Influence of Exogenous 24-Epicasterone on the Hormonal Status of Soybean Plants

. 2023 Oct 16 ; 12 (20) : . [epub] 20231016

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37896049

Grantová podpora
№ 13-03-20/21 NAS Ukraine
2.1.10.32-20-24 NAS Ukraine
BRFFR X20УKA-023 The Belarusian Republican Foundation for Fundamental Research
No. CZ.02.1.01/ 0.0/0.0/16_019/0000738 The European Regional Development Fund-Project "Centre for Experimental Plant Biology"

Brassinosteroids (BRs) are key phytohormones involved in the regulation of major processes of cell metabolism that guide plant growth. In the past decades, new evidence has made it clear that BRs also play a key role in the orchestration of plant responses to many abiotic and biotic stresses. In the present work, we analyzed the impact of foliar treatment with 24-epicastasterone (ECS) on the endogenous content of major phytohormones (auxins, salicylic acid, jasmonic acid, and abscisic acid) and their intermediates in soybean leaves 7 days following the treatment. Changes in the endogenous content of phytohormones have been identified and quantified by LC/MS. The obtained results point to a clear role of ECS in the upregulation of auxin content (indole-3-acetic acid, IAA) and downregulation of salicylic, jasmonic, and abscisic acid levels. These data confirm that under optimal conditions, ECS in tested concentrations of 0.25 µM and 1 µM might promote growth in soybeans by inducing auxin contents. Benzoic acid (a precursor of salicylic acid (SA)), but not SA itself, has also been highly accumulated under ECS treatment, which indicates an activation of the adaptation strategies of cell metabolism to possible environmental challenges.

Zobrazit více v PubMed

Šimura J., Antoniadi I., Široká J., Tarkowská D.E., Strnad M., Ljung K., Novák O. Plant Hormonomics: Multiple Phytohormone Profiling by Targeted Metabolomics. Plant Physiol. 2018;177:476–489. doi: 10.1104/pp.18.00293. PubMed DOI PMC

Marková H., Tarkowská D., Čečetka P., Kočová M., Rothová O., Holá D. Contents of endogenous brassinosteroids and the response to drought and/or exogenously applied 24-epibrassinolide in two different maize leaves. Front. Plant Sci. 2023;14:1848. doi: 10.3389/fpls.2023.1139162. PubMed DOI PMC

Nolan T.M., Vukašinović N., Liu D., Russinova E., Yin Y. Brassinosteroids: Multidimensional Regulators of Plant Growth, Development, and Stress Responses. Plant Cell. 2020;32:295–318. doi: 10.1105/tpc.19.00335. PubMed DOI PMC

Bajguz A., Chmur M., Gruszka D. Comprehensive Overview of the Brassinosteroid Biosynthesis Pathways: Substrates, Products, Inhibitors, and Connections. Front. Plant Sci. 2020;11:1034. doi: 10.3389/fpls.2020.01034. PubMed DOI PMC

Gruszka D., Bajguz A., Li Q.-F., Hayat S., Hansson M., Wang X., Li J. Editorial: An Update on Brassinosteroids: Homeostasis, Crosstalk, and Adaptation to Environmental Stress. Front. Plant Sci. 2021;12:1194566. doi: 10.3389/fpls.2021.673587. PubMed DOI PMC

Neubus Claus L.A., Liu D., Hohmann U., Vukašinović N., Pleskot R., Liu J., Schiffner A., Jaillais Y., Wu G., Wolf S., et al. BRASSINOSTEROID INSENSITIVE1 internalization can occur independent of ligand binding. Plant Physiol. 2023;192:65–76. doi: 10.1093/plphys/kiad005. PubMed DOI PMC

Park C.-H., Park Y.J., Youn J.-H., Roh J., Kim S.-K. Brassinosteroids and Salicylic Acid Mutually Enhance Endogenous Content and Signaling to Show a Synergistic Effect on Pathogen Resistance in Arabidopsis thaliana. J. Plant Biol. 2023;66:181–192. doi: 10.1007/s12374-023-09390-9. DOI

Vukašinović N., Wang Y., Vanhoutte I., Fendrych M., Guo B., Kvasnica M., Jiroutová P., Oklestkova J., Strnad M., Russinova E. Local brassinosteroid biosynthesis enables optimal root growth. Nat. Plants. 2021;7:619–632. doi: 10.1038/s41477-021-00917-x. PubMed DOI

Bajguz A., Orczyk W., Gołębiewska A., Chmur M., Piotrowska-Niczyporuk A. Occurrence of brassinosteroids and influence of 24-epibrassinolide with brassinazole on their content in the leaves and roots of Hordeum vulgare L. cv. Golden Promise. Planta. 2019;249:123–137. doi: 10.1007/s00425-018-03081-3. PubMed DOI

Wang W., Bai M.-Y., Wang Z.-Y. The brassinosteroid signaling network—A paradigm of signal integration. Curr. Opin. Plant Biol. 2014;21:147–153. doi: 10.1016/j.pbi.2014.07.012. PubMed DOI PMC

Janeczko A., Pociecha E., Dziurka M., Jurczyk B., Libik-Konieczny M., Oklestkova J., Novák O., Pilarska M., Filek M., Rudolphi-Skórska E., et al. Changes in content of steroid regulators during cold hardening of winter wheat—Steroid physiological/biochemical activity and impact on frost tolerance. Plant Physiol. Biochem. 2019;139:215–228. doi: 10.1016/j.plaphy.2019.03.020. PubMed DOI

Gruszka D. Exploring the Brassinosteroid Signaling in Monocots Reveals Novel Components of the Pathway and Implications for Plant Breeding. Int. J. Mol. Sci. 2020;21:354. doi: 10.3390/ijms21010354. PubMed DOI PMC

Malaga S., Janeczko A., Janowiak F., Waligórski P., Oklestkova J., Dubas E., Krzewska M., Nowicka A., Surówka E., Rapacz M., et al. Involvement of homocastasterone, salicylic and abscisic acids in the regulation of drought and freezing tolerance in doubled haploid lines of winter barley. Plant Growth Regul. 2020;90:173–188. doi: 10.1007/s10725-019-00544-9. DOI

Sadura I., Janeczko A. Brassinosteroids and the Tolerance of Cereals to Low and High Temperature Stress: Photosynthesis and the Physicochemical Properties of Cell Membranes. Int. J. Mol. Sci. 2022;23:342. doi: 10.3390/ijms23010342. PubMed DOI PMC

Derevyanchuk M., Kretynin S., Iakovenko O., Litvinovskaya R., Zhabinskii V., Martinec J., Blume Y., Khripach V., Kravets V. Effect of 24-epibrassinolide on Brassica napus alternative respiratory pathway, guard cells movements and phospholipid signaling under salt stress. Steroids. 2017;117:16–24. doi: 10.1016/j.steroids.2016.11.006. PubMed DOI

Janeczko A., Gruszka D., Pociecha E., Dziurka M., Filek M., Jurczyk B., Kalaji H.M., Kocurek M., Waligórski P. Physiological and biochemical characterisation of watered and drought-stressed barley mutants in the HvDWARF gene encoding C6-oxidase involved in brassinosteroid biosynthesis. Plant Physiol. Biochem. 2016;99:126–141. doi: 10.1016/j.plaphy.2015.12.003. PubMed DOI

Li Y., Qiu L., Liu X., Zhang Q., Zhuansun X., Fahima T., Krugman T., Sun Q., Xie C. Glycerol-Induced Powdery Mildew Resistance in Wheat by Regulating Plant Fatty Acid Metabolism, Plant Hormones Cross-Talk, and Pathogenesis-Related Genes. Int. J. Mol. Sci. 2020;21:673. doi: 10.3390/ijms21020673. PubMed DOI PMC

Zhu J.-Y., Li Y., Cao D.-M., Yang H., Oh E., Bi Y., Zhu S., Wang Z.-Y. The F-box Protein KIB1 Mediates Brassinosteroid-Induced Inactivation and Degradation of GSK3-like Kinases in Arabidopsis. Mol. Cell. 2017;66:648–657.e644. doi: 10.1016/j.molcel.2017.05.012. PubMed DOI PMC

Moon J., Park C.-H., Son S.-H., Youn J.-H., Kim S.-K. Endogenous level of abscisic acid down-regulated by brassinosteroids signaling via BZR1 to control the growth of Arabidopsis thaliana. Plant Signal. Behav. 2021;16:1926130. doi: 10.1080/15592324.2021.1926130. PubMed DOI PMC

Mouchel C.F., Osmont K.S., Hardtke C.S. BRX mediates feedback between brassinosteroid levels and auxin signalling in root growth. Nature. 2006;443:458–461. doi: 10.1038/nature05130. PubMed DOI

Youn J.-H., Kim M.K., Kim E.-J., Son S.-H., Lee J.E., Jang M.-S., Kim T.-W., Kim S.-K. ARF7 increases the endogenous contents of castasterone through suppression of BAS1 expression in Arabidopsis thaliana. Phytochemistry. 2016;122:34–44. doi: 10.1016/j.phytochem.2015.11.006. PubMed DOI

Jia Z., Giehl R.F.H., von Wirén N. Local auxin biosynthesis acts downstream of brassinosteroids to trigger root foraging for nitrogen. Nat. Commun. 2021;12:5437. doi: 10.1038/s41467-021-25250-x. PubMed DOI PMC

Devi L.L., Pandey A., Gupta S., Singh A.P. The interplay of auxin and brassinosteroid signaling tunes root growth under low and different nitrogen forms. Plant Physiol. 2022;189:1757–1773. doi: 10.1093/plphys/kiac157. PubMed DOI PMC

Hu S., Wang C., Sanchez D.L., Lipka A.E., Liu P., Yin Y., Blanco M., Lübberstedt T. Gibberellins Promote Brassinosteroids Action and Both Increase Heterosis for Plant Height in Maize (Zea mays L.) Front. Plant Sci. 2017;8:1039. doi: 10.3389/fpls.2017.01039. PubMed DOI PMC

Unterholzner S.J., Rozhon W., Papacek M., Ciomas J., Lange T., Kugler K.G., Mayer K.F., Sieberer T., Poppenberger B. Brassinosteroids Are Master Regulators of Gibberellin Biosynthesis in Arabidopsis. Plant Cell. 2015;27:2261–2272. doi: 10.1105/tpc.15.00433. PubMed DOI PMC

Liao K., Peng Y.-J., Yuan L.-B., Dai Y.-S., Chen Q.-F., Yu L.-J., Bai M.-Y., Zhang W.-Q., Xie L.-J., Xiao S. Brassinosteroids Antagonize Jasmonate-Activated Plant Defense Responses through BRI1-EMS-SUPPRESSOR1 (BES1) Plant Physiol. 2020;182:1066–1082. doi: 10.1104/pp.19.01220. PubMed DOI PMC

Zhao N., Zhao M., Tian Y., Wang Y., Han C., Fan M., Guo H., Bai M.-Y. Interaction between BZR1 and EIN3 mediates signalling crosstalk between brassinosteroids and ethylene. New Phytol. 2021;232:2308–2323. doi: 10.1111/nph.17694. PubMed DOI

Janda M., Ruelland E. Magical mystery tour: Salicylic acid signalling. Environ. Exp. Bot. 2014;114:117–128. doi: 10.1016/j.envexpbot.2014.07.003. DOI

Choudhary S.P., Yu J.-Q., Yamaguchi-Shinozaki K., Shinozaki K., Tran L.-S.P. Benefits of brassinosteroid crosstalk. Trends Plant Sci. 2012;17:594–605. doi: 10.1016/j.tplants.2012.05.012. PubMed DOI

Gruszka D. The Brassinosteroid Signaling Pathway—New Key Players and Interconnections with Other Signaling Networks Crucial for Plant Development and Stress Tolerance. Int. J. Mol. Sci. 2013;14:8740–8774. PubMed PMC

Li C., Xu M., Cai X., Han Z., Si J., Chen D. Jasmonate Signaling Pathway Modulates Plant Defense, Growth, and Their Trade-Offs. Int. J. Mol. Sci. 2022;23:3945. doi: 10.3390/ijms23073945. PubMed DOI PMC

Graeff M., Rana S., Marhava P., Moret B., Hardtke C.S. Local and Systemic Effects of Brassinosteroid Perception in Developing Phloem. Curr. Biol. 2020;30:1626–1638.e1623. doi: 10.1016/j.cub.2020.02.029. PubMed DOI

Anwar A., Bai L., Miao L., Liu Y., Li S., Yu X., Li Y. 24-Epibrassinolide Ameliorates Endogenous Hormone Levels to Enhance Low-Temperature Stress Tolerance in Cucumber Seedlings. Int. J. Mol. Sci. 2018;19:2497. doi: 10.3390/ijms19092497. PubMed DOI PMC

Ackerman-Lavert M., Savaldi-Goldstein S. Growth models from a brassinosteroid perspective. Curr. Opin. Plant Biol. 2020;53:90–97. doi: 10.1016/j.pbi.2019.10.008. PubMed DOI

Fujioka S., Yokota T. Biosynthesis and metabolism of brassinosteroids. Annu. Rev. Plant Biol. 2003;54:137–164. doi: 10.1146/annurev.arplant.54.031902.134921. PubMed DOI

Bajguz A., Tretyn A. The Chemical Structures and Occurrence of Brassinosteroids in Plants. In: Hayat S., Ahmad A., editors. Brassinosteroids: Bioactivity and Crop Productivity. Springer; Dordrecht, The Netherlands: 2003. pp. 1–44.

Cheng L., Li M., Min W., Wang M., Chen R., Wang W. Optimal Brassinosteroid Levels Are Required for Soybean Growth and Mineral Nutrient Homeostasis. Int. J. Mol. Sci. 2021;22:8400. doi: 10.3390/ijms22168400. PubMed DOI PMC

Tan S., Luschnig C., Friml J. Pho-view of Auxin: Reversible Protein Phosphorylation in Auxin Biosynthesis, Transport and Signaling. Mol. Plant. 2021;14:151–165. doi: 10.1016/j.molp.2020.11.004. PubMed DOI

Yu Z., Ma J., Zhang M., Li X., Sun Y., Zhang M., Ding Z. Auxin promotes hypocotyl elongation by enhancing BZR1 nuclear accumulation in Arabidopsis. Sci. Adv. 2023;9:eade2493. doi: 10.1126/sciadv.ade2493. PubMed DOI PMC

Sugawara S., Mashiguchi K., Tanaka K., Hishiyama S., Sakai T., Hanada K., Kinoshita-Tsujimura K., Yu H., Dai X., Takebayashi Y., et al. Distinct Characteristics of Indole-3-Acetic Acid and Phenylacetic Acid, Two Common Auxins in Plants. Plant Cell Physiol. 2015;56:1641–1654. doi: 10.1093/pcp/pcv088. PubMed DOI PMC

Perez V.C., Zhao H., Lin M., Kim J. Occurrence, Function, and Biosynthesis of the Natural Auxin Phenylacetic Acid (PAA) in Plants. Plants. 2023;12:266. PubMed PMC

Shahzad R., Harlina P.W., Ewas M., Zhenyuan P., Nie X., Gallego P.P., Ullah Khan S., Nishawy E., Khan A.H., Jia H. Foliar applied 24-epibrassinolide alleviates salt stress in rice (Oryza sativa L.) by suppression of ABA levels and upregulation of secondary metabolites. J. Plant Interact. 2021;16:533–549. doi: 10.1080/17429145.2021.2002444. DOI

Ackerman-Lavert M., Fridman Y., Matosevich R., Khandal H., Friedlander-Shani L., Vragović K., Ben El R., Horev G., Tarkowská D., Efroni I., et al. Auxin requirements for a meristematic state in roots depend on a dual brassinosteroid function. Curr. Biol. 2021;31:4462–4472.e4466. doi: 10.1016/j.cub.2021.07.075. PubMed DOI

Chung Y., Maharjan P.M., Lee O., Fujioka S., Jang S., Kim B., Takatsuto S., Tsujimoto M., Kim H., Cho S., et al. Auxin stimulates DWARF4 expression and brassinosteroid biosynthesis in Arabidopsis. Plant J. 2011;66:564–578. doi: 10.1111/j.1365-313X.2011.04513.x. PubMed DOI

Xiong Y., Wu B., Du F., Guo X., Tian C., Hu J., Lü S., Long M., Zhang L., Wang Y., et al. A crosstalk between auxin and brassinosteroid regulates leaf shape by modulating growth anisotropy. Mol. Plant. 2021;14:949–962. doi: 10.1016/j.molp.2021.03.011. PubMed DOI

Hacham Y., Sela A., Friedlander L., Savaldi-Goldstein S. BRI1 activity in the root meristem involves post-transcriptional regulation of PIN auxin efflux carriers. Plant Signal. Behav. 2012;7:68–70. doi: 10.4161/psb.7.1.18657. PubMed DOI PMC

Sharma N., Chaudhary C., Khurana P. Transcriptome profiling of somatic embryogenesis in wheat (Triticum aestivum L.) influenced by auxin, calcium and brassinosteroid. Plant Growth Regul. 2022;98:599–612. doi: 10.1007/s10725-022-00883-0. DOI

Sakamoto T., Fujioka S. Auxins increase expression of the brassinosteroid receptor and brassinosteroid-responsive genes in Arabidopsis. Plant Signal. Behav. 2013;8:e23509. doi: 10.4161/psb.23509. PubMed DOI PMC

Hruz T., Laule O., Szabo G., Wessendorp F., Bleuler S., Oertle L., Widmayer P., Gruissem W., Zimmermann P. Genevestigator v3: A reference expression database for the meta-analysis of transcriptomes. Adv. Bioinform. 2008;2008:420747. doi: 10.1155/2008/420747. PubMed DOI PMC

Walker M., Pérez M., Steinbrecher T., Gawthrop F., Pavlović I., Novák O., Tarkowská D., Strnad M., Marone F., Nakabayashi K., et al. Molecular mechanisms and hormonal regulation underpinning morphological dormancy: A case study using Apium graveolens (Apiaceae) Plant J. 2021;108:1020–1036. doi: 10.1111/tpj.15489. PubMed DOI

Kurepa J., Smalle J.A. Auxin/Cytokinin Antagonistic Control of the Shoot/Root Growth Ratio and Its Relevance for Adaptation to Drought and Nutrient Deficiency Stresses. Int. J. Mol. Sci. 2022;23:1933. doi: 10.3390/ijms23041933. PubMed DOI PMC

Sun L., Feraru E., Feraru M.I., Waidmann S., Wang W., Passaia G., Wang Z.-Y., Wabnik K., Kleine-Vehn J. PIN-LIKES Coordinate Brassinosteroid Signaling with Nuclear Auxin Input in Arabidopsis thaliana. Curr. Biol. 2020;30:1579–1588.e1576. doi: 10.1016/j.cub.2020.02.002. PubMed DOI PMC

Lu Q., Zhang Y., Hellner J., Giannini C., Xu X., Pauwels J., Ma Q., Dejonghe W., Han H., Cotte B.V.d., et al. Proteome-wide cellular thermal shift assay reveals unexpected cross-talk between brassinosteroid and auxin signaling. Proc. Natl. Acad. Sci. USA. 2022;119:e2118220119. doi: 10.1073/pnas.2118220119. PubMed DOI PMC

Vert G., Walcher C.L., Chory J., Nemhauser J.L. Integration of auxin and brassinosteroid pathways by Auxin Response Factor 2. Proc. Natl. Acad. Sci. USA. 2008;105:9829–9834. doi: 10.1073/pnas.0803996105. PubMed DOI PMC

Chaiwanon J., Wang Z.-Y. Spatiotemporal Brassinosteroid Signaling and Antagonism with Auxin Pattern Stem Cell Dynamics in Arabidopsis Roots. Curr. Biol. 2015;25:1031–1042. doi: 10.1016/j.cub.2015.02.046. PubMed DOI PMC

Saini S., Sharma I., Pati P.K. Versatile roles of brassinosteroid in plants in the context of its homoeostasis, signaling and crosstalks. Front. Plant Sci. 2015;6:950. doi: 10.3389/fpls.2015.00950. PubMed DOI PMC

Nemhauser J.L., Hong F., Chory J. Different Plant Hormones Regulate Similar Processes through Largely Nonoverlapping Transcriptional Responses. Cell. 2006;126:467–475. doi: 10.1016/j.cell.2006.05.050. PubMed DOI

Zhang S., Cai Z., Wang X. The primary signaling outputs of brassinosteroids are regulated by abscisic acid signaling. Proc. Natl. Acad. Sci. USA. 2009;106:4543–4548. doi: 10.1073/pnas.0900349106. PubMed DOI PMC

Ha Y.M., Shang Y., Yang D., Nam K.H. Brassinosteroid reduces ABA accumulation leading to the inhibition of ABA-induced stomatal closure. Biochem. Biophys. Res. Commun. 2018;504:143–148. doi: 10.1016/j.bbrc.2018.08.146. PubMed DOI

Hu Y., Yu D. BRASSINOSTEROID INSENSITIVE2 Interacts with ABSCISIC ACID INSENSITIVE5 to Mediate the Antagonism of Brassinosteroids to Abscisic Acid during Seed Germination in Arabidopsis. Plant Cell. 2014;26:4394–4408. doi: 10.1105/tpc.114.130849. PubMed DOI PMC

Clouse S.D. Brassinosteroid/Abscisic Acid Antagonism in Balancing Growth and Stress. Dev. Cell. 2016;38:118–120. doi: 10.1016/j.devcel.2016.07.005. PubMed DOI

Steber C.M., McCourt P. A Role for Brassinosteroids in Germination in Arabidopsis1. Plant Physiol. 2001;125:763–769. doi: 10.1104/pp.125.2.763. PubMed DOI PMC

Deng J., Kong L., Zhu Y., Pei D., Chen X., Wang Y., Qi J., Song C., Yang S., Gong Z. BAK1 plays contrasting roles in regulating abscisic acid-induced stomatal closure and abscisic acid-inhibited primary root growth in Arabidopsis. J. Integr. Plant Biol. 2022;64:1264–1280. doi: 10.1111/jipb.13257. PubMed DOI

Seo M., Nambara E., Choi G., Yamaguchi S. Interaction of light and hormone signals in germinating seeds. Plant Mol. Biol. 2008;69:463. doi: 10.1007/s11103-008-9429-y. PubMed DOI

Yang X., Bai Y., Shang J., Xin R., Tang W. The antagonistic regulation of abscisic acid-inhibited root growth by brassinosteroids is partially mediated via direct suppression of ABSCISIC ACID INSENSITIVE 5 expression by BRASSINAZOLE RESISTANT 1. Plant Cell Environ. 2016;39:1994–2003. doi: 10.1111/pce.12763. PubMed DOI

Waadt R., Seller C.A., Hsu P.-K., Takahashi Y., Munemasa S., Schroeder J.I. Plant hormone regulation of abiotic stress responses. Nat. Rev. Mol. Cell Biol. 2022;23:680–694. doi: 10.1038/s41580-022-00479-6. PubMed DOI PMC

Li Q., Xu F., Chen Z., Teng Z., Sun K., Li X., Yu J., Zhang G., Liang Y., Huang X., et al. Synergistic interplay of ABA and BR signal in regulating plant growth and adaptation. Nat. Plants. 2021;7:1108–1118. doi: 10.1038/s41477-021-00959-1. PubMed DOI

Zhao X., Dou L., Gong Z., Wang X., Mao T. BES1 hinders ABSCISIC ACID INSENSITIVE5 and promotes seed germination in Arabidopsis. New Phytol. 2019;221:908–918. doi: 10.1111/nph.15437. PubMed DOI

Reed R.C., Bradford K.J., Khanday I. Seed germination and vigor: Ensuring crop sustainability in a changing climate. Heredity. 2022;128:450–459. doi: 10.1038/s41437-022-00497-2. PubMed DOI PMC

Kim Y.-W., Youn J.-H., Roh J., Kim J.-M., Kim S.-K., Kim T.-W. Brassinosteroids enhance salicylic acid-mediated immune responses by inhibiting BIN2 phosphorylation of clade I TGA transcription factors in Arabidopsis. Mol. Plant. 2022;15:991–1007. doi: 10.1016/j.molp.2022.05.002. PubMed DOI

Pan G., Liu Y., Ji L., Zhang X., He J., Huang J., Qiu Z., Liu D., Sun Z., Xu T., et al. Brassinosteroids mediate susceptibility to brown planthopper by integrating with the salicylic acid and jasmonic acid pathways in rice. J. Exp. Bot. 2018;69:4433–4442. doi: 10.1093/jxb/ery223. PubMed DOI PMC

Kim S.Y., Shang Y., Joo S.-H., Kim S.-K., Nam K.H. Overexpression of BAK1 causes salicylic acid accumulation and deregulation of cell death control genes. Biochem. Biophys. Res. Commun. 2017;484:781–786. doi: 10.1016/j.bbrc.2017.01.166. PubMed DOI

Wu J., Zhu W., Zhao Q. Salicylic acid biosynthesis is not from phenylalanine in Arabidopsis. J. Integr. Plant Biol. 2023;65:881–887. doi: 10.1111/jipb.13410. PubMed DOI

Nakashita H., Yasuda M., Nitta T., Asami T., Fujioka S., Arai Y., Sekimata K., Takatsuto S., Yamaguchi I., Yoshida S. Brassinosteroid functions in a broad range of disease resistance in tobacco and rice. Plant J. Cell Mol. Biol. 2003;33:887–898. doi: 10.1046/j.1365-313X.2003.01675.x. PubMed DOI

Shi H., Shen Q., Qi Y., Yan H., Nie H., Chen Y., Zhao T., Katagiri F., Tang D. BR-SIGNALING KINASE1 Physically Associates with FLAGELLIN SENSING2 and Regulates Plant Innate Immunity in Arabidopsis. Plant Cell. 2013;25:1143–1157. doi: 10.1105/tpc.112.107904. PubMed DOI PMC

Lefevere H., Bauters L., Gheysen G. Salicylic Acid Biosynthesis in Plants. Front. Plant Sci. 2020;11:338. doi: 10.3389/fpls.2020.00338. PubMed DOI PMC

Wildermuth M.C., Dewdney J., Wu G., Ausubel F.M. Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature. 2001;414:562–565. doi: 10.1038/35107108. PubMed DOI

Shine M.B., Yang J.W., El-Habbak M., Nagyabhyru P., Fu D.Q., Navarre D., Ghabrial S., Kachroo P., Kachroo A. Cooperative functioning between phenylalanine ammonia lyase and isochorismate synthase activities contributes to salicylic acid biosynthesis in soybean. New Phytol. 2016;212:627–636. doi: 10.1111/nph.14078. PubMed DOI

Wasternack C. Action of jasmonates in plant stress responses and development—Applied aspects. Biotechnol. Adv. 2014;32:31–39. doi: 10.1016/j.biotechadv.2013.09.009. PubMed DOI

Nahar K., Kyndt T., Hause B., Höfte M., Gheysen G. Brassinosteroids Suppress Rice Defense Against Root-Knot Nematodes Through Antagonism with the Jasmonate Pathway. Mol. Plant-Microbe Interact. 2012;26:106–115. doi: 10.1094/MPMI-05-12-0108-FI. PubMed DOI

Ren C., Han C., Peng W., Huang Y., Peng Z., Xiong X., Zhu Q., Gao B., Xie D. A Leaky Mutation in DWARF4 Reveals an Antagonistic Role of Brassinosteroid in the Inhibition of Root Growth by Jasmonate in Arabidopsis. Plant Physiol. 2009;151:1412–1420. doi: 10.1104/pp.109.140202. PubMed DOI PMC

Song Y., Zhai Y., Li L., Yang Z., Ge X., Yang Z., Zhang C., Li F., Ren M. BIN2 negatively regulates plant defence against Verticillium dahliae in Arabidopsis and cotton. Plant Biotechnol. J. 2021;19:2097–2112. doi: 10.1111/pbi.13640. PubMed DOI PMC

Hu J., Huang J., Xu H., Wang Y., Li C., Wen P., You X., Zhang X., Pan G., Li Q., et al. Rice stripe virus suppresses jasmonic acid-mediated resistance by hijacking brassinosteroid signaling pathway in rice. PLOS Pathog. 2020;16:e1008801. doi: 10.1371/journal.ppat.1008801. PubMed DOI PMC

Dobrev P.I., Vankova R. Quantification of Abscisic Acid, Cytokinin, and Auxin Content in Salt-Stressed Plant Tissues. In: Shabala S., Cuin T.A., editors. Plant Salt Tolerance: Methods and Protocols. Humana Press; Totowa, NJ, USA: 2012. pp. 251–261. PubMed

Poudel S., Vennam R.R., Shrestha A., Reddy K.R., Wijewardane N.K., Reddy K.N., Bheemanahalli R. Resilience of soybean cultivars to drought stress during flowering and early-seed setting stages. Sci. Rep. 2023;13:1277. doi: 10.1038/s41598-023-28354-0. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace