Enhancing Solubility and Bioefficacy of Stilbenes by Liposomal Encapsulation-The Case of Macasiamenene F

. 2024 Feb 27 ; 9 (8) : 9027-9039. [epub] 20240215

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38434860

Stilbenes in food and medicinal plants have been described as potent antiphlogistic and antioxidant compounds, and therefore, they present an interesting potential for the development of dietary supplements. Among them, macasiamenene F (MF) has recently been shown to be an effective anti-inflammatory and cytoprotective agent that dampens peripheral and CNS inflammation in vitro. Nevertheless, this promising molecule, like other stilbenes and a large percentage of drugs under development, faces poor water solubility, which results in trickier in vivo administration and low bioavailability. With the aim of improving MF solubility and developing a form optimized for in vivo administration, eight types of conventional liposomal nanocarriers and one type of PEGylated liposomes were formulated and characterized. In order to select the appropriate form of MF encapsulation, the safety of MF liposomal formulations was evaluated on THP-1 and THP-1-XBlue-MD2-CD14 monocytes, BV-2 microglia, and primary cortical neurons in culture. Furthermore, the cellular uptake of liposomes and the effect of encapsulation on MF anti-inflammatory effectiveness were evaluated on THP-1-XBlue-MD2-CD14 monocytes and BV-2 microglia. MF (5 mol %) encapsulated in PEGylated liposomes with an average size of 160 nm and polydispersity index of 0.122 was stable, safe, and the most promising form of MF encapsulation keeping its cytoprotective and anti-inflammatory properties.

Zobrazit více v PubMed

Alskär L. C.; Porter C. J. H.; Bergström C. A. S. Tools for Early Prediction of Drug Loading in Lipid-Based Formulations. Mol. Pharmaceutics 2016, 13 (1), 251–261. 10.1021/acs.molpharmaceut.5b00704. PubMed DOI PMC

Savjani K. T.; Gajjar A. K.; Savjani J. K. Drug Solubility: Importance and Enhancement Techniques. ISRN Pharm. 2012, 2012, 19572710.5402/2012/195727. PubMed DOI PMC

Bonechi C.; Martini S.; Ciani L.; Lamponi S.; Rebmann H.; Rossi C.; Ristori S. Using Liposomes as Carriers for Polyphenolic Compounds: The Case of Trans-Resveratrol. PLoS One 2012, 7 (8), e4143810.1371/journal.pone.0041438. PubMed DOI PMC

Lee M.-K. Liposomes for Enhanced Bioavailability of Water-Insoluble Drugs: In Vivo Evidence and Recent Approaches. Pharmaceutics 2020, 12 (3), 264.10.3390/pharmaceutics12030264. PubMed DOI PMC

Balouch M.; Storchmannová K.; Štěpánek F.; Berka K. Computational Prodrug Design Methodology for Liposome Formulability Enhancement of Small-Molecule APIs. Mol. Pharmaceutics 2023, 20, 2119.10.1021/acs.molpharmaceut.2c01078. PubMed DOI PMC

Zylberberg C.; Matosevic S. Pharmaceutical Liposomal Drug Delivery: A Review of New Delivery Systems and a Look at the Regulatory Landscape. Drug Delivery 2016, 23 (9), 3319–3329. 10.1080/10717544.2016.1177136. PubMed DOI

Khan A. R.; Yang X.; Fu M.; Zhai G. Recent Progress of Drug Nanoformulations Targeting to Brain. J. Controlled Release 2018, 291, 37–64. 10.1016/j.jconrel.2018.10.004. PubMed DOI

Bruch G. E.; Fernandes L. F.; Bassi B. L. T.; Alves M. T. R.; Pereira I. O.; Frézard F.; Massensini A. R. Liposomes for Drug Delivery in Stroke. Brain Res. Bull. 2019, 152, 246–256. 10.1016/j.brainresbull.2019.07.015. PubMed DOI

Monteiro N.; Martins A.; Reis R. L.; Neves N. M. Liposomes in Tissue Engineering and Regenerative Medicine. J. R. Soc. Interface 2014, 11 (101), 2014045910.1098/rsif.2014.0459. PubMed DOI PMC

Inglut C. T.; Sorrin A. J.; Kuruppu T.; Vig S.; Cicalo J.; Ahmad H.; Huang H.-C. Immunological and Toxicological Considerations for the Design of Liposomes. Nanomaterials 2020, 10 (2), 190.10.3390/nano10020190. PubMed DOI PMC

Daraee H.; Etemadi A.; Kouhi M.; Alimirzalu S.; Akbarzadeh A. Application of Liposomes in Medicine and Drug Delivery. Artif. Cells Nanomed. Biotechnol. 2016, 44 (1), 381–391. 10.3109/21691401.2014.953633. PubMed DOI

Sercombe L.; Veerati T.; Moheimani F.; Wu S. Y.; Sood A. K.; Hua S. Advances and Challenges of Liposome Assisted Drug Delivery. Front. Pharmacol. 2015, 6, 28610.3389/fphar.2015.00286. PubMed DOI PMC

Bulbake U.; Doppalapudi S.; Kommineni N.; Khan W. Liposomal Formulations in Clinical Use: An Updated Review. Pharmaceutics 2017, 9 (2), 12.10.3390/pharmaceutics9020012. PubMed DOI PMC

Hornedo-Ortega R.; Jourdes M.; Da Costa G.; Courtois A.; Gabaston J.; Teissedre P.-L.; Richard T.; Krisa S. Oxyresveratrol and Gnetol Glucuronide Metabolites: Chemical Production, Structural Identification, Metabolism by Human and Rat Liver Fractions, and In Vitro Anti-Inflammatory Properties. J. Agric. Food Chem. 2022, 70 (41), 13082–13092. 10.1021/acs.jafc.1c07831. PubMed DOI PMC

Leláková V.; Šmejkal K.; Jakubczyk K.; Veselý O.; Landa P.; Václavík J.; Bobáľ P.; Pížová H.; Temml V.; Steinacher T.; Schuster D.; Granica S.; Hanáková Z.; Hošek J. Parallel in Vitro and in Silico Investigations into Anti-Inflammatory Effects of Non-Prenylated Stilbenoids. Food Chem. 2019, 285, 431–440. 10.1016/j.foodchem.2019.01.128. PubMed DOI

Dvorakova M.; Landa P. Anti-Inflammatory Activity of Natural Stilbenoids: A Review. Pharmacol. Res. 2017, 124, 126–145. 10.1016/j.phrs.2017.08.002. PubMed DOI

Bradamante S.; Barenghi L.; Villa A. Cardiovascular Protective Effects of Resveratrol. Cardiovasc. Drug Rev. 2004, 22 (3), 169–188. 10.1111/j.1527-3466.2004.tb00139.x. PubMed DOI

Chen P.-C.; Tsai W.-J.; Ueng Y.-F.; Tzeng T.-T.; Chen H.-L.; Zhu P.-R.; Huang C.-H.; Shiao Y.-J.; Li W.-T. Neuroprotective and Antineuroinflammatory Effects of Hydroxyl-Functionalized Stilbenes and 2-Arylbenzo[b]Furans. J. Med. Chem. 2017, 60 (9), 4062–4073. 10.1021/acs.jmedchem.7b00376. PubMed DOI

Biais B.; Krisa S.; Cluzet S.; Da Costa G.; Waffo-Teguo P.; Mérillon J.-M.; Richard T. Antioxidant and Cytoprotective Activities of Grapevine Stilbenes. J. Agric. Food Chem. 2017, 65 (24), 4952–4960. 10.1021/acs.jafc.7b01254. PubMed DOI

Vesely O.; Baldovska S.; Kolesarova A. Enhancing Bioavailability of Nutraceutically Used Resveratrol and Other Stilbenoids. Nutrients 2021, 13 (9), 3095.10.3390/nu13093095. PubMed DOI PMC

Amri A.; Chaumeil J. C.; Sfar S.; Charrueau C. Administration of Resveratrol: What Formulation Solutions to Bioavailability Limitations?. J. Controlled Release 2012, 158 (2), 182–193. 10.1016/j.jconrel.2011.09.083. PubMed DOI

Censi R.; Di Martino P. Polymorph Impact on the Bioavailability and Stability of Poorly Soluble Drugs. Molecules 2015, 20 (10), 18759–18776. 10.3390/molecules201018759. PubMed DOI PMC

Hošek J.; Leláková V.; Bobál P.; Pížová H.; Gazdová M.; Malaník M.; Jakubczyk K.; Veselý O.; Landa P.; Temml V.; Schuster D.; Prachyawarakorn V.; Pailee P.; Ren G.; Zpurný F.; Oravec M.; Šmejkal K. Prenylated Stilbenoids Affect Inflammation by Inhibiting the NF-κB/AP-1 Signaling Pathway and Cyclooxygenases and Lipoxygenase. J. Nat. Prod 2019, 82 (7), 1839–1848. 10.1021/acs.jnatprod.9b00081. PubMed DOI

Leláková V.; Béraud-Dufour S.; Hošek J.; Šmejkal K.; Prachyawarakorn V.; Pailee P.; Widmann C.; Václavík J.; Coppola T.; Mazella J.; Blondeau N.; Heurteaux C. Therapeutic Potential of Prenylated Stilbenoid Macasiamenene F through Its Anti-Inflammatory and Cytoprotective Effects on LPS-Challenged Monocytes and Microglia. J. Ethnopharmacol. 2020, 263, 11314710.1016/j.jep.2020.113147. PubMed DOI

Fukuta T.; Ishii T.; Asai T.; Oku N. Applications of Liposomal Drug Delivery Systems to Develop Neuroprotective Agents for the Treatment of Ischemic Stroke. Biol. Pharm. Bull. 2019, 42 (3), 319–326. 10.1248/bpb.b18-00683. PubMed DOI

Montesinos R. N.Liposomal Drug Delivery to the Central Nervous System; IntechOpen, 2017.

Vieira D. B.; Gamarra L. F. Getting into the Brain: Liposome-Based Strategies for Effective Drug Delivery across the Blood–Brain Barrier. Int. J. Nanomed. 2016, 11, 5381–5414. 10.2147/IJN.S117210. PubMed DOI PMC

Fukuta T.; Asai T.; Sato A.; Namba M.; Yanagida Y.; Kikuchi T.; Koide H.; Shimizu K.; Oku N. Neuroprotection against Cerebral Ischemia/Reperfusion Injury by Intravenous Administration of Liposomal Fasudil. Int. J. Pharm. 2016, 506 (1–2), 129–137. 10.1016/j.ijpharm.2016.04.046. PubMed DOI

Fukuta T.; Ishii T.; Asai T.; Sato A.; Kikuchi T.; Shimizu K.; Minamino T.; Oku N. Treatment of Stroke with Liposomal Neuroprotective Agents under Cerebral Ischemia Conditions. Eur. J. Pharm. Biopharm. 2015, 97 (Pt A), 1–7. 10.1016/j.ejpb.2015.09.020. PubMed DOI

Yoneda S.; Fukuta T.; Ozono M.; Kogure K. Enhancement of Cerebroprotective Effects of Lipid Nanoparticles Encapsulating FK506 on Cerebral Ischemia/Reperfusion Injury by Particle Size Regulation. Biochem. Biophys. Res. Commun. 2022, 611, 53–59. 10.1016/j.bbrc.2022.04.080. PubMed DOI

Agrawal M.; Ajazuddin; Tripathi D. K.; Swarnlata S.; Shailendra S.; Antimisiaris S. G.; Mourtas S.; Hammarlund-Udenaes M.; Alexander A. Recent Advancements in Liposomes Targeting Strategies to Cross Blood-Brain Barrier (BBB) for the Treatment of Alzheimer’s Disease. J. Controlled Release 2017, 260, 61–77. 10.1016/j.jconrel.2017.05.019. PubMed DOI

Arias-Alpizar G.; Kong L.; Vlieg R. C.; Rabe A.; Papadopoulou P.; Meijer M. S.; Bonnet S.; Vogel S.; van Noort J.; Kros A.; Campbell F. Light-Triggered Switching of Liposome Surface Charge Directs Delivery of Membrane Impermeable Payloads in Vivo. Nat. Commun. 2020, 11 (1), 363810.1038/s41467-020-17360-9. PubMed DOI PMC

Suk J. S.; Xu Q.; Kim N.; Hanes J.; Ensign L. M. PEGylation as a Strategy for Improving Nanoparticle-Based Drug and Gene Delivery. Adv. Drug Delivery Rev. 2016, 99 (Pt A), 28–51. 10.1016/j.addr.2015.09.012. PubMed DOI PMC

Koudelka Š.; Turánek-Knötigová P.; Mašek J.; Korvasová Z.; Škrabalová M.; Plocková J.; Bartheldyová E.; Turánek J. Liposomes with High Encapsulation Capacity for Paclitaxel: Preparation, Characterisation and in Vivo Anticancer Effect. J. Pharm. Sci. 2010, 99 (5), 2309–2319. 10.1002/jps.21992. PubMed DOI

Šimečková P.; Hubatka F.; Kotouček J.; Turánek Knötigová P.; Mašek J.; Slavík J.; Kováč O.; Neča J.; Kulich P.; Hrebík D.; Stráská J.; Pěnčíková K.; Procházková J.; Diviš P.; Macaulay S.; Mikulík R.; Raška M.; Machala M.; Turánek J. Gadolinium Labelled Nanoliposomes as the Platform for MRI Theranostics: In Vitro Safety Study in Liver Cells and Macrophages. Sci. Rep. 2020, 10 (1), 478010.1038/s41598-020-60284-z. PubMed DOI PMC

Coimbra M.; Isacchi B.; van Bloois L.; Torano J. S.; Ket A.; Wu X.; Broere F.; Metselaar J. M.; Rijcken C. J. F.; Storm G.; Bilia R.; Schiffelers R. M. Improving Solubility and Chemical Stability of Natural Compounds for Medicinal Use by Incorporation into Liposomes. Int. J. Pharm. 2011, 416 (2), 433–442. 10.1016/j.ijpharm.2011.01.056. PubMed DOI

Beaumont P.; Faure C.; Courtois A.; Jourdes M.; Marchal A.; Teissedre P.-L.; Richard T.; Atgié C.; Krisa S. Trans-ε-Viniferin Encapsulation in Multi-Lamellar Liposomes: Consequences on Pharmacokinetic Parameters, Biodistribution and Glucuronide Formation in Rats. Nutrients 2021, 13 (12), 4212.10.3390/nu13124212. PubMed DOI PMC

Danaei M.; Dehghankhold M.; Ataei S.; Hasanzadeh Davarani F.; Javanmard R.; Dokhani A.; Khorasani S.; Mozafari M. R. Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics 2018, 10 (2), 5710.3390/pharmaceutics10020057. PubMed DOI PMC

Filippov S. K.; Khusnutdinov R.; Murmiliuk A.; Inam W.; Zakharova L. Y.; Zhang H.; Khutoryanskiy V. V. Dynamic Light Scattering and Transmission Electron Microscopy in Drug Delivery: A Roadmap for Correct Characterization of Nanoparticles and Interpretation of Results. Mater. Horiz. 2023, 10 (12), 5354–5370. 10.1039/D3MH00717K. PubMed DOI

Bellow S.; Latouche G.; Brown S. C.; Poutaraud A.; Cerovic Z. G. In Vivo Localization at the Cellular Level of Stilbene Fluorescence Induced by Plasmopara Viticola in Grapevine Leaves. J. Exp. Bot. 2012, 63 (10), 3697–3707. 10.1093/jxb/ers060. PubMed DOI PMC

Cadena P. G.; Pereira M. A.; Cordeiro R. B. S.; Cavalcanti I. M. F.; Barros Neto B.; Pimentel M. do C. C. B.; Lima Filho J. L.; Silva V. L.; Santos-Magalhães N. S. Nanoencapsulation of Quercetin and Resveratrol into Elastic Liposomes. Biochim. Biophys. Acta 2013, 1828 (2), 309–316. 10.1016/j.bbamem.2012.10.022. PubMed DOI

Pecyna P.; Wargula J.; Murias M.; Kucinska M. More Than Resveratrol: New Insights into Stilbene-Based Compounds. Biomolecules 2020, 10 (8), 1111.10.3390/biom10081111. PubMed DOI PMC

Zhou T.; Jiang Y.; Zeng B.; Yang B. The Cancer Preventive Activity and Mechanisms of Prenylated Resveratrol and Derivatives. Curr. Res. Toxicol. 2023, 5, 10011310.1016/j.crtox.2023.100113. PubMed DOI PMC

Yang S.-C.; Tseng C.-H.; Wang P.-W.; Lu P.-L.; Weng Y.-H.; Yen F.-L.; Fang J.-Y. Pterostilbene, a Methoxylated Resveratrol Derivative, Efficiently Eradicates Planktonic, Biofilm, and Intracellular MRSA by Topical Application. Front. Microbiol. 2017, 8, 1103.10.3389/fmicb.2017.01103. PubMed DOI PMC

Leláková V.Evaluation of the Influence of Selected Stilbenes on Neuroprotection against Stroke with a Focus on Inflammatory Signaling, Doctoral Dissertation; Université Côte d’Azur: Nice, France; Masaryk University: Brno, Czech Republic, 2020.

Chang C.-C.; Liu D.-Z.; Lin S.-Y.; Liang H.-J.; Hou W.-C.; Huang W.-J.; Chang C.-H.; Ho F.-M.; Liang Y.-C. Liposome Encapsulation Reduces Cantharidin Toxicity. Food Chem. Toxicol. 2008, 46 (9), 3116–3121. 10.1016/j.fct.2008.06.084. PubMed DOI

Pailee P.; Sangpetsiripan S.; Mahidol C.; Ruchirawat S.; Prachyawarakorn V. Cytotoxic and Cancer Chemopreventive Properties of Prenylated Stilbenoids from Macaranga Siamensis. Tetrahedron 2015, 71 (34), 5562–5571. 10.1016/j.tet.2015.06.058. DOI

Kuronuma K.; Mitsuzawa H.; Takeda K.; Nishitani C.; Chan E. D.; Kuroki Y.; Nakamura M.; Voelker D. R. Anionic Pulmonary Surfactant Phospholipids Inhibit Inflammatory Responses from Alveolar Macrophages and U937 Cells by Binding the Lipopolysaccharide-Interacting Proteins CD14 and MD-2. J. Biol. Chem. 2009, 284 (38), 25488–25500. 10.1074/jbc.M109.040832. PubMed DOI PMC

Numata M.; Voelker D. R. ′Inflammatory and Anti-Viral Actions of Anionic Pulmonary Surfactant Phospholipids. Biochim. Biophys. Acta 2022, 1867 (6), 15913910.1016/j.bbalip.2022.159139. PubMed DOI PMC

Filion M. C.; Phillips N. C. Anti-Inflammatory Activity of Cationic Lipids. Br. J. Pharmacol. 1997, 122 (3), 551–557. 10.1038/sj.bjp.0701396. PubMed DOI PMC

Kann O.; Kovács R. Mitochondria and Neuronal Activity. Am. J. Physiol. Cell Physiol. 2007, 292 (2), C641–C657. 10.1152/ajpcell.00222.2006. PubMed DOI

Azzazy H. M. E.; Hong K.; Wu M.-C.; Gross G. W. Interaction of Cationic Liposomes with Cells of Electrically Active Neuronal Networks in Culture. Brain Res. 1995, 695 (2), 231–236. 10.1016/0006-8993(95)00710-8. PubMed DOI

Cui S.; Wang Y.; Gong Y.; Lin X.; Zhao Y.; Zhi D.; Zhou Q.; Zhang S. Correlation of the Cytotoxic Effects of Cationic Lipids with Their Headgroups. Toxicol. Res. 2018, 7 (3), 473–479. 10.1039/C8TX00005K. PubMed DOI PMC

Filion M. C.; Phillips N. C. Toxicity and Immunomodulatory Activity of Liposomal Vectors Formulated with Cationic Lipids toward Immune Effector Cells. Biochim. Biophys. Acta 1997, 1329 (2), 345–356. 10.1016/S0005-2736(97)00126-0. PubMed DOI

Takano S.; Aramaki Y.; Tsuchiya S. Physicochemical Properties of Liposomes Affecting Apoptosis Induced by Cationic Liposomes in Macrophages. Pharm. Res. 2003, 20 (7), 962–968. 10.1023/A:1024441702398. PubMed DOI

Arias J. L. Liposomes in Drug Delivery: A Patent Review (2007 – Present). Expert Opin. Ther. Pat. 2013, 23 (11), 1399–1414. 10.1517/13543776.2013.828035. PubMed DOI

Huang M.; Liang C.; Tan C.; Huang S.; Ying R.; Wang Y.; Wang Z.; Zhang Y. Liposome Co-Encapsulation as a Strategy for the Delivery of Curcumin and Resveratrol. Food Funct. 2019, 10 (10), 6447–6458. 10.1039/C9FO01338E. PubMed DOI

Narayanan N. K.; Nargi D.; Randolph C.; Narayanan B. A. Liposome Encapsulation of Curcumin and Resveratrol in Combination Reduces Prostate Cancer Incidence in PTEN Knockout Mice. Int. J. Cancer 2009, 125 (1), 1–8. 10.1002/ijc.24336. PubMed DOI

Soo E.; Thakur S.; Qu Z.; Jambhrunkar S.; Parekh H. S.; Popat A. Enhancing Delivery and Cytotoxicity of Resveratrol through a Dual Nanoencapsulation Approach. J. Colloid Interface Sci. 2016, 462, 368–374. 10.1016/j.jcis.2015.10.022. PubMed DOI

Wei X.-Q.; Zhu J.-F.; Wang X.-B.; Ba K. Improving the Stability of Liposomal Curcumin by Adjusting the Inner Aqueous Chamber pH of Liposomes. ACS Omega 2020, 5 (2), 1120–1126. 10.1021/acsomega.9b03293. PubMed DOI PMC

Peng R.-M.; Lin G.-R.; Ting Y.; Hu J.-Y. Oral Delivery System Enhanced the Bioavailability of Stilbenes: Resveratrol and Pterostilbene. Biofactors 2018, 44 (1), 5–15. 10.1002/biof.1405. PubMed DOI

Nasri H.; Baradaran A.; Shirzad H.; Rafieian-Kopaei M. New Concepts in Nutraceuticals as Alternative for Pharmaceuticals. Int. J. Prev. Med. 2014, 5 (12), 1487–1499. PubMed PMC

Tauskela J. S.; Aylsworth A.; Hewitt M.; Brunette E.; Blondeau N. Failure and Rescue of Preconditioning-Induced Neuroprotection in Severe Stroke-like Insults. Neuropharmacology 2016, 105, 533–542. 10.1016/j.neuropharm.2016.02.007. PubMed DOI

Vohlídalová E.Inkorporace Macasiamenene F Do Liposomů – Fyzikální Charakterizace [Incorporation of Macasiamenene F into Liposomes – Physical Characterization, Advanced Master’s Thesis; Veterinární a Farmaceutická Univerzita Brno: Brno, 2020.

Blasi E.; Barluzzi R.; Bocchini V.; Mazzolla R.; Bistoni F. Immortalization of Murine Microglial Cells by a V-Raf/v-Myc Carrying Retrovirus. J. Neuroimmunol. 1990, 27 (2–3), 229–237. 10.1016/0165-5728(90)90073-V. PubMed DOI

Bourourou M.; Gouix E.; Melis N.; Friard J.; Heurteaux C.; Tauc M.; Blondeau N. Inhibition of eIF5A Hypusination Pathway as a New Pharmacological Target for Stroke Therapy. J. Cereb. Blood Flow Metab. 2021, 41 (5), 1080–1090. 10.1177/0271678X20928882. PubMed DOI PMC

Triantafilou K.; Triantafilou M.; Dedrick R. L. A CD14-Independent LPS Receptor Cluster. Nat. Immunol. 2001, 2 (4), 338.10.1038/86342. PubMed DOI

Taka E.; Mazzio E. A.; Goodman C. B.; Redmon N.; Flores-Rozas H.; Reams R.; Darling-Reed S.; Soliman K. F. A. Anti-Inflammatory Effects of Thymoquinone in Activated BV-2 Microglia Cells. J. Neuroimmunol. 2015, 286, 5–12. 10.1016/j.jneuroim.2015.06.011. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace