Local brassinosteroid biosynthesis enables optimal root growth
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
34007032
DOI
10.1038/s41477-021-00917-x
PII: 10.1038/s41477-021-00917-x
Knihovny.cz E-zdroje
- MeSH
- Arabidopsis růst a vývoj metabolismus fyziologie MeSH
- brassinosteroidy biosyntéza metabolismus MeSH
- kořeny rostlin růst a vývoj metabolismus MeSH
- meristém metabolismus MeSH
- metabolické sítě a dráhy MeSH
- regulace genové exprese u rostlin MeSH
- regulátory růstu rostlin metabolismus fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- brassinosteroidy MeSH
- regulátory růstu rostlin MeSH
Brassinosteroid (BR) hormones are indispensable for root growth and control both cell division and cell elongation through the establishment of an increasing signalling gradient along the longitudinal root axis. Because of their limited mobility, the importance of BR distribution in achieving a signalling maximum is largely overlooked. Expression pattern analysis of all known BR biosynthetic enzymes revealed that not all cells in the Arabidopsis thaliana root possess full biosynthetic machinery, and that completion of biosynthesis relies on cell-to-cell movement of hormone precursors. We demonstrate that BR biosynthesis is largely restricted to the root elongation zone, where it overlaps with BR signalling maxima. Moreover, optimal root growth requires hormone concentrations to be low in the meristem and high in the root elongation zone, attributable to increased biosynthesis. Our finding that spatiotemporal regulation of hormone synthesis results in local hormone accumulation provides a paradigm for hormone-driven organ growth in the absence of long-distance hormone transport in plants.
Center for Plant Systems Biology VIB Ghent Belgium
College of Life Sciences Wuhan University Wuhan China
Department of Experimental Plant Biology Faculty of Science Charles University Prague Czech Republic
Department of Plant Biotechnology and Bioinformatics Ghent University Ghent Belgium
Zobrazit více v PubMed
Clouse, S. D. Brassinosteroids. Arabidopsis Book 9, e0151 (2011). PubMed DOI PMC
Clouse, S. D., Langford, M. & McMorris, T. C. A brassinosteroid-insensitive mutant in Arabidopsis thaliana exhibits multiple defects in growth and development. Plant Physiol. 111, 671–678 (1996). PubMed DOI PMC
Szekeres, M. et al. Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. Cell 85, 171–182 (1996). PubMed DOI
Li, J., Nagpal, P., Vitart, V., McMorris, T. C. & Chory, J. A role for brassinosteroids in light-dependent development of Arabidopsis. Science 272, 398–401 (1996). PubMed DOI
Gudesblat, G. E. et al. SPEECHLESS integrates brassinosteroid and stomata signalling pathways. Nat. Cell Biol. 14, 548–554 (2012). PubMed DOI
Kim, T.-W., Michniewicz, M., Bergmann, D. C. & Wang, Z.-Y. Brassinosteroid regulates stomatal development by GSK3-mediated inhibition of a MAPK pathway. Nature 482, 419–422 (2012). PubMed DOI PMC
Ye, Q. et al. Brassinosteroids control male fertility by regulating the expression of key genes involved in Arabidopsis anther and pollen development. Proc. Natl Acad. Sci. USA 107, 6100–6105 (2010). PubMed DOI PMC
Nolan, T. M., Vukašinović, N., Liu, D., Russinova, E. & Yin, Y. Brassinosteroids: multidimensional regulators of plant growth, development, and stress responses. Plant Cell 32, 295–318 (2020). PubMed DOI
Caño-Delgado, A. et al. BRL1 and BRL3 are novel brassinosteroid receptors that function in vascular differentiation in Arabidopsis. Development 131, 5341–5351 (2004). PubMed DOI
Kinoshita, T. et al. Binding of brassinosteroids to the extracellular domain of plant receptor kinase BRI1. Nature 433, 167–171 (2005). PubMed DOI
Li, J. et al. BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling. Cell 110, 213–222 (2002). PubMed DOI
Yin, Y. et al. BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation. Cell 109, 181–191 (2002). PubMed DOI
Vragović, K. et al. Translatome analyses capture of opposing tissue-specific brassinosteroid signals orchestrating root meristem differentiation. Proc. Natl Acad. Sci. USA 112, 923–928 (2015). PubMed DOI PMC
Noguchi, T. et al. Biosynthetic pathways of brassinolide in Arabidopsis. Plant Physiol. 124, 201–209 (2000). PubMed DOI PMC
Ohnishi, T. et al. C-23 hydroxylation by Arabidopsis CYP90C1 and CYP90D1 reveals a novel shortcut in brassinosteroid biosynthesis. Plant Cell 18, 3275–3288 (2006). PubMed DOI PMC
Ohnishi, T. et al. CYP90A1/CPD, a brassinosteroid biosynthetic cytochrome P450 of Arabidopsis, catalyzes C-3 oxidation. J. Biol. Chem. 287, 31551–31560 (2012). PubMed DOI PMC
Zhao, B. & Li, J. Regulation of brassinosteroid biosynthesis and inactivation. J. Integr. Plant Biol. 54, 746–759 (2012). PubMed DOI
Noguchi, T. et al. Arabidopsis det2 is defective in the conversion of (24R)-24-methylcholest-4-en-3-one to (24R)-24-methyl-5α-cholestan-3-one in brassinosteroid biosynthesis. Plant Physiol. 120, 833–840 (1999). PubMed DOI PMC
Davies, P. J. in Plant Hormones: Biosynthesis, Signal Transduction, Action! (ed Davies, P. J.) 16–35 (Springer, 2010).
Symons, G. M. & Reid, J. B. Brassinosteroids do not undergo long-distance transport in pea. Implications for the regulation of endogenous brassinosteroid levels. Plant Physiol. 135, 2196–2206 (2004). PubMed DOI PMC
Shimada, Y. et al. Organ-specific expression of brassinosteroid-biosynthetic genes and distribution of endogenous brassinosteroids in Arabidopsis. Plant Physiol. 131, 287–297 (2003). PubMed DOI PMC
Montoya, T. et al. Patterns of Dwarf expression and brassinosteroid accumulation in tomato reveal the importance of brassinosteroid synthesis during fruit development. Plant J. 42, 262–269 (2005). PubMed DOI
Symons, G. M., Ross, J. J., Jager, C. E. & Reid, J. B. Brassinosteroid transport. J. Exp. Bot. 59, 17–24 (2008). PubMed DOI
Jaillais, Y. & Vert, G. Brassinosteroid signaling and BRI1 dynamics went underground. Curr. Opin. Plant Biol. 33, 92–100 (2016). PubMed DOI PMC
Petricka, J. J., Winter, C. M. & Benfey, P. N. Control of Arabidopsis root development. Annu. Rev. Plant Biol. 63, 563–590 (2012). PubMed DOI PMC
Beemster, G. T. S. & Baskin, T. I. Analysis of cell division and elongation underlying the developmental acceleration of root growth in Arabidopsis thaliana. Plant Physiol. 116, 1515–1526 (1998). PubMed DOI PMC
González-García, M.-P. et al. Brassinosteroids control meristem size by promoting cell cycle progression in Arabidopsis roots. Development 138, 849–859 (2011). PubMed DOI
Kang, Y. H., Breda, A. & Hardtke, C. S. Brassinosteroid signaling directs formative cell divisions and protophloem differentiation in Arabidopsis root meristems. Development 144, 272–280 (2017). PubMed DOI PMC
Chaiwanon, J. & Wang, Z.-Y. Spatiotemporal brassinosteroid signaling and antagonism with auxin pattern stem cell dynamics in Arabidopsis roots. Curr. Biol. 25, 1031–1042 (2015). PubMed DOI PMC
Asami, T. et al. Characterization of brassinazole, a triazole-type brassinosteroid biosynthesis inhibitor. Plant Physiol. 123, 93–100 (2000). PubMed DOI PMC
Friedrichsen, D. M., Joazeiro, C. A. P., Li, J., Hunter, T. & Chory, J. Brassinosteroid-insensitive-1 is a ubiquitously expressed leucine-rich repeat receptor serine/threonine kinase. Plant Physiol. 123, 1247–1256 (2000). PubMed DOI PMC
Di Laurenzio, L. et al. The SCARECROW gene regulates an asymmetric cell division that is essential for generating the radial organization of the Arabidopsis root. Cell 86, 423–433 (1996). PubMed DOI
Hacham, Y. et al. Brassinosteroid perception in the epidermis controls root meristem size. Development 138, 839–848 (2011). PubMed DOI PMC
Turk, E. M. et al. CYP72B1 inactivates brassinosteroid hormones: an intersection between photomorphogenesis and plant steroid signal transduction. Plant Physiol. 133, 1643–1653 (2003). PubMed DOI PMC
Neff, M. M. et al. BAS1: a gene regulating brassinosteroid levels and light responsiveness in Arabidopsis. Proc. Natl Acad. Sci. USA 96, 15316–15323 (1999). PubMed DOI PMC
Huang, L. & Schiefelbein, J. Conserved gene expression programs in developing roots from diverse plants. Plant Cell 27, 2119–2132 (2015). PubMed DOI PMC
Beemster, G. T. S., De Vusser, K., De Tavernier, E., De Bock, K. & Inzé, D. Variation in growth rate between Arabidopsis ecotypes is correlated with cell division and A-type cyclin-dependent kinase activity. Plant Physiol. 129, 854–864 (2002). PubMed DOI PMC
Choe, S. et al. Overexpression of DWARF4 in the brassinosteroid biosynthetic pathway results in increased vegetative growth and seed yield in Arabidopsis. Plant J. 26, 573–582 (2001). PubMed DOI
Lee, M. M. & Schiefelbein, J. WEREWOLF, a MYB-related protein in Arabidopsis, is a position-dependent regulator of epidermal cell patterning. Cell 99, 473–483 (1999). PubMed DOI
Brady, S. M., Song, S., Dhugga, K. S., Rafalski, J. A. & Benfey, P. N. Combining expression and comparative evolutionary analysis. The COBRA gene family. Plant Physiol. 143, 172–187 (2007). PubMed DOI PMC
Bishop, G. J., Harrison, K. & Jones, J. D. G. The tomato Dwarf gene isolated by heterologous transposon tagging encodes the first member of a new cytochrome P450 family. Plant Cell 8, 959–969 (1996). PubMed PMC
Savaldi-Goldstein, S., Peto, C. & Chory, J. The epidermis both drives and restricts plant shoot growth. Nature 446, 199–202 (2007). PubMed DOI
Lozano-Elena, F., Planas-Riverola, A., Vilarrasa-Blasi, J., Schwab, R. & Caño-Delgado, A. I. Paracrine brassinosteroid signaling at the stem cell niche controls cellular regeneration. J. Cell Sci. 131, jcs204065 (2018). PubMed DOI PMC
Nomura, T. & Bishop, G. J. Cytochrome P450s in plant steroid hormone synthesis and metabolism. Phytochem. Rev. 5, 421–432 (2006). DOI
Stepanova, A. N. et al. TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell 133, 177–191 (2008). PubMed DOI
Park, J., Lee, Y., Martinoia, E. & Geisler, M. Plant hormone transporters: what we know and what we would like to know. BMC Biol. 15, 93 (2017). PubMed DOI PMC
Pavelescu, I. et al. A Sizer model for cell differentiation in Arabidopsis thaliana root growth. Mol. Syst. Biol. 14, e7687 (2018). PubMed DOI PMC
Zhang, R., Xia, X., Lindsey, K. & Ferreira da Rocha, P. S. C. Functional complementation of dwf4 mutants of Arabidopsis by overexpression of CYP724A1. J. Plant Physiol. 169, 421–428 (2012). PubMed DOI
Chory, J., Nagpal, P. & Peto, C. A. Phenotypic and genetic analysis of det2, a new mutant that affects light-regulated seedling development in Arabidopsis. Plant Cell 3, 445–459 (1991). PubMed DOI PMC
Kim, G.-T., Tsukaya, H. & Uchimiya, H. The ROTUNDIFOLIA3 gene of Arabidopsis thaliana encodes a new member of the cytochrome P-450 family that is required for the regulated polar elongation of leaf cells. Genes Dev. 12, 2381–2391 (1998). PubMed DOI PMC
Fujita, S. et al. Arabidopsis CYP90B1 catalyses the early C-22 hydroxylation of C PubMed DOI
Nomura, T. et al. The last reaction producing brassinolide is catalyzed by cytochrome P-450s, CYP85A3 in tomato and CYP85A2 in Arabidopsis. J. Biol. Chem. 280, 17873–17879 (2005). PubMed DOI
Irani, N. G. et al. Fluorescent castasterone reveals BRI1 signaling from the plasma membrane. Nat. Chem. Biol. 8, 583–589 (2012). PubMed DOI
Lv, B. et al. Brassinosteroids regulate root growth by controlling reactive oxygen species homeostasis and dual effect on ethylene synthesis in Arabidopsis. PLoS Genet. 14, e1007144 (2018). PubMed DOI PMC
Jaillais, Y., Belkhadir, Y., Balsemao-Pires, E., Dangl, J. L. & Chory, J. Extracellular leucine-rich repeats as a platform for receptor/coreceptor complex formation. Proc. Natl Acad. Sci. USA 108, 8503–8507 (2011). PubMed DOI PMC
Preibisch, S., Saalfeld, S. & Tomancak, P. Globally optimal stitching of tiled 3D microscopic image acquisitions. Bioinformatics 25, 1463–1465 (2009). PubMed DOI PMC
Olvera-Carrillo, Y. et al. A conserved core of programmed cell death indicator genes discriminates developmentally and environmentally induced programmed cell death in plants. Plant Physiol. 169, 2684–2699 (2015). PubMed PMC
Karimi, M., Depicker, A. & Hilson, P. Recombinational cloning with plant Gateway vectors. Plant Physiol. 145, 1144–1154 (2007). PubMed DOI PMC
Clough, S. J. & Bent, A. F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735–743 (1998). PubMed DOI
Northey, J. G. B. et al. Farnesylation mediates brassinosteroid biosynthesis to regulate abscisic acid responses. Nat. Plants 2, 16114 (2016). PubMed DOI
del Mar Marquès-Bueno, M. et al. A versatile Multisite Gateway-compatible promoter and transgenic line collection for cell type-specific functional genomics in Arabidopsis. Plant J. 85, 320–333 (2016). DOI
Siligato, R. et al. MultiSite Gateway-compatible cell type-specific gene-inducible system for plants. Plant Physiol. 170, 627–641 (2016). PubMed DOI
Oklestkova, J. et al. Immunoaffinity chromatography combined with tandem mass spectrometry: a new tool for the selective capture and analysis of brassinosteroid plant hormones. Talanta 170, 432–440 (2017). PubMed DOI
Structural insights into brassinosteroid export mediated by the Arabidopsis ABC transporter ABCB1
Analytical Methods for Brassinosteroid Analysis: Recent Advances and Applications
Plasmodesmata mediate cell-to-cell transport of brassinosteroid hormones
Influence of Exogenous 24-Epicasterone on the Hormonal Status of Soybean Plants