Enhancing Solubility and Bioefficacy of Stilbenes by Liposomal Encapsulation-The Case of Macasiamenene F
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38434860
PubMed Central
PMC10905713
DOI
10.1021/acsomega.3c07380
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Stilbenes in food and medicinal plants have been described as potent antiphlogistic and antioxidant compounds, and therefore, they present an interesting potential for the development of dietary supplements. Among them, macasiamenene F (MF) has recently been shown to be an effective anti-inflammatory and cytoprotective agent that dampens peripheral and CNS inflammation in vitro. Nevertheless, this promising molecule, like other stilbenes and a large percentage of drugs under development, faces poor water solubility, which results in trickier in vivo administration and low bioavailability. With the aim of improving MF solubility and developing a form optimized for in vivo administration, eight types of conventional liposomal nanocarriers and one type of PEGylated liposomes were formulated and characterized. In order to select the appropriate form of MF encapsulation, the safety of MF liposomal formulations was evaluated on THP-1 and THP-1-XBlue-MD2-CD14 monocytes, BV-2 microglia, and primary cortical neurons in culture. Furthermore, the cellular uptake of liposomes and the effect of encapsulation on MF anti-inflammatory effectiveness were evaluated on THP-1-XBlue-MD2-CD14 monocytes and BV-2 microglia. MF (5 mol %) encapsulated in PEGylated liposomes with an average size of 160 nm and polydispersity index of 0.122 was stable, safe, and the most promising form of MF encapsulation keeping its cytoprotective and anti-inflammatory properties.
Zobrazit více v PubMed
Alskär L. C.; Porter C. J. H.; Bergström C. A. S. Tools for Early Prediction of Drug Loading in Lipid-Based Formulations. Mol. Pharmaceutics 2016, 13 (1), 251–261. 10.1021/acs.molpharmaceut.5b00704. PubMed DOI PMC
Savjani K. T.; Gajjar A. K.; Savjani J. K. Drug Solubility: Importance and Enhancement Techniques. ISRN Pharm. 2012, 2012, 19572710.5402/2012/195727. PubMed DOI PMC
Bonechi C.; Martini S.; Ciani L.; Lamponi S.; Rebmann H.; Rossi C.; Ristori S. Using Liposomes as Carriers for Polyphenolic Compounds: The Case of Trans-Resveratrol. PLoS One 2012, 7 (8), e4143810.1371/journal.pone.0041438. PubMed DOI PMC
Lee M.-K. Liposomes for Enhanced Bioavailability of Water-Insoluble Drugs: In Vivo Evidence and Recent Approaches. Pharmaceutics 2020, 12 (3), 264.10.3390/pharmaceutics12030264. PubMed DOI PMC
Balouch M.; Storchmannová K.; Štěpánek F.; Berka K. Computational Prodrug Design Methodology for Liposome Formulability Enhancement of Small-Molecule APIs. Mol. Pharmaceutics 2023, 20, 2119.10.1021/acs.molpharmaceut.2c01078. PubMed DOI PMC
Zylberberg C.; Matosevic S. Pharmaceutical Liposomal Drug Delivery: A Review of New Delivery Systems and a Look at the Regulatory Landscape. Drug Delivery 2016, 23 (9), 3319–3329. 10.1080/10717544.2016.1177136. PubMed DOI
Khan A. R.; Yang X.; Fu M.; Zhai G. Recent Progress of Drug Nanoformulations Targeting to Brain. J. Controlled Release 2018, 291, 37–64. 10.1016/j.jconrel.2018.10.004. PubMed DOI
Bruch G. E.; Fernandes L. F.; Bassi B. L. T.; Alves M. T. R.; Pereira I. O.; Frézard F.; Massensini A. R. Liposomes for Drug Delivery in Stroke. Brain Res. Bull. 2019, 152, 246–256. 10.1016/j.brainresbull.2019.07.015. PubMed DOI
Monteiro N.; Martins A.; Reis R. L.; Neves N. M. Liposomes in Tissue Engineering and Regenerative Medicine. J. R. Soc. Interface 2014, 11 (101), 2014045910.1098/rsif.2014.0459. PubMed DOI PMC
Inglut C. T.; Sorrin A. J.; Kuruppu T.; Vig S.; Cicalo J.; Ahmad H.; Huang H.-C. Immunological and Toxicological Considerations for the Design of Liposomes. Nanomaterials 2020, 10 (2), 190.10.3390/nano10020190. PubMed DOI PMC
Daraee H.; Etemadi A.; Kouhi M.; Alimirzalu S.; Akbarzadeh A. Application of Liposomes in Medicine and Drug Delivery. Artif. Cells Nanomed. Biotechnol. 2016, 44 (1), 381–391. 10.3109/21691401.2014.953633. PubMed DOI
Sercombe L.; Veerati T.; Moheimani F.; Wu S. Y.; Sood A. K.; Hua S. Advances and Challenges of Liposome Assisted Drug Delivery. Front. Pharmacol. 2015, 6, 28610.3389/fphar.2015.00286. PubMed DOI PMC
Bulbake U.; Doppalapudi S.; Kommineni N.; Khan W. Liposomal Formulations in Clinical Use: An Updated Review. Pharmaceutics 2017, 9 (2), 12.10.3390/pharmaceutics9020012. PubMed DOI PMC
Hornedo-Ortega R.; Jourdes M.; Da Costa G.; Courtois A.; Gabaston J.; Teissedre P.-L.; Richard T.; Krisa S. Oxyresveratrol and Gnetol Glucuronide Metabolites: Chemical Production, Structural Identification, Metabolism by Human and Rat Liver Fractions, and In Vitro Anti-Inflammatory Properties. J. Agric. Food Chem. 2022, 70 (41), 13082–13092. 10.1021/acs.jafc.1c07831. PubMed DOI PMC
Leláková V.; Šmejkal K.; Jakubczyk K.; Veselý O.; Landa P.; Václavík J.; Bobáľ P.; Pížová H.; Temml V.; Steinacher T.; Schuster D.; Granica S.; Hanáková Z.; Hošek J. Parallel in Vitro and in Silico Investigations into Anti-Inflammatory Effects of Non-Prenylated Stilbenoids. Food Chem. 2019, 285, 431–440. 10.1016/j.foodchem.2019.01.128. PubMed DOI
Dvorakova M.; Landa P. Anti-Inflammatory Activity of Natural Stilbenoids: A Review. Pharmacol. Res. 2017, 124, 126–145. 10.1016/j.phrs.2017.08.002. PubMed DOI
Bradamante S.; Barenghi L.; Villa A. Cardiovascular Protective Effects of Resveratrol. Cardiovasc. Drug Rev. 2004, 22 (3), 169–188. 10.1111/j.1527-3466.2004.tb00139.x. PubMed DOI
Chen P.-C.; Tsai W.-J.; Ueng Y.-F.; Tzeng T.-T.; Chen H.-L.; Zhu P.-R.; Huang C.-H.; Shiao Y.-J.; Li W.-T. Neuroprotective and Antineuroinflammatory Effects of Hydroxyl-Functionalized Stilbenes and 2-Arylbenzo[b]Furans. J. Med. Chem. 2017, 60 (9), 4062–4073. 10.1021/acs.jmedchem.7b00376. PubMed DOI
Biais B.; Krisa S.; Cluzet S.; Da Costa G.; Waffo-Teguo P.; Mérillon J.-M.; Richard T. Antioxidant and Cytoprotective Activities of Grapevine Stilbenes. J. Agric. Food Chem. 2017, 65 (24), 4952–4960. 10.1021/acs.jafc.7b01254. PubMed DOI
Vesely O.; Baldovska S.; Kolesarova A. Enhancing Bioavailability of Nutraceutically Used Resveratrol and Other Stilbenoids. Nutrients 2021, 13 (9), 3095.10.3390/nu13093095. PubMed DOI PMC
Amri A.; Chaumeil J. C.; Sfar S.; Charrueau C. Administration of Resveratrol: What Formulation Solutions to Bioavailability Limitations?. J. Controlled Release 2012, 158 (2), 182–193. 10.1016/j.jconrel.2011.09.083. PubMed DOI
Censi R.; Di Martino P. Polymorph Impact on the Bioavailability and Stability of Poorly Soluble Drugs. Molecules 2015, 20 (10), 18759–18776. 10.3390/molecules201018759. PubMed DOI PMC
Hošek J.; Leláková V.; Bobál P.; Pížová H.; Gazdová M.; Malaník M.; Jakubczyk K.; Veselý O.; Landa P.; Temml V.; Schuster D.; Prachyawarakorn V.; Pailee P.; Ren G.; Zpurný F.; Oravec M.; Šmejkal K. Prenylated Stilbenoids Affect Inflammation by Inhibiting the NF-κB/AP-1 Signaling Pathway and Cyclooxygenases and Lipoxygenase. J. Nat. Prod 2019, 82 (7), 1839–1848. 10.1021/acs.jnatprod.9b00081. PubMed DOI
Leláková V.; Béraud-Dufour S.; Hošek J.; Šmejkal K.; Prachyawarakorn V.; Pailee P.; Widmann C.; Václavík J.; Coppola T.; Mazella J.; Blondeau N.; Heurteaux C. Therapeutic Potential of Prenylated Stilbenoid Macasiamenene F through Its Anti-Inflammatory and Cytoprotective Effects on LPS-Challenged Monocytes and Microglia. J. Ethnopharmacol. 2020, 263, 11314710.1016/j.jep.2020.113147. PubMed DOI
Fukuta T.; Ishii T.; Asai T.; Oku N. Applications of Liposomal Drug Delivery Systems to Develop Neuroprotective Agents for the Treatment of Ischemic Stroke. Biol. Pharm. Bull. 2019, 42 (3), 319–326. 10.1248/bpb.b18-00683. PubMed DOI
Montesinos R. N.Liposomal Drug Delivery to the Central Nervous System; IntechOpen, 2017.
Vieira D. B.; Gamarra L. F. Getting into the Brain: Liposome-Based Strategies for Effective Drug Delivery across the Blood–Brain Barrier. Int. J. Nanomed. 2016, 11, 5381–5414. 10.2147/IJN.S117210. PubMed DOI PMC
Fukuta T.; Asai T.; Sato A.; Namba M.; Yanagida Y.; Kikuchi T.; Koide H.; Shimizu K.; Oku N. Neuroprotection against Cerebral Ischemia/Reperfusion Injury by Intravenous Administration of Liposomal Fasudil. Int. J. Pharm. 2016, 506 (1–2), 129–137. 10.1016/j.ijpharm.2016.04.046. PubMed DOI
Fukuta T.; Ishii T.; Asai T.; Sato A.; Kikuchi T.; Shimizu K.; Minamino T.; Oku N. Treatment of Stroke with Liposomal Neuroprotective Agents under Cerebral Ischemia Conditions. Eur. J. Pharm. Biopharm. 2015, 97 (Pt A), 1–7. 10.1016/j.ejpb.2015.09.020. PubMed DOI
Yoneda S.; Fukuta T.; Ozono M.; Kogure K. Enhancement of Cerebroprotective Effects of Lipid Nanoparticles Encapsulating FK506 on Cerebral Ischemia/Reperfusion Injury by Particle Size Regulation. Biochem. Biophys. Res. Commun. 2022, 611, 53–59. 10.1016/j.bbrc.2022.04.080. PubMed DOI
Agrawal M.; Ajazuddin; Tripathi D. K.; Swarnlata S.; Shailendra S.; Antimisiaris S. G.; Mourtas S.; Hammarlund-Udenaes M.; Alexander A. Recent Advancements in Liposomes Targeting Strategies to Cross Blood-Brain Barrier (BBB) for the Treatment of Alzheimer’s Disease. J. Controlled Release 2017, 260, 61–77. 10.1016/j.jconrel.2017.05.019. PubMed DOI
Arias-Alpizar G.; Kong L.; Vlieg R. C.; Rabe A.; Papadopoulou P.; Meijer M. S.; Bonnet S.; Vogel S.; van Noort J.; Kros A.; Campbell F. Light-Triggered Switching of Liposome Surface Charge Directs Delivery of Membrane Impermeable Payloads in Vivo. Nat. Commun. 2020, 11 (1), 363810.1038/s41467-020-17360-9. PubMed DOI PMC
Suk J. S.; Xu Q.; Kim N.; Hanes J.; Ensign L. M. PEGylation as a Strategy for Improving Nanoparticle-Based Drug and Gene Delivery. Adv. Drug Delivery Rev. 2016, 99 (Pt A), 28–51. 10.1016/j.addr.2015.09.012. PubMed DOI PMC
Koudelka Š.; Turánek-Knötigová P.; Mašek J.; Korvasová Z.; Škrabalová M.; Plocková J.; Bartheldyová E.; Turánek J. Liposomes with High Encapsulation Capacity for Paclitaxel: Preparation, Characterisation and in Vivo Anticancer Effect. J. Pharm. Sci. 2010, 99 (5), 2309–2319. 10.1002/jps.21992. PubMed DOI
Šimečková P.; Hubatka F.; Kotouček J.; Turánek Knötigová P.; Mašek J.; Slavík J.; Kováč O.; Neča J.; Kulich P.; Hrebík D.; Stráská J.; Pěnčíková K.; Procházková J.; Diviš P.; Macaulay S.; Mikulík R.; Raška M.; Machala M.; Turánek J. Gadolinium Labelled Nanoliposomes as the Platform for MRI Theranostics: In Vitro Safety Study in Liver Cells and Macrophages. Sci. Rep. 2020, 10 (1), 478010.1038/s41598-020-60284-z. PubMed DOI PMC
Coimbra M.; Isacchi B.; van Bloois L.; Torano J. S.; Ket A.; Wu X.; Broere F.; Metselaar J. M.; Rijcken C. J. F.; Storm G.; Bilia R.; Schiffelers R. M. Improving Solubility and Chemical Stability of Natural Compounds for Medicinal Use by Incorporation into Liposomes. Int. J. Pharm. 2011, 416 (2), 433–442. 10.1016/j.ijpharm.2011.01.056. PubMed DOI
Beaumont P.; Faure C.; Courtois A.; Jourdes M.; Marchal A.; Teissedre P.-L.; Richard T.; Atgié C.; Krisa S. Trans-ε-Viniferin Encapsulation in Multi-Lamellar Liposomes: Consequences on Pharmacokinetic Parameters, Biodistribution and Glucuronide Formation in Rats. Nutrients 2021, 13 (12), 4212.10.3390/nu13124212. PubMed DOI PMC
Danaei M.; Dehghankhold M.; Ataei S.; Hasanzadeh Davarani F.; Javanmard R.; Dokhani A.; Khorasani S.; Mozafari M. R. Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics 2018, 10 (2), 5710.3390/pharmaceutics10020057. PubMed DOI PMC
Filippov S. K.; Khusnutdinov R.; Murmiliuk A.; Inam W.; Zakharova L. Y.; Zhang H.; Khutoryanskiy V. V. Dynamic Light Scattering and Transmission Electron Microscopy in Drug Delivery: A Roadmap for Correct Characterization of Nanoparticles and Interpretation of Results. Mater. Horiz. 2023, 10 (12), 5354–5370. 10.1039/D3MH00717K. PubMed DOI
Bellow S.; Latouche G.; Brown S. C.; Poutaraud A.; Cerovic Z. G. In Vivo Localization at the Cellular Level of Stilbene Fluorescence Induced by Plasmopara Viticola in Grapevine Leaves. J. Exp. Bot. 2012, 63 (10), 3697–3707. 10.1093/jxb/ers060. PubMed DOI PMC
Cadena P. G.; Pereira M. A.; Cordeiro R. B. S.; Cavalcanti I. M. F.; Barros Neto B.; Pimentel M. do C. C. B.; Lima Filho J. L.; Silva V. L.; Santos-Magalhães N. S. Nanoencapsulation of Quercetin and Resveratrol into Elastic Liposomes. Biochim. Biophys. Acta 2013, 1828 (2), 309–316. 10.1016/j.bbamem.2012.10.022. PubMed DOI
Pecyna P.; Wargula J.; Murias M.; Kucinska M. More Than Resveratrol: New Insights into Stilbene-Based Compounds. Biomolecules 2020, 10 (8), 1111.10.3390/biom10081111. PubMed DOI PMC
Zhou T.; Jiang Y.; Zeng B.; Yang B. The Cancer Preventive Activity and Mechanisms of Prenylated Resveratrol and Derivatives. Curr. Res. Toxicol. 2023, 5, 10011310.1016/j.crtox.2023.100113. PubMed DOI PMC
Yang S.-C.; Tseng C.-H.; Wang P.-W.; Lu P.-L.; Weng Y.-H.; Yen F.-L.; Fang J.-Y. Pterostilbene, a Methoxylated Resveratrol Derivative, Efficiently Eradicates Planktonic, Biofilm, and Intracellular MRSA by Topical Application. Front. Microbiol. 2017, 8, 1103.10.3389/fmicb.2017.01103. PubMed DOI PMC
Leláková V.Evaluation of the Influence of Selected Stilbenes on Neuroprotection against Stroke with a Focus on Inflammatory Signaling, Doctoral Dissertation; Université Côte d’Azur: Nice, France; Masaryk University: Brno, Czech Republic, 2020.
Chang C.-C.; Liu D.-Z.; Lin S.-Y.; Liang H.-J.; Hou W.-C.; Huang W.-J.; Chang C.-H.; Ho F.-M.; Liang Y.-C. Liposome Encapsulation Reduces Cantharidin Toxicity. Food Chem. Toxicol. 2008, 46 (9), 3116–3121. 10.1016/j.fct.2008.06.084. PubMed DOI
Pailee P.; Sangpetsiripan S.; Mahidol C.; Ruchirawat S.; Prachyawarakorn V. Cytotoxic and Cancer Chemopreventive Properties of Prenylated Stilbenoids from Macaranga Siamensis. Tetrahedron 2015, 71 (34), 5562–5571. 10.1016/j.tet.2015.06.058. DOI
Kuronuma K.; Mitsuzawa H.; Takeda K.; Nishitani C.; Chan E. D.; Kuroki Y.; Nakamura M.; Voelker D. R. Anionic Pulmonary Surfactant Phospholipids Inhibit Inflammatory Responses from Alveolar Macrophages and U937 Cells by Binding the Lipopolysaccharide-Interacting Proteins CD14 and MD-2. J. Biol. Chem. 2009, 284 (38), 25488–25500. 10.1074/jbc.M109.040832. PubMed DOI PMC
Numata M.; Voelker D. R. ′Inflammatory and Anti-Viral Actions of Anionic Pulmonary Surfactant Phospholipids. Biochim. Biophys. Acta 2022, 1867 (6), 15913910.1016/j.bbalip.2022.159139. PubMed DOI PMC
Filion M. C.; Phillips N. C. Anti-Inflammatory Activity of Cationic Lipids. Br. J. Pharmacol. 1997, 122 (3), 551–557. 10.1038/sj.bjp.0701396. PubMed DOI PMC
Kann O.; Kovács R. Mitochondria and Neuronal Activity. Am. J. Physiol. Cell Physiol. 2007, 292 (2), C641–C657. 10.1152/ajpcell.00222.2006. PubMed DOI
Azzazy H. M. E.; Hong K.; Wu M.-C.; Gross G. W. Interaction of Cationic Liposomes with Cells of Electrically Active Neuronal Networks in Culture. Brain Res. 1995, 695 (2), 231–236. 10.1016/0006-8993(95)00710-8. PubMed DOI
Cui S.; Wang Y.; Gong Y.; Lin X.; Zhao Y.; Zhi D.; Zhou Q.; Zhang S. Correlation of the Cytotoxic Effects of Cationic Lipids with Their Headgroups. Toxicol. Res. 2018, 7 (3), 473–479. 10.1039/C8TX00005K. PubMed DOI PMC
Filion M. C.; Phillips N. C. Toxicity and Immunomodulatory Activity of Liposomal Vectors Formulated with Cationic Lipids toward Immune Effector Cells. Biochim. Biophys. Acta 1997, 1329 (2), 345–356. 10.1016/S0005-2736(97)00126-0. PubMed DOI
Takano S.; Aramaki Y.; Tsuchiya S. Physicochemical Properties of Liposomes Affecting Apoptosis Induced by Cationic Liposomes in Macrophages. Pharm. Res. 2003, 20 (7), 962–968. 10.1023/A:1024441702398. PubMed DOI
Arias J. L. Liposomes in Drug Delivery: A Patent Review (2007 – Present). Expert Opin. Ther. Pat. 2013, 23 (11), 1399–1414. 10.1517/13543776.2013.828035. PubMed DOI
Huang M.; Liang C.; Tan C.; Huang S.; Ying R.; Wang Y.; Wang Z.; Zhang Y. Liposome Co-Encapsulation as a Strategy for the Delivery of Curcumin and Resveratrol. Food Funct. 2019, 10 (10), 6447–6458. 10.1039/C9FO01338E. PubMed DOI
Narayanan N. K.; Nargi D.; Randolph C.; Narayanan B. A. Liposome Encapsulation of Curcumin and Resveratrol in Combination Reduces Prostate Cancer Incidence in PTEN Knockout Mice. Int. J. Cancer 2009, 125 (1), 1–8. 10.1002/ijc.24336. PubMed DOI
Soo E.; Thakur S.; Qu Z.; Jambhrunkar S.; Parekh H. S.; Popat A. Enhancing Delivery and Cytotoxicity of Resveratrol through a Dual Nanoencapsulation Approach. J. Colloid Interface Sci. 2016, 462, 368–374. 10.1016/j.jcis.2015.10.022. PubMed DOI
Wei X.-Q.; Zhu J.-F.; Wang X.-B.; Ba K. Improving the Stability of Liposomal Curcumin by Adjusting the Inner Aqueous Chamber pH of Liposomes. ACS Omega 2020, 5 (2), 1120–1126. 10.1021/acsomega.9b03293. PubMed DOI PMC
Peng R.-M.; Lin G.-R.; Ting Y.; Hu J.-Y. Oral Delivery System Enhanced the Bioavailability of Stilbenes: Resveratrol and Pterostilbene. Biofactors 2018, 44 (1), 5–15. 10.1002/biof.1405. PubMed DOI
Nasri H.; Baradaran A.; Shirzad H.; Rafieian-Kopaei M. New Concepts in Nutraceuticals as Alternative for Pharmaceuticals. Int. J. Prev. Med. 2014, 5 (12), 1487–1499. PubMed PMC
Tauskela J. S.; Aylsworth A.; Hewitt M.; Brunette E.; Blondeau N. Failure and Rescue of Preconditioning-Induced Neuroprotection in Severe Stroke-like Insults. Neuropharmacology 2016, 105, 533–542. 10.1016/j.neuropharm.2016.02.007. PubMed DOI
Vohlídalová E.Inkorporace Macasiamenene F Do Liposomů – Fyzikální Charakterizace [Incorporation of Macasiamenene F into Liposomes – Physical Characterization, Advanced Master’s Thesis; Veterinární a Farmaceutická Univerzita Brno: Brno, 2020.
Blasi E.; Barluzzi R.; Bocchini V.; Mazzolla R.; Bistoni F. Immortalization of Murine Microglial Cells by a V-Raf/v-Myc Carrying Retrovirus. J. Neuroimmunol. 1990, 27 (2–3), 229–237. 10.1016/0165-5728(90)90073-V. PubMed DOI
Bourourou M.; Gouix E.; Melis N.; Friard J.; Heurteaux C.; Tauc M.; Blondeau N. Inhibition of eIF5A Hypusination Pathway as a New Pharmacological Target for Stroke Therapy. J. Cereb. Blood Flow Metab. 2021, 41 (5), 1080–1090. 10.1177/0271678X20928882. PubMed DOI PMC
Triantafilou K.; Triantafilou M.; Dedrick R. L. A CD14-Independent LPS Receptor Cluster. Nat. Immunol. 2001, 2 (4), 338.10.1038/86342. PubMed DOI
Taka E.; Mazzio E. A.; Goodman C. B.; Redmon N.; Flores-Rozas H.; Reams R.; Darling-Reed S.; Soliman K. F. A. Anti-Inflammatory Effects of Thymoquinone in Activated BV-2 Microglia Cells. J. Neuroimmunol. 2015, 286, 5–12. 10.1016/j.jneuroim.2015.06.011. PubMed DOI PMC