Doxorubicin attached to HPMA copolymer via amide bond modifies the glycosylation pattern of EL4 cells

. 2010 Aug ; 31 (4) : 233-42. [epub] 20100224

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid20556593

To avoid the side effects of the anti-cancer drug doxorubicin (Dox), we conjugated this drug to a N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer backbone. Dox was conjugated via an amide bond (Dox-HPMA(AM), PK1) or a hydrazone pH-sensitive bond (Dox-HPMA(HYD)). In contrast to Dox and Dox-HPMA(HYD), Dox-HPMA(AM) accumulates within the cell's intracellular membranes, including those of the Golgi complex and endoplasmic reticulum, both involved in protein glycosylation. Flow cytometry was used to determine lectin binding and cell death, immunoblot to characterize the presence of CD7, CD43, CD44, and CD45, and high-performance anion exchange chromatography with pulsed amperometric detector analysis for characterization of plasma membrane saccharide composition. Incubation of EL4 cells with Dox-HPMA(AM) conjugate, in contrast to Dox or Dox-HPMA(HYD), increased the amounts of membrane surface-associated glycoproteins, as well as saccharide moieties recognized by peanut agglutinin, Erythrina cristagalli, or galectin-1 lectins. Only Dox-HPMA(AM) increased expression of the highly glycosylated membrane glycoprotein CD43, while expression of others (CD7, CD44, and CD45) was unaffected. The binding sites for galectin-1 are present on CD43 molecule. Furthermore, we present that EL4 treated with Dox-HPMA(AM) possesses increased sensitivity to galectin-1-induced apoptosis. In this study, we demonstrate that Dox-HPMA(AM) treatment changes glycosylation of the EL4 T cell lymphoma surface and sensitizes the cells to galectin-1-induced apoptosis.

Zobrazit více v PubMed

J Control Release. 2001 May 18;73(1):89-102 PubMed

Bioconjug Chem. 2000 Sep-Oct;11(5):664-73 PubMed

Bioessays. 2005 Jan;27(1):50-6 PubMed

Pharm Res. 1999 Jul;16(7):986-96 PubMed

Expert Opin Biol Ther. 2008 Jan;8(1):45-57 PubMed

Biochim Biophys Acta. 2008 Mar;1780(3):325-46 PubMed

Glycoconj J. 1998 Aug;15(8):737-47 PubMed

J Control Release. 2005 Dec 10;110(1):119-29 PubMed

J Exp Med. 1996 Aug 1;184(2):759-64 PubMed

J Immunol. 1999 Oct 1;163(7):3801-11 PubMed

J Control Release. 2004 Sep 30;99(2):301-14 PubMed

J Biol Chem. 1986 Aug 5;261(22):10119-26 PubMed

Cancer Cell. 2004 Mar;5(3):241-51 PubMed

Anal Biochem. 1988 Apr;170(1):54-62 PubMed

Folia Microbiol (Praha). 1997;42(3):277-87 PubMed

Eur J Pharm Biopharm. 2000 Jul;50(1):61-81 PubMed

J Control Release. 2003 Aug 28;91(1-2):1-16 PubMed

Trends Biotechnol. 2009 Jan;27(1):11-7 PubMed

Biochem Biophys Res Commun. 2008 May 23;370(1):149-53 PubMed

J Control Release. 2002 Apr 23;80(1-3):101-17 PubMed

J Clin Oncol. 2005 Dec 10;23(35):8932-41 PubMed

Scand J Immunol. 2005 Jul;62 Suppl 1:100-5 PubMed

J Immunol. 2006 Oct 15;177(8):5328-36 PubMed

J Control Release. 2000 Feb 14;64(1-3):63-79 PubMed

J Drug Target. 2006 Jul;14(6):391-403 PubMed

Bioconjug Chem. 2007 May-Jun;18(3):894-902 PubMed

Pharmacol Rev. 2004 Jun;56(2):185-229 PubMed

Hum Exp Toxicol. 2001 Sep;20(9):461-70 PubMed

J Control Release. 2008 Apr 21;127(2):110-20 PubMed

Anal Biochem. 1994 Jun;219(2):375-8 PubMed

J Biol Chem. 2005 Feb 18;280(7):5549-62 PubMed

Adv Enzyme Regul. 2001;41:189-207 PubMed

Adv Drug Deliv Rev. 2002 Sep 13;54(5):653-74 PubMed

Nature. 1995 Dec 14;378(6558):736-9 PubMed

J Immunol. 2000 Sep 1;165(5):2331-4 PubMed

Biomaterials. 1989 Jul;10(5):335-42 PubMed

Clin Cancer Res. 1999 Jan;5(1):83-94 PubMed

Cancer Immunol Immunother. 2007 Jan;56(1):35-47 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace