Liposomal Copermeation Assay Reveals Unexpected Membrane Interactions of Commonly Prescribed Drugs

. 2024 Jun 03 ; 21 (6) : 2673-2683. [epub] 20240429

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38682796

The permeation of small molecules across biological membranes is a crucial process that lies at the heart of life. Permeation is involved not only in the maintenance of homeostasis at the cell level but also in the absorption and biodistribution of pharmacologically active substances throughout the human body. Membranes are formed by phospholipid bilayers that represent an energy barrier for permeating molecules. Crossing this energy barrier is assumed to be a singular event, and permeation has traditionally been described as a first-order kinetic process, proportional only to the concentration gradient of the permeating substance. For a given membrane composition, permeability was believed to be a unique property dependent only on the permeating molecule itself. We provide experimental evidence that this long-held view might not be entirely correct. Liposomes were used in copermeation experiments with a fluorescent probe, where simultaneous permeation of two substances occurred over a single phospholipid bilayer. Using an assay of six commonly prescribed drugs, we have found that the presence of a copermeant can either enhance or suppress the permeation rate of the probe molecule, often more than 2-fold in each direction. This can have significant consequences for the pharmacokinetics and bioavailability of commonly prescribed drugs when used in combination and provide new insight into so-far unexplained drug-drug interactions as well as changing the perspective on how new drug candidates are evaluated and tested.

Zobrazit více v PubMed

DuBuske L. M. The Role of P-Glycoprotein and Organic Anion-Transporting Polypeptides in Drug Interactions. Drug Safety 2005, 28 (9), 789–801. 10.2165/00002018-200528090-00004. PubMed DOI

Meyer zu Schwabedissen H. E.; Ware J. A.; Tirona R. G.; Kim R. B. Identification, Expression, and Functional Characterization of Full-Length and Splice Variants of Murine Organic Anion Transporting Polypeptide 1b2. Mol. Pharmaceutics 2009, 6 (6), 1790–1797. 10.1021/mp900030w. PubMed DOI

Shitara Y.; Maeda K.; Ikejiri K.; Yoshida K.; Horie T.; Sugiyama Y. Clinical significance of organic anion transporting polypeptides (OATPs) in drug disposition: their roles in hepatic clearance and intestinal absorption. Biopharmaceutics & Drug Disposition 2013, 34 (1), 45–78. 10.1002/bdd.1823. PubMed DOI

Hadgraft J.; Lane M. E. Skin permeation: The years of enlightenment. Int. J. Pharm. 2005, 305 (1), 2–12. 10.1016/j.ijpharm.2005.07.014. PubMed DOI

Dvořáková K.; Štěpánek P.; Kroupová J.; Zbytovská J. N-Alkylmorpholines: Potent Dermal and Transdermal Skin Permeation Enhancers. Pharmaceutics 2022, 14 (1), 64.10.3390/pharmaceutics14010064. PubMed DOI PMC

Boix-Montañés A.; Celma-Lezcano C.; Obach-Vidal R.; Peraire-Guitart C. Collaborative permeation of drug and excipients in transdermal formulations. In vitro scrutiny for ethanol:limonene combinations. Eur. J. Pharm. Biopharm. 2022, 181, 239–248. 10.1016/j.ejpb.2022.11.004. PubMed DOI

Aungst B. J. Intestinal Permeation Enhancers. J. Pharm. Sci. 2000, 89 (4), 429–442. 10.1002/(SICI)1520-6017(200004)89:4<429::AID-JPS1>3.0.CO;2-J. PubMed DOI

Gupta R.; Badhe Y.; Rai B.; Mitragotri S. Molecular mechanism of the skin permeation enhancing effect of ethanol: a molecular dynamics study. RSC Adv. 2020, 10 (21), 12234–12248. 10.1039/D0RA01692F. PubMed DOI PMC

Lundborg M.; Wennberg C. L.; Narangifard A.; Lindahl E.; Norlén L. Predicting drug permeability through skin using molecular dynamics simulation. J. Controlled Release 2018, 283, 269–279. 10.1016/j.jconrel.2018.05.026. PubMed DOI

Kaushik D.; Batheja P.; Kilfoyle B.; Rai V.; Michniak-Kohn B. Percutaneous permeation modifiers: enhancement versus retardation. Expert Opinion on Drug Delivery 2008, 5 (5), 517–529. 10.1517/17425247.5.5.517. PubMed DOI

Balouch M.; Storchmannová K.; Štěpánek F.; Berka K. Computational Prodrug Design Methodology for Liposome Formulability Enhancement of Small-Molecule APIs. Mol. Pharmaceutics 2023, 20 (4), 2119–2127. 10.1021/acs.molpharmaceut.2c01078. PubMed DOI PMC

Sutherland J. J.; Daly T. M.; Liu X.; Goldstein K.; Johnston J. A.; Ryan T. P. Co-Prescription Trends in a Large Cohort of Subjects Predict Substantial Drug-Drug Interactions. PLoS One 2015, 10 (3), e011899110.1371/journal.pone.0118991. PubMed DOI PMC

Kansy M.; Senner F.; Gubernator K. Physicochemical High Throughput Screening: Parallel Artificial Membrane Permeation Assay in the Description of Passive Absorption Processes. J. Med. Chem. 1998, 41 (7), 1007–1010. 10.1021/jm970530e. PubMed DOI

Hidalgo I. J.; Raub T. J.; Borchardt R. T. Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology 1989, 96 (3), 736–749. 10.1016/0016-5085(89)90897-4. PubMed DOI

Schwöbel J. A. H.; Ebert A.; Bittermann K.; Huniar U.; Goss K.-U.; Klamt A. COSMOperm: Mechanistic Prediction of Passive Membrane Permeability for Neutral Compounds and Ions and Its pH Dependence. J. Phys. Chem. B 2020, 124 (16), 3343–3354. 10.1021/acs.jpcb.9b11728. PubMed DOI

Lomize A. L.; Pogozheva I. D. Physics-Based Method for Modeling Passive Membrane Permeability and Translocation Pathways of Bioactive Molecules. J. Chem. Inf. Model. 2019, 59 (7), 3198–3213. 10.1021/acs.jcim.9b00224. PubMed DOI PMC

Fujikawa M.; Ano R.; Nakao K.; Shimizu R.; Akamatsu M. Relationships between structure and high-throughput screening permeability of diverse drugs with artificial membranes: Application to prediction of Caco-2 cell permeability. Bioorg. Med. Chem. 2005, 13 (15), 4721–4732. 10.1016/j.bmc.2005.04.076. PubMed DOI

Lee C. T.; Comer J.; Herndon C.; Leung N.; Pavlova A.; Swift R. V.; Tung C.; Rowley C. N.; Amaro R. E.; Chipot C.; Wang Y.; Gumbart J. C. Simulation-Based Approaches for Determining Membrane Permeability of Small Compounds. J. Chem. Inf. Model. 2016, 56 (4), 721–733. 10.1021/acs.jcim.6b00022. PubMed DOI PMC

Barenholz Y. Doxil® — The first FDA-approved nano-drug: Lessons learned. J. Controlled Release 2012, 160 (2), 117–134. 10.1016/j.jconrel.2012.03.020. PubMed DOI

Jackson L. A.; Anderson E. J.; Rouphael N. G.; Roberts P. C.; Makhene M.; Coler R. N.; McCullough M. P.; Chappell J. D.; Denison M. R.; Stevens L. J.; Pruijssers A. J.; McDermott A.; Flach B.; Doria-Rose N. A.; Corbett K. S.; Morabito K. M.; O’Dell S.; Schmidt S. D.; Swanson P. A.; Padilla M.; Mascola J. R.; Neuzil K. M.; Bennett H.; Sun W.; Peters E.; Makowski M.; Albert J.; Cross K.; Buchanan W.; Pikaart-Tautges R.; Ledgerwood J. E.; Graham B. S.; Beigel J. H. An mRNA Vaccine against SARS-CoV-2 — Preliminary Report. New England Journal of Medicine 2020, 383 (20), 1920–1931. 10.1056/NEJMoa2022483. PubMed DOI PMC

Mulligan M. J.; Lyke K. E.; Kitchin N.; Absalon J.; Gurtman A.; Lockhart S.; Neuzil K.; Raabe V.; Bailey R.; Swanson K. A.; Li P.; Koury K.; Kalina W.; Cooper D.; Fontes-Garfias C.; Shi P.-Y.; Türeci Ö.; Tompkins K. R.; Walsh E. E.; Frenck R.; Falsey A. R.; Dormitzer P. R.; Gruber W. C.; Şahin U.; Jansen K. U. Phase I/II study of COVID-19 RNA vaccine BNT162b1 in adults. Nature 2020, 586 (7830), 589–593. 10.1038/s41586-020-2639-4. PubMed DOI

Has C.; Sunthar P. A comprehensive review on recent preparation techniques of liposomes. J. Liposome Res. 2020, 30 (4), 336–365. 10.1080/08982104.2019.1668010. PubMed DOI

Crommelin D. J. A.; van Hoogevest P.; Storm G. The role of liposomes in clinical nanomedicine development. What now? Now what?. J. Controlled Release 2020, 318, 256–263. 10.1016/j.jconrel.2019.12.023. PubMed DOI

Nasr G.; Greige-Gerges H.; Elaissari A.; Khreich N. Liposomal membrane permeability assessment by fluorescence techniques: Main permeabilizing agents, applications and challenges. Int. J. Pharm. 2020, 580, 11919810.1016/j.ijpharm.2020.119198. PubMed DOI

Eyer K.; Paech F.; Schuler F.; Kuhn P.; Kissner R.; Belli S.; Dittrich P. S.; Krämer S. D. A liposomal fluorescence assay to study permeation kinetics of drug-like weak bases across the lipid bilayer. J. Controlled Release 2014, 173, 102–109. 10.1016/j.jconrel.2013.10.037. PubMed DOI

Biedermann F.; Ghale G.; Hennig A.; Nau W. M. Fluorescent artificial receptor-based membrane assay (FARMA) for spatiotemporally resolved monitoring of biomembrane permeability. Commun. Biol. 2020, 3 (1), 383.10.1038/s42003-020-1108-9. PubMed DOI PMC

Li H.; Zhao T.; Sun Z. Analytical techniques and methods for study of drug-lipid membrane interactions. Rev. Anal. Chem. 2018, 37 (1), 20170012.10.1515/revac-2017-0012. DOI

Liu G.; Hou S.; Tong P.; Li J. Liposomes: Preparation, Characteristics, and Application Strategies in Analytical Chemistry. Critical Reviews in Analytical Chemistry 2022, 52 (2), 392–412. 10.1080/10408347.2020.1805293. PubMed DOI

Österberg T.; Svensson M.; Lundahl P. Chromatographic retention of drug molecules on immobilised liposomes prepared from egg phospholipids and from chemically pure phospholipids. European Journal of Pharmaceutical Sciences 2001, 12 (4), 427–439. 10.1016/S0928-0987(00)00183-4. PubMed DOI

Dharaiya N.; Aswal V. K.; Bahadur P. Characterization of Triton X-100 and its oligomer (Tyloxapol) micelles vis-à-vis solubilization of bisphenol A by spectral and scattering techniques. Colloids Surf., A 2015, 470, 230–239. 10.1016/j.colsurfa.2015.01.053. DOI

Pizzirusso A.; De Nicola A.; Sevink G. J. A.; Correa A.; Cascella M.; Kawakatsu T.; Rocco M.; Zhao Y.; Celino M.; Milano G. Biomembrane solubilization mechanism by Triton X-100: a computational study of the three stage model. Phys. Chem. Chem. Phys. 2017, 19 (44), 29780–29794. 10.1039/C7CP03871B. PubMed DOI

Drabik D.; Chodaczek G.; Kraszewski S.; Langner M. Mechanical Properties Determination of DMPC, DPPC, DSPC, and HSPC Solid-Ordered Bilayers. Langmuir 2020, 36 (14), 3826–3835. 10.1021/acs.langmuir.0c00475. PubMed DOI PMC

Bressler I.; Kohlbrecher J.; Thunemann A. F. SASfit: a tool for small-angle scattering data analysis using a library of analytical expressions. J. Appl. Crystallogr. 2015, 48 (5), 1587–1598. 10.1107/S1600576715016544. PubMed DOI PMC

Haša J.; Hanuš J.; Štěpánek F. Magnetically Controlled Liposome Aggregates for On-Demand Release of Reactive Payloads. ACS Appl. Mater. Interfaces 2018, 10 (24), 20306–20314. 10.1021/acsami.8b03891. PubMed DOI

Balouch M.; Šrejber M.; Šoltys M.; Janská P.; Štěpánek F.; Berka K. In silico screening of drug candidates for thermoresponsive liposome formulations. Molecular Systems Design Engineering 2021, 6 (5), 368–380. 10.1039/D0ME00160K. DOI

Cheng T.; Zhao Y.; Li X.; Lin F.; Xu Y.; Zhang X.; Li Y.; Wang R.; Lai L. Computation of Octanol–Water Partition Coefficients by Guiding an Additive Model with Knowledge. J. Chem. Inf. Model. 2007, 47 (6), 2140–2148. 10.1021/ci700257y. PubMed DOI

Gui L.; Lee K. K., Influenza Virus-Liposome Fusion Studies Using Fluorescence Dequenching and Cryo-electron Tomography. In Influenza Virus: Methods and Protocols, Yamauchi Y., Ed. Springer New York: New York, NY, 2018; pp 261–279. PubMed PMC

Michaelis E. K.; Zimbrick J. D.; McFaul J. A.; Lampe R. A.; Michaelis M. L. Ethanol effects on synaptic glutamate receptors and on liposomal membrane structure. Pharmacol., Biochem. Behav. 1980, 13, 197–202. 10.1016/S0091-3057(80)80031-1. PubMed DOI

Komatsu H.; Okada S. Effects of ethanol on permeability of phosphatidylcholine/cholesterol mixed liposomal membranes. Chem. Phys. Lipids 1997, 85 (1), 67–74. 10.1016/S0009-3084(96)02634-5. DOI

Schroeter A.; Eichner A.; Mueller J.; Neubert R. H. H.; Penetration Enhancers and Their Mechanism Studied on a Molecular Level. In Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement. Dragicevic N.; Maibach H. (Eds); Springer: Berlin, 2015, pp. 29−3710.1007/978-3-662-47039-8_3. DOI

Amidon G. L.; Lennernäs H.; Shah V. P.; Crison J. R. A Theoretical Basis for a Biopharmaceutic Drug Classification: The Correlation of in Vitro Drug Product Dissolution and in Vivo Bioavailability. Pharm. Res. 1995, 12 (3), 413–420. 10.1023/A:1016212804288. PubMed DOI

Yalkowsky S. H.; He Y.; Jain P.. Handbook of aqueous solubility data; CRC press: 2016.

O’Neil M. J.The Merck index: an encyclopedia of chemicals, drugs, and biologicals; RSC Publishing: 2013.

Schnablegger H.; Singh Y.. The SAXS guide: getting acquainted with the principles. 5th ed.; Anton Paar GmbH: Austria, 2023.

Battista S.; Marsicano V.; Arcadi A.; Galantini L.; Aschi M.; Allegritti E.; Del Giudice A.; Giansanti L. UV Properties and Loading into Liposomes of Quinoline Derivatives. Colloids and Interfaces 2021, 5 (2), 28.10.3390/colloids5020028. DOI

Scott H. L.; Skinkle A.; Kelley E. G.; Waxham M. N.; Levental I.; Heberle F. A. On the Mechanism of Bilayer Separation by Extrusion, or Why Your LUVs Are Not Really Unilamellar. Biophys. J. 2019, 117 (8), 1381–1386. 10.1016/j.bpj.2019.09.006. PubMed DOI PMC

Sachs J. N.; Nanda H.; Petrache H. I.; Woolf T. B. Changes in Phosphatidylcholine Headgroup Tilt and Water Order Induced by Monovalent Salts: Molecular Dynamics Simulations. Biophys. J. 2004, 86 (6), 3772–3782. 10.1529/biophysj.103.035816. PubMed DOI PMC

Chen R. F.; Knutson J. R. Mechanism of fluorescence concentration quenching of carboxyfluorescein in liposomes: Energy transfer to nonfluorescent dimers. Analytiacl Biochemistry 1988, 172 (1), 61–77. 10.1016/0003-2697(88)90412-5. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Investigating drug-liposome interactions using liposomal electrokinetic chromatography

. 2025 Apr ; 417 (10) : 2029-2038. [epub] 20250213

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace