with ABSCISIC ACID INSENSITIVE5 to Mediate the Antagonism of Brassinosteroids to Abscisic Acid during Seed Germination in Arabidopsis. Plant Cell. 2014;26:4394–4408. doi: 10.1105/tpc.114.130849. PubMed DOI PMC
Clouse S.D. Brassinosteroid/Abscisic Acid Antagonism in Balancing Growth and Stress. Dev. Cell. 2016;38:118–120. doi: 10.1016/j.devcel.2016.07.005. PubMed DOI
Steber C.M., McCourt P. A Role for Brassinosteroids in Germination in Arabidopsis1. Plant Physiol. 2001;125:763–769. doi: 10.1104/pp.125.2.763. PubMed DOI PMC
Deng J., Kong L., Zhu Y., Pei D., Chen X., Wang Y., Qi J., Song C., Yang S., Gong Z. BAK1 plays contrasting roles in regulating abscisic acid-induced stomatal closure and abscisic acid-inhibited primary root growth in Arabidopsis. J. Integr. Plant Biol. 2022;64:1264–1280. doi: 10.1111/jipb.13257. PubMed DOI
Seo M., Nambara E., Choi G., Yamaguchi S. Interaction of light and hormone signals in germinating seeds. Plant Mol. Biol. 2008;69:463. doi: 10.1007/s11103-008-9429-y. PubMed DOI
Yang X., Bai Y., Shang J., Xin R., Tang W. The antagonistic regulation of abscisic acid-inhibited root growth by brassinosteroids is partially mediated via direct suppression of ABSCISIC ACID INSENSITIVE 5 expression by BRASSINAZOLE RESISTANT 1. Plant Cell Environ. 2016;39:1994–2003. doi: 10.1111/pce.12763. PubMed DOI
Waadt R., Seller C.A., Hsu P.-K., Takahashi Y., Munemasa S., Schroeder J.I. Plant hormone regulation of abiotic stress responses. Nat. Rev. Mol. Cell Biol. 2022;23:680–694. doi: 10.1038/s41580-022-00479-6. PubMed DOI PMC
Li Q., Xu F., Chen Z., Teng Z., Sun K., Li X., Yu J., Zhang G., Liang Y., Huang X., et al. Synergistic interplay of ABA and BR signal in regulating plant growth and adaptation. Nat. Plants. 2021;7:1108–1118. doi: 10.1038/s41477-021-00959-1. PubMed DOI
Zhao X., Dou L., Gong Z., Wang X., Mao T. BES1 hinders ABSCISIC ACID INSENSITIVE5 and promotes seed germination in Arabidopsis. New Phytol. 2019;221:908–918. doi: 10.1111/nph.15437. PubMed DOI
Reed R.C., Bradford K.J., Khanday I. Seed germination and vigor: Ensuring crop sustainability in a changing climate. Heredity. 2022;128:450–459. doi: 10.1038/s41437-022-00497-2. PubMed DOI PMC
Kim Y.-W., Youn J.-H., Roh J., Kim J.-M., Kim S.-K., Kim T.-W. Brassinosteroids enhance salicylic acid-mediated immune responses by inhibiting BIN2 phosphorylation of clade I TGA transcription factors in Arabidopsis. Mol. Plant. 2022;15:991–1007. doi: 10.1016/j.molp.2022.05.002. PubMed DOI
Pan G., Liu Y., Ji L., Zhang X., He J., Huang J., Qiu Z., Liu D., Sun Z., Xu T., et al. Brassinosteroids mediate susceptibility to brown planthopper by integrating with the salicylic acid and jasmonic acid pathways in rice. J. Exp. Bot. 2018;69:4433–4442. doi: 10.1093/jxb/ery223. PubMed DOI PMC
Kim S.Y., Shang Y., Joo S.-H., Kim S.-K., Nam K.H. Overexpression of BAK1 causes salicylic acid accumulation and deregulation of cell death control genes. Biochem. Biophys. Res. Commun. 2017;484:781–786. doi: 10.1016/j.bbrc.2017.01.166. PubMed DOI
Wu J., Zhu W., Zhao Q. Salicylic acid biosynthesis is not from phenylalanine in Arabidopsis. J. Integr. Plant Biol. 2023;65:881–887. doi: 10.1111/jipb.13410. PubMed DOI
Nakashita H., Yasuda M., Nitta T., Asami T., Fujioka S., Arai Y., Sekimata K., Takatsuto S., Yamaguchi I., Yoshida S. Brassinosteroid functions in a broad range of disease resistance in tobacco and rice. Plant J. Cell Mol. Biol. 2003;33:887–898. doi: 10.1046/j.1365-313X.2003.01675.x. PubMed DOI
Shi H., Shen Q., Qi Y., Yan H., Nie H., Chen Y., Zhao T., Katagiri F., Tang D. BR-SIGNALING KINASE1 Physically Associates with FLAGELLIN SENSING2 and Regulates Plant Innate Immunity in Arabidopsis. Plant Cell. 2013;25:1143–1157. doi: 10.1105/tpc.112.107904. PubMed DOI PMC
Lefevere H., Bauters L., Gheysen G. Salicylic Acid Biosynthesis in Plants. Front. Plant Sci. 2020;11:338. doi: 10.3389/fpls.2020.00338. PubMed DOI PMC
Wildermuth M.C., Dewdney J., Wu G., Ausubel F.M. Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature. 2001;414:562–565. doi: 10.1038/35107108. PubMed DOI
Shine M.B., Yang J.W., El-Habbak M., Nagyabhyru P., Fu D.Q., Navarre D., Ghabrial S., Kachroo P., Kachroo A. Cooperative functioning between phenylalanine ammonia lyase and isochorismate synthase activities contributes to salicylic acid biosynthesis in soybean. New Phytol. 2016;212:627–636. doi: 10.1111/nph.14078. PubMed DOI
Wasternack C. Action of jasmonates in plant stress responses and development—Applied aspects. Biotechnol. Adv. 2014;32:31–39. doi: 10.1016/j.biotechadv.2013.09.009. PubMed DOI
Nahar K., Kyndt T., Hause B., Höfte M., Gheysen G. Brassinosteroids Suppress Rice Defense Against Root-Knot Nematodes Through Antagonism with the Jasmonate Pathway. Mol. Plant-Microbe Interact. 2012;26:106–115. doi: 10.1094/MPMI-05-12-0108-FI. PubMed DOI
Ren C., Han C., Peng W., Huang Y., Peng Z., Xiong X., Zhu Q., Gao B., Xie D. A Leaky Mutation in DWARF4 Reveals an Antagonistic Role of Brassinosteroid in the Inhibition of Root Growth by Jasmonate in Arabidopsis. Plant Physiol. 2009;151:1412–1420. doi: 10.1104/pp.109.140202. PubMed DOI PMC
Song Y., Zhai Y., Li L., Yang Z., Ge X., Yang Z., Zhang C., Li F., Ren M. BIN2 negatively regulates plant defence against Verticillium dahliae in Arabidopsis and cotton. Plant Biotechnol. J. 2021;19:2097–2112. doi: 10.1111/pbi.13640. PubMed DOI PMC
Hu J., Huang J., Xu H., Wang Y., Li C., Wen P., You X., Zhang X., Pan G., Li Q., et al. Rice stripe virus suppresses jasmonic acid-mediated resistance by hijacking brassinosteroid signaling pathway in rice. PLOS Pathog. 2020;16:e1008801. doi: 10.1371/journal.ppat.1008801. PubMed DOI PMC
Dobrev P.I., Vankova R. Quantification of Abscisic Acid, Cytokinin, and Auxin Content in Salt-Stressed Plant Tissues. In: Shabala S., Cuin T.A., editors. Plant Salt Tolerance: Methods and Protocols. Humana Press; Totowa, NJ, USA: 2012. pp. 251–261. PubMed
Poudel S., Vennam R.R., Shrestha A., Reddy K.R., Wijewardane N.K., Reddy K.N., Bheemanahalli R. Resilience of soybean cultivars to drought stress during flowering and early-seed setting stages. Sci. Rep. 2023;13:1277. doi: 10.1038/s41598-023-28354-0. PubMed DOI PMC