N-Alkylmorpholines: Potent Dermal and Transdermal Skin Permeation Enhancers

. 2021 Dec 28 ; 14 (1) : . [epub] 20211228

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35056959

Grantová podpora
19-09600S Czech Science Foundation
A2_FCHT_2021_081 Specific University Research (MSMT)

Odkazy

PubMed 35056959
PubMed Central PMC8778526
DOI 10.3390/pharmaceutics14010064
PII: pharmaceutics14010064
Knihovny.cz E-zdroje

Transdermal drug delivery is an attractive non-invasive method offering numerous advantages over the conventional routes of administration. The main obstacle to drug transport is, however, the powerful skin barrier that needs to be modulated, for example, by transdermal permeation enhancers. Unfortunately, there are still only a few enhancers showing optimum properties including low toxicity and reversibility of enhancing effects. For this reason, we investigated a series of new N-alkylmorpholines with various side chains as potential enhancers in an in vitro permeation study, using three model permeants (theophylline, indomethacin, diclofenac). Moreover, electrical impedance, transepidermal water loss, cellular toxicity and infrared spectroscopy measurements were applied to assess the effect of enhancers on skin integrity, reversibility, toxicity and enhancers' mode of action, respectively. Our results showed a bell-shaped relationship between the enhancing activity and the hydrocarbon chain length of the N-alkylmorpholines, with the most efficient derivatives having 10-14 carbons for both transdermal and dermal delivery. These structures were even more potent than the unsaturated oleyl derivative. The best results were obtained for indomethacin, where particularly the C10-14 derivatives showed significantly stronger effects than the traditional enhancer Azone. Further experiments revealed reversibility in the enhancing effect, acceptable toxicity and a mode of action based predominantly on interactions with stratum corneum lipids.

Zobrazit více v PubMed

Ashok K., Nikhila P., Lakshmana P., Gopal V. Transdermal Drug Delivery System: An Overview. Int. J. Pharm. Sci. Rev. Res. 2010;3:49–54.

Sharadha M., Gowda D.V., Vishal Gupta N., Akhila A.R. An Overview on Topical Drug Delivery System—Updated Review. Int. J. Res. Pharm. Sci. 2020;11:368–385. doi: 10.26452/ijrps.v11i1.1831. DOI

Menon G.K., Norlén L. Skin Moisturization. CRC Press; Boca Raton, FL, USA: 2002. Stratum Corneum Ceramides and Their Role in Skin Barrier Function; pp. 55–84.

Prausnitz M.R., Langer R. Transdermal Drug Delivery. Nat. Biotechnol. 2008;26:1261–1268. doi: 10.1038/nbt.1504. PubMed DOI PMC

Harding C.R. The Stratum Corneum: Structure and Function in Health and Disease. Dermatol. Ther. 2004;17:6–15. doi: 10.1111/j.1396-0296.2004.04S1001.x. PubMed DOI

Barry B.W. Novel Mechanisms and Devices to Enable Successful Transdermal Drug Delivery. Eur. J. Pharm. Sci. 2001;14:101–114. doi: 10.1016/S0928-0987(01)00167-1. PubMed DOI

Moser K., Kriwet K., Naik A., Kalia Y.N., Guy R.H. Passive Skin Penetration Enhancement and Its Quantification in vitro. Eur. J. Pharm. Biopharm. 2001;52:103–112. doi: 10.1016/S0939-6411(01)00166-7. PubMed DOI

Menon G.K., Cleary G.W., Lane M.E. The Structure and Function of the Stratum Corneum. Int. J. Pharm. 2012;435:3–9. doi: 10.1016/j.ijpharm.2012.06.005. PubMed DOI

Chantasart D., Li S.K. Structure Enhancement Relationship of Chemical Penetration Enhancers in Drug Transport across the Stratum Corneum. Pharmaceutics. 2012;4:71–92. doi: 10.3390/pharmaceutics4010071. PubMed DOI PMC

Barry B.W. Lipid-Protein-Partitioning Theory of Skin Penetration Enhancement. J. Control. Release. 1991;15:237–248. doi: 10.1016/0168-3659(91)90115-T. PubMed DOI

Kováčik A., Kopečná M., Vávrová K. Permeation Enhancers in Transdermal Drug Delivery: Benefits and Limitations. Expert Opin. Drug Deliv. 2020;17:145–155. doi: 10.1080/17425247.2020.1713087. PubMed DOI

Williams A.C., Barry B.W. Penetration Enhancers. Adv. Drug Deliv. Rev. 2004;56:603–618. doi: 10.1016/j.addr.2003.10.025. PubMed DOI

Lane M.E. Skin Penetration Enhancers. Int. J. Pharm. 2013;447:12–21. doi: 10.1016/j.ijpharm.2013.02.040. PubMed DOI

European Medicines Agency . Guidline on Quality of Transdermal Patches. Committee for Medicinal Products for Human Use; London, UK: 2014. EMA/CHMP/QWP/608924/2014.

Food and Drug Administration . Guidance for Industry, Transdermal and Topical Delivery Systems–Product Development and Quality Considerations. Center for Drug Evaluation and Research (CDER); Silver Spring, MD, USA: 2019. FDA-2019-D-4447.

Vávrová K., Zbytovská J., Hrabálek A. Amphiphilic Transdermal Permeation Enhancers: Structure-Activity Relationships. Curr. Med. Chem. 2005;12:2273–2291. doi: 10.2174/0929867054864822. PubMed DOI

Phillips C.A., Michniak B.B. Transdermal Delivery of Drugs with Differing Lipophilicities Using Azone Analogs as Penetration Enhancers. Proc. Control. Release Soc. 1995;84:648–649. doi: 10.1002/jps.2600841208. PubMed DOI

Michniak B.B., Player M.R., Godwin D.A., Phillips C.A., Sowell J.W. In Vitro Evaluation of a Series of Azone Analogs as Dermal Penetration Enhancers: IV. Amines. Int. J. Pharm. 1995;116:201–209. doi: 10.1016/0378-5173(94)00294-F. DOI

Michniak B.B., Player M.R., Fuhrman L.C., Christensen C.A., Chapman J.M., Sowell J.W. In Vitro Evaluation of a Series of Azone Analogs as Dermal Penetration Enhancers: III. Acyclic Amides. Int. J. Pharm. 1994;110:231–239. doi: 10.1016/0378-5173(94)90245-3. DOI

Michniak B.B., Player M.R., Chapman J.M., Sowell J.W. Azone Analogues as Penetration Enhancers: Effect of Different Vehicles on Hydrocortisone Acetate Skin Permeation and Retention. J. Control. Release. 1994;32:147–154. doi: 10.1016/0168-3659(94)90053-1. DOI

Dragicevic N., Atkinson J.P., Maibach H.I. Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement. Springer; Berlin/Heidelberg, Germany: 2015. Chemical penetration enhancers: Classification and mode of action; pp. 78–107.

Jampílek J., Brychtová K. Azone Analogues: Classifcation, Design, and Transdermal Penetration Principles. Med. Res. Rev. 2012;32:907–947. doi: 10.1002/med.20227. PubMed DOI

Novotný M., Hrabálek A., Janůšová B., Novotný J., Vávrová K. Dicarboxylic Acid Esters as Transdermal Permeation Enhancers: Effects of Chain Number and Geometric Isomers. Bioorganic Med. Chem. Lett. 2009;19:344–347. doi: 10.1016/j.bmcl.2008.11.083. PubMed DOI

Školová B., Kováčik A., Tesař O., Opálka L., Vávrová K. Phytosphingosine, Sphingosine and Dihydrosphingosine Ceramides in Model Skin Lipid Membranes: Permeability and Biophysics. Biochim. Biophys. Acta-Biomembr. 2017;1859:824–834. doi: 10.1016/j.bbamem.2017.01.019. PubMed DOI

Kopečná M., Macháček M., Prchalová E., Štěpánek P., Drašar P., Kotora M., Vávrová K. Galactosyl Pentadecene Reversibly Enhances Transdermal and Topical Drug Delivery. Pharm. Res. 2017;34:2097–2108. doi: 10.1007/s11095-017-2214-3. PubMed DOI

Čuříková B.A., Procházková K., Filková B., Diblíková P., Svoboda J., Kováčik A., Vávrová K., Zbytovská J. Simplified Stratum Corneum Model Membranes for Studying the Effects of Permeation Enhancers. Int. J. Pharm. 2017;534:287–296. doi: 10.1016/j.ijpharm.2017.10.038. PubMed DOI

Kincl S., Meleh M., Veber M., Vrecer F. Study of Physicochemical Parameters Affecting the Release of Diclofenac Sodium from Lipophilic Matrix Tablets. Acta Chim. Slov. 2004;51:409–425.

Fasano W.J., Hinderliter P.M. The Tinsley LCR Databridge Model 6401 and Electrical Impedance Measurements to Evaluate Skin Integrity In Vitro. Toxicol. Vitro. 2004;18:725–729. doi: 10.1016/j.tiv.2004.01.003. PubMed DOI

Janůšová B., Školová B., Tükörová K., Wojnarová L., Šimůnek T., Přemysl M., Filipský T., Michal Ř., Roh J., Palát K., et al. Amino Acid Derivatives as Transdermal Permeation Enhancers. J. Control. Release. 2013;165:91–100. doi: 10.1016/j.jconrel.2012.11.003. PubMed DOI

Karande P., Jain A., Mitragotri S. Relationships Between Skin’s Electrical Impedance and Permeability in the Presence of Chemical Enhancers. J. Control Release. 2006;110:307–313. doi: 10.1016/j.jconrel.2005.10.012. PubMed DOI

Zhang Q., Murawsky M., LaCount T., Kasting G.B., Li S.K. Transepidermal Water Loss and Skin Conductance as Barrier Integrity Tests. Toxicol. Vitro. 2018;51:129–135. doi: 10.1016/j.tiv.2018.04.009. PubMed DOI PMC

Elkeeb R., Hui X., Chan H., Tian L., Maibach H.I. Correlation of Transepidermal Water Loss with Skin Barrier Properties in vitro: Comparison of Three Evaporimeters. Skin Res Technol. 2010;16:9–15. doi: 10.1111/j.1600-0846.2009.00406.x. PubMed DOI

Netzlaff F., Kostka K.H., Lehr C.M., Schaefer F.U. TEWL Measurements As a Routine Method for Evaluating the Integrity of Epidermis Sheets in Static Franz Type Diffusion Cells In Vitro. Limitations Shown by Transport Data Testing. Eur. J. Pharm. Biopharm. 2006;63:44–50. doi: 10.1016/j.ejpb.2005.10.009. PubMed DOI

Kopečná M., Macháček M., Prchalová E., Štěpánek P., Drašar P., Kotora M., Vávrová K. Dodecyl Amino Glucoside Enhances Transdermal and Topical Drug Delivery via Reversible Interaction with Skin Barrier Lipids. Pharm. Res. 2017;34:640–653. doi: 10.1007/s11095-016-2093-z. PubMed DOI

Nangia A., Patil S., Berner B., Boman A., Maibach H. In vitro Measurement of Transepidermal Water Loss: Rapid Alternative to Tritiated Water Permeation for Assessing Skin Barrier Functions. Int. J. Pharm. 1998;170:33–40. doi: 10.1016/S0378-5173(98)00137-9. DOI

Školová B., Janůšová B., Zbytovská J., Gooris G., Bouwstra J., Slepička P., Berka P., Roh J., Palát K., Hrabálek A., et al. Ceramides in the Skin Lipid Membranes: Length Matters. Langmuir. 2013;29:15624–15633. doi: 10.1021/la4037474. PubMed DOI

Mitragotri S. Modeling Skin Permeability to Hydrophilic and Hydrophobic Solutes Based on Four Permeation Pathways. J. Control. Release. 2003;86:69–92. doi: 10.1016/S0168-3659(02)00321-8. PubMed DOI

Karande P., Mitragotri S. Enhancement of Transdermal Drug Delivery via Synergistic Action of Chemicals. Biochim Biophys Acta Biomembr. 2009;1788:2362–2373. doi: 10.1016/j.bbamem.2009.08.015. PubMed DOI

Kanikkannan N., Kandimalla K., Lamba S., Singh M. Structure-Activity Relationship of Chemical Penetration Enhancers in Transdermal Drug Delivery. Curr. Med. Chem. 2012;7:593–608. doi: 10.2174/0929867003374840. PubMed DOI

Green P.G., Guy R.H., Hadgraft J. In vitro and in vivo Enhancement of Skin Permeation with Oleic and Lauric Acids. Int. J. Pharm. 1988;48:103–111. doi: 10.1016/0378-5173(88)90252-9. DOI

Zbytovská J., Vávrová K., Kiselev M.A., Lessieur P., Wartewig S., Neubert R.H.H. The Effects of Transdermal Permeation Enhancers on Thermotropic Phase Behaviour of a Stratum Corneum Lipid Model. Colloids Surf. A Physicochem. Eng. Asp. 2009;351:30–37. doi: 10.1016/j.colsurfa.2009.09.025. DOI

Naik A., Pechtold L.A.R.M., Potts R.O., Guy R.H. Mechanism of Oleic Acid-Induced Skin Penetration Enhancement in Vivo in Humans. J. Control. Release. 1995;37:299–306. doi: 10.1016/0168-3659(95)00088-7. DOI

Vávrová K., Hrabálek A., Doležal P., Šámalová L., Palát K., Zbytovská J., Holas T., Klimentová J. Synthetic Ceramide Analogues as Skin Permeation Enhancers: Structure-Activity Relationships. Bioorg. Med. Chem. Lett. 2003;11:5381–5390. doi: 10.1016/j.bmc.2003.09.034. PubMed DOI

Vávrová K., Hrabálek A., Doležal P., Holas T., Zbytovská J. L-Serine and Glycine Based Ceramide Analogues as Transdermal Permeation Enhancers: Polar Head Size and Hydrogen Bonding. Bioorganic Med. Chem. Lett. 2003;13:2351–2353. doi: 10.1016/S0960-894X(03)00409-8. PubMed DOI

Chen Y., Quan P., Liu X., Wang M., Fang L. Novel Chemical Permeation Enhancers for Transdermal Drug Delivery. Asian J. Pharm. Sci. 2014;9:51–64. doi: 10.1016/j.ajps.2014.01.001. DOI

Khandavilli S., Panchagnula R. Dermal Drug Delivery: Revisited. Drug Discov. Ther. 2008;2:64–73. PubMed

Karande P., Jain A., Mitragotri S. Discovery of Transdermal Penetration Enhancers by High-Throughput Screening. Nat. Biotechnol. 2004;22:192–197. doi: 10.1038/nbt928. PubMed DOI

Vovesná A., Zhigunov A., Balouch M., Zbytovská J. Ceramide Liposomes for Skin Barrier Recovery: A Novel Formulation Based on Natural Skin Lipids. Int. J. Pharm. 2021;596:120264. doi: 10.1016/j.ijpharm.2021.120264. PubMed DOI

Moore D.J., Rerek M.E., Mendelsohn R. FTIR Spectroscopy Studies of the Conformational Order and Phase Behavior of Ceramides. J. Phys. Chem. B. 1997;101:8933–8940. doi: 10.1021/jp9718109. DOI

Holas T., Zbytovská J., Vávrová K., Berka P., Mádlová M., Klimentová J., Hrabálek A. Thermotropic Phase Behavior of Long-chain Alkylammonium-alkylcarbamates. Thermochim. Acta. 2006;441:116–123. doi: 10.1016/j.tca.2005.12.012. DOI

Kong R., Bhargava R. Characterization of Porcine Skin as a Model for Human Skin Studies Using Infrared Spectroscopic Imaging. Analyst. 2011;136:2359–2366. doi: 10.1039/c1an15111h. PubMed DOI

Bhatia K.S., Gao S., Singh J. Effect of Penetration Enhancers and Iontophoresis on the FT-IR Spectroscopy and LHRH Permeability through Porcine Skin. J. Control. Release. 1997;47:81–89. doi: 10.1016/S0168-3659(96)01618-5. PubMed DOI

Kopečná M., Macháček M., Nováčková A., Paraskevopoulos G., Roh J., Vávrová K. Esters of Terpene Alcohols as Highly Potent, Reversible, and Low Toxic Skin Penetration Enhancers. Sci. Rep. 2019;9:14617. doi: 10.1038/s41598-019-51226-5. PubMed DOI PMC

Jacques-Jamin C., Jeanjean-Miquel C., Domergue A., Bessou-Touya S., Duplan H. Standardization of an in Vitro Model for Evaluating the Bioavailability of Topically Applied Compounds on Damaged Skin: Application to Sunscreen Analysis. Skin Pharmacol. Physiol. 2017;30:55–65. doi: 10.1159/000455196. PubMed DOI

Zhang Y., Li X., Yu H. Toxicity of Nanoparticle Surface Coating Ag-ents: Structure-Cytotoxicity Relationship. J. Environ. Sci. Health. C Environ. Carcinog. Ecotoxicol. Rev. 2016;34:204–215. doi: 10.1080/10590501.2016.1202762. PubMed DOI

Ponec M., Haverkort M., Lan Soei Y., Kempenaar J., Brussee J., Bodde H. Toxicity Screening of N-Alkylazacycloheptan-2-on Derivatives in Cultured Human Skin Cells: Structure-Toxicity Relationships. J. Pharm. Sci. 1989;78:738–741. doi: 10.1002/jps.2600780907. PubMed DOI

Jiang Q., Wu Y., Zhang H., Liu P., Yao J., Yao P., Chen J., Duan J. Development of Essential Oils as Skin Permeation Enhancers: Penetration Enhancement Effect and Mechanism of Action. Pharm. Biol. 2017;55:1592–1600. doi: 10.1080/13880209.2017.1312464. PubMed DOI PMC

Yi Q.F., Yan J., Tang S.Y., Huang H., Kang L.Y. Effect of Borneol on the Transdermal Permeation of Drugs with Differing Lipophilicity and Molecular Organization of Stratum Corneum Lipids. Drug Dev. Ind. Pharm. 2016;42:1086–1093. doi: 10.3109/03639045.2015.1107095. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...