Computational Prodrug Design Methodology for Liposome Formulability Enhancement of Small-Molecule APIs
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36939094
PubMed Central
PMC10074381
DOI
10.1021/acs.molpharmaceut.2c01078
Knihovny.cz E-zdroje
- Klíčová slova
- COSMOperm, lipid bilayer, partitioning coefficient, permeability, prodrug,
- MeSH
- fluorouracil MeSH
- lipidové dvojvrstvy chemie MeSH
- liposomy * chemie MeSH
- permeabilita MeSH
- prekurzory léčiv * chemie MeSH
- tkáňová distribuce MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fluorouracil MeSH
- lipidové dvojvrstvy MeSH
- liposomy * MeSH
- prekurzory léčiv * MeSH
Encapsulation into liposomes is a formulation strategy that can improve efficacy and reduce side effects of active pharmaceutical ingredients (APIs) that exhibit poor biodistribution or pharmacokinetics when administered alone. However, many APIs are unsuitable for liposomal formulations intended for parenteral administration due to their inherent physicochemical properties─lipid bilayer permeability and water-lipid equilibrium partitioning coefficient. Too high permeability results in premature leakage from liposomes, while too low permeability means the API is not able to pass across biological barriers. There are several options for solving this issue: (i) change of the lipid bilayer composition, (ii) addition of a permeability enhancer, or (iii) modification of the chemical structure of the API to design a prodrug. The latter approach was taken in the present work, and the effect of small changes in the molecular structure of the API on its permeation rate across a lipidic bilayer was systematically explored utilizing computer simulations. An in silico methodology for prodrug design based on the COSMOperm approach has been proposed and applied to four APIs (abiraterone, cytarabine, 5-fluorouracil, and paliperidone). It is shown that the addition of aliphatic hydrocarbon chains via ester or amide bonds can render the molecule more lipophilic and increase its permeability by approximately 1 order of magnitude for each 2 carbon atoms added, while the formation of fructose adducts can provide a more hydrophilic character to the molecule and reduce its lipid partitioning. While partitioning was found to depend only on the size and type of the added group, permeability was found to depend also on the added group location. Overall, it has been shown that both permeability and lipid partitioning coefficient can be systematically shifted into the desired liposome formulability window by appropriate group contributions to the parental drug. This can significantly increase the portfolio of APIs for which liposome or lipid nanoparticle formulations become feasible.
Zobrazit více v PubMed
Barenholz Y. C. Doxil - The first FDA-approved nano-drug: Lessons learned. J. Controlled Release 2012, 160, 117–134. 10.1016/j.jconrel.2012.03.020. PubMed DOI
Mulligan M. J.; Lyke K. E.; Kitchin N.; Absalon J.; Gurtman A.; Lockhart S.; Neuzil K.; Raabe V.; Bailey R.; Swanson K. A.; Li P.; Koury K.; Kalina W.; Cooper D.; Fontes-Garfias C.; Shi P.-Y.; Türeci Ö.; Tompkins K. R.; Walsh E. E.; Frenck R.; Falsey A. R.; Dormitzer P. R.; Gruber W. C.; Şahin U.; Jansen K. U. Phase I/II study of COVID-19 RNA vaccine BNT162b1 in adults. Nature 2020, 586, 589–593. 10.1038/s41586-020-2639-4. PubMed DOI
Jackson L. A.; Anderson E. J.; Rouphael N. G.; Roberts P. C.; Makhene M.; Coler R. N.; McCullough M. P.; Chappell J. D.; Denison M. R.; Stevens L. J.; Pruijssers A. J.; McDermott A.; Flach B.; Doria-Rose N. A.; Corbett K. S.; Morabito K. M.; O’Dell S.; Schmidt S. D.; Swanson P. A.; Padilla M.; Mascola J. R.; Neuzil K. M.; Bennett H.; Sun W.; Peters E.; Makowski M.; Albert J.; Cross K.; Buchanan W.; Pikaart-Tautges R.; Ledgerwood J. E.; Graham B. S.; Beigel J. H. An mRNA Vaccine against SARS-CoV-2 - Preliminary Report. N. Engl. J. Med. 2020, 383, 1920–1931. 10.1056/NEJMoa2022483. PubMed DOI PMC
Filipczak N.; Pan J.; Yalamarty S. S. K.; Torchilin V. P. Recent advancements in liposome technology. Adv. Drug Delivery Rev. 2020, 156, 4–22. 10.1016/j.addr.2020.06.022. PubMed DOI
Crommelin D. J. A.; van Hoogevest P.; Storm G. The role of liposomes in clinical nanomedicine development. What now? Now what?. J. Controlled Release 2020, 318, 256–263. 10.1016/j.jconrel.2019.12.023. PubMed DOI
Balouch M.; Šrejber M.; Šoltys M.; Janská P.; Štěpánek F.; Berka K. In silico screening of drug candidates for thermoresponsive liposome formulations. Mol. Syst. Des. Eng. 2021, 6, 368–380. 10.1039/d0me00160K. DOI
Frallicciardi J.; Melcr J.; Siginou P.; Marrink S. J.; Poolman B. Membrane thickness, lipid phase and sterol type are determining factors in the permeability of membranes to small solutes. Nat. Commun. 2022, 13, 160510.1038/s41467-022-29272-x. PubMed DOI PMC
Paloncýová M.; Vávrová K.; Sovová Ž.; DeVane R.; Otyepka M.; Berka K. Structural Changes in Ceramide Bilayers Rationalize Increased Permeation through Stratum Corneum Models with Shorter Acyl Tails. J. Phys. Chem. B 2015, 119, 9811–9819. 10.1021/acs.jpcb.5b05522. PubMed DOI
Karande P.; Mitragotri S. Enhancement of transdermal drug delivery via synergistic action of chemicals. Biochim. Biophys. Acta, Biomembr. 2009, 1788, 2362–2373. 10.1016/j.bbamem.2009.08.015. PubMed DOI
Chen Y.; Quan P.; Liu X.; Wang M.; Fang L. Novel chemical permeation enhancers for transdermal drug delivery. Asian J. Pharm. Sci. 2014, 9, 51–64. 10.1016/j.ajps.2014.01.001. DOI
Gupta R.; Dwadasi B. S.; Rai B.; Mitragotri S. Effect of Chemical Permeation Enhancers on Skin Permeability: In silico screening using Molecular Dynamics simulations. Sci. Rep. 2019, 9, 145610.1038/s41598-018-37900-0. PubMed DOI PMC
Vovesná A.; Zhigunov A.; Balouch M.; Zbytovská J. Ceramide liposomes for skin barrier recovery: A novel formulation based on natural skin lipids. Int. J. Pharm. 2021, 596, 12026410.1016/j.ijpharm.2021.120264. PubMed DOI
Fathi-Azarbayjani A.; Ng K. X.; Chan Y. W.; Chan S. Y. Lipid Vesicles for the Skin Delivery of Diclofenac: Cerosomes vs. Other Lipid Suspensions. Adv. Pharm. Bull. 2015, 5, 25–33. 10.5681/apb.2015.004. PubMed DOI PMC
Berg S.; Edlund H.; Goundry W. R. F.; Bergström C. A. S.; Davies N. M. Considerations in the developability of peptides for oral administration when formulated together with transient permeation enhancers. Int. J. Pharm. 2022, 628, 12223810.1016/j.ijpharm.2022.122238. PubMed DOI
Maher S.; Mrsny R. J.; Brayden D. J. Intestinal permeation enhancers for oral peptide delivery. Adv. Drug Delivery Rev. 2016, 106, 277–319. 10.1016/j.addr.2016.06.005. PubMed DOI
Nasrallah H. A.; Gopal S.; Gassmann-Mayer C.; Quiroz J. A.; Lim P.; Eerdekens M.; Yuen E.; Hough D. A Controlled, Evidence-Based Trial of Paliperidone Palmitate, A Long-Acting Injectable Antipsychotic, in Schizophrenia. Neuropsychopharmacology 2010, 35, 2072–2082. 10.1038/npp.2010.79. PubMed DOI PMC
Fizazi K.; Scher H. I.; Molina A.; Logothetis C. J.; Chi K. N.; Jones R. J.; Staffurth J. N.; North S.; Vogelzang N. J.; Saad F.; Mainwaring P.; Harland S.; Goodman O. B.; Sternberg C. N.; Li J. H.; Kheoh T.; Haqq C. M.; de Bono J. S. Abiraterone acetate for treatment of metastatic castration-resistant prostate cancer: final overall survival analysis of the COU-AA-301 randomised, double-blind, placebo-controlled phase 3 study. Lancet Oncol. 2012, 13, 983–992. 10.1016/S1470-2045(12)70379-0. PubMed DOI
Awoonor-Williams E.; Rowley C. N. Molecular simulation of nonfacilitated membrane permeation. Biochim. Biophys. Acta, Biomembr. 2016, 1858, 1672–1687. 10.1016/j.bbamem.2015.12.014. PubMed DOI
Walter A.; Gutknecht J. Permeability of small nonelectrolytes through lipid bilayer membranes. J. Membr. Biol. 1986, 90, 207–217. 10.1007/BF01870127. PubMed DOI
Bittermann K.; Goss K.-U. Predicting apparent passive permeability of Caco-2 and MDCK cell-monolayers: A mechanistic model. PLoS One 2017, 12, e019031910.1371/journal.pone.0190319. PubMed DOI PMC
Shah V. M.; Nguyen D. X.; Al Fatease A.; Patel P.; Cote B.; Woo Y.; Gheewala R.; Pham Y.; Huynh M. G.; Gannett C.; Rao D. A.; Alani A. W. G. Liposomal formulation of hypoxia activated prodrug for the treatment of ovarian cancer. J. Controlled Release 2018, 291, 169–183. 10.1016/j.jconrel.2018.10.021. PubMed DOI
Kuznetsova N. R.; Svirshchevskaya E. V.; Skripnik I. V.; Zarudnaya E. N.; Benke A. N.; Gaenko G. P.; Molotkovskii Y. G.; Vodovozova E. L. Interaction of liposomes bearing a lipophilic doxorubicin prodrug with tumor cells. Biochem. (Moscow), Suppl. Ser. 2013, 7, 12–20. 10.1134/S1990747812050108. DOI
Shi L.; Wu X.; Li T.; Wu Y.; Song L.; Zhang W.; Yin L.; Wu Y.; Han W.; Yang Y. An esterase-activatable prodrug formulated liposome strategy: potentiating the anticancer therapeutic efficacy and drug safety. Nanoscale Adv. 2022, 4, 952–966. 10.1039/D1NA00838B. PubMed DOI PMC
MarvinSketch, 21.9; ChemAxon Ltd: Budapest, Hungary, 2021.
Banks J. L.; Beard H. S.; Cao Y.; Cho A. E.; Damm W.; Farid R.; Felts A. K.; Halgren T. A.; Mainz D. T.; Maple J. R.; Murphy R.; Philipp D. M.; Repasky M. P.; Zhang L. Y.; Berne B. J.; Friesner R. A.; Gallicchio E.; Levy R. M. Integrated Modeling Program, Applied Chemical Theory (IMPACT). J. Comput. Chem. 2005, 26, 1752–1780. 10.1002/jcc.20292. PubMed DOI PMC
TURBOMOLE 6.3, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007; TURBOMOLE GmbH, 2011.
Jämbeck J. P. M.; Lyubartsev A. P. Derivation and Systematic Validation of a Refined All-Atom Force Field for Phosphatidylcholine Lipids. J. Phys. Chem. B 2012, 116, 3164–3179. 10.1021/jp212503e. PubMed DOI PMC
Horn H. W.; Swope W. C.; Pitera J. W.; Madura J. D.; Dick T. J.; Hura G. L.; Head-Gordon T. Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew. J. Chem. Phys. 2004, 120, 9665–9678. 10.1063/1.1683075. PubMed DOI
Hess B.; Kutzner C.; van der Spoel D.; Lindahl E. GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. J. Chem. Theory Comput. 2008, 4, 435–447. 10.1021/ct700301q. PubMed DOI
Klamt A.; Jonas V.; Bürger T.; Lohrenz J. C. W. Refinement and Parametrization of COSMO-RS. J. Phys. Chem. A 1998, 102, 5074–5085. 10.1021/jp980017s. DOI
Klamt A.; Huniar U.; Spycher S.; Keldenich J. COSMOmic: A Mechanistic Approach to the Calculation of Membrane–Water Partition Coefficients and Internal Distributions within Membranes and Micelles. J. Phys. Chem. B 2008, 112, 12148–12157. 10.1021/jp801736k. PubMed DOI
Schwöbel J. A. H.; Ebert A.; Bittermann K.; Huniar U.; Goss K.-U.; Klamt A. COSMOperm: Mechanistic Prediction of Passive Membrane Permeability for Neutral Compounds and Ions and Its pH Dependence. J. Phys. Chem. B 2020, 124, 3343–3354. 10.1021/acs.jpcb.9b11728. PubMed DOI
Diamond J. M.; Katz Y. Interpretation of nonelectrolyte partition coefficients between dimyristoyl lecithin and water. J. Membr. Biol. 1974, 17, 121–154. 10.1007/BF01870176. PubMed DOI
Juračka J.; Šrejber M.; Melíková M.; Bazgier V.; Berka K. MolMeDB: Molecules on Membranes Database. Database 2019, 2019, baz07810.1093/database/baz078. PubMed DOI PMC
Domínguez A. R.; Hidalgo D. O.; Garrido R. V.; Sánchez E. T. Liposomal cytarabine (DepoCyte) for the treatment of neoplastic meningitis. Clin. Transl. Oncol. 2005, 7, 232–238. 10.1007/BF02710168. PubMed DOI
Tzogani K.; Penttilä K.; Lapveteläinen T.; Hemmings R.; Koenig J.; Freire J.; Márcia S.; Cole S.; Coppola P.; Flores B.; Barbachano Y.; Roige S. D.; Pignatti F. EMA Review of Daunorubicin and Cytarabine Encapsulated in Liposomes (Vyxeos, CPX-351) for the Treatment of Adults with Newly Diagnosed, Therapy-Related Acute Myeloid Leukemia or Acute Myeloid Leukemia with Myelodysplasia-Related Changes. Oncologist 2020, 25, e1414–e1420. 10.1634/theoncologist.2019-0785. PubMed DOI PMC
Chhikara B. S.; Parang K. Development of cytarabine prodrugs and delivery systems for leukemia treatment. Expert Opin. Drug Delivery 2010, 7, 1399–1414. 10.1517/17425247.2010.527330. PubMed DOI
Sun Y.; Sun J.; Shi S.; Jing Y.; Yin S.; Chen Y.; Li G.; Xu Y.; He Z. Synthesis, Transport and Pharmacokinetics of 5′-Amino Acid Ester Prodrugs of 1-β-d-Arabinofuranosylcytosine. Mol. Pharmaceutics 2009, 6, 315–325. 10.1021/mp800200a. PubMed DOI
Tessler S.; Mishalian I.; Peri-Naor R.; Gengrinovitch S.; Mayer R.; Yakar R. B.; Peled A.; Flaishon L. BST-236, a Novel Cytarabine Prodrug, Is Safer and As Effective As Cytarabine in In Vivo Leukemia Models. Blood 2018, 132, 1451.10.1182/blood-2018-99-112092. DOI
Liu R.; Zhang J.; Zhang D.; Wang K.; Luan Y. Self-assembling nanoparticles based on cytarabine prodrug for enhanced leukemia treatment. J. Mol. Liq. 2018, 251, 178–184. 10.1016/j.molliq.2017.12.086. DOI
Zhang J.; Zhang D.; Hu X.; Liu R.; Li Z.; Luan Y. Rational design of a new cytarabine-based prodrug for highly efficient oral delivery of cytarabine. RSC Adv. 2018, 8, 13103–13111. 10.1039/C8RA01225C. PubMed DOI PMC
Liposomal Copermeation Assay Reveals Unexpected Membrane Interactions of Commonly Prescribed Drugs