Gadolinium labelled nanoliposomes as the platform for MRI theranostics: in vitro safety study in liver cells and macrophages
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32179785
PubMed Central
PMC7075985
DOI
10.1038/s41598-020-60284-z
PII: 10.1038/s41598-020-60284-z
Knihovny.cz E-zdroje
- MeSH
- diethylentriaminpentaacetát gadolinia * škodlivé účinky toxicita MeSH
- fibrinolytika MeSH
- fosfatidylethanolaminy * škodlivé účinky toxicita MeSH
- hepatocyty účinky léků MeSH
- inflamasomy MeSH
- kontrastní látky * MeSH
- kultivované buňky MeSH
- lidé MeSH
- liposomy * MeSH
- magnetická rezonanční tomografie * MeSH
- makrofágy účinky léků MeSH
- nanočástice MeSH
- nosiče léků * MeSH
- protein NLRP3 MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- diethylentriaminpentaacetát gadolinia * MeSH
- fibrinolytika MeSH
- fosfatidylethanolaminy * MeSH
- gadolinium phosphatidylethanolamine-DTPA MeSH Prohlížeč
- inflamasomy MeSH
- kontrastní látky * MeSH
- liposomy * MeSH
- NLRP3 protein, human MeSH Prohlížeč
- nosiče léků * MeSH
- protein NLRP3 MeSH
Gadolinium (Gd)-based contrast agents are extensively used for magnetic resonance imaging (MRI). Liposomes are potential nanocarrier-based biocompatible platforms for development of new generations of MRI diagnostics. Liposomes with Gd-complexes (Gd-lip) co-encapsulated with thrombolytic agents can serve both for imaging and treatment of various pathological states including stroke. In this study, we evaluated nanosafety of Gd-lip containing PE-DTPA chelating Gd+3 prepared by lipid film hydration method. We detected no cytotoxicity of Gd-lip in human liver cells including cancer HepG2, progenitor (non-differentiated) HepaRG, and differentiated HepaRG cells. Furthermore, no potential side effects of Gd-lip were found using a complex system including general biomarkers of toxicity, such as induction of early response genes, oxidative, heat shock and endoplasmic reticulum stress, DNA damage responses, induction of xenobiotic metabolizing enzymes, and changes in sphingolipid metabolism in differentiated HepaRG. Moreover, Gd-lip did not show pro-inflammatory effects, as assessed in an assay based on activation of inflammasome NLRP3 in a model of human macrophages, and release of eicosanoids from HepaRG cells. In conclusion, this in vitro study indicates potential in vivo safety of Gd-lip with respect to hepatotoxicity and immunopathology caused by inflammation.
Department of Immunology Faculty of Medicine and Dentistry Palacký University Olomouc Czech Republic
Faculty of Chemistry Technical University Brno Czech Republic
International Clinical Research Centre St Anne's University Hospital Brno Brno Czech Republic
Malvern Instruments Great Malvern UK
Neurology Department St Anne's University Hospital and Masaryk University Brno Czech Republic
Regional Centre of Advanced Technologies and Materials Palacký University Olomouc Czech Republic
Zobrazit více v PubMed
Cao Y, Xu LJ, Kuang Y, Xiong DS, Pei RJ. Gadolinium-based nanoscale MRI contrast agents for tumor imaging. J. Mater. Chem. B. 2017;5:3431–3461. doi: 10.1039/C7TB00382J. PubMed DOI
Rogosnitzky M, Branch S. Gadolinium-based contrast agent toxicity: a review of known and proposed mechanisms. Biometals. 2016;29:365–376. doi: 10.1007/s10534-016-9931-7. PubMed DOI PMC
Marasini, R., Thanh Nguyen, T. D. & Aryal, S. Integration of gadolinium in nanostructure for contrast enhanced-magnetic resonance imaging. Wiley Interdiscip Rev Nanomed Nanobiotechnol, e1580, 10.1002/wnan.1580 (2019). PubMed
Granata V, et al. Immediate Adverse Reactions to Gadolinium-Based MR Contrast Media: A Retrospective Analysis on 10,608 Examinations. Biomed. Res. Int. 2016;2016:3918292. doi: 10.1155/2016/3918292. PubMed DOI PMC
Koudelka S, et al. Liposomal nanocarriers for plasminogen activators. J. Control. Rel. 2016;227:45–57. doi: 10.1016/j.jconrel.2016.02.019. PubMed DOI
Unger E, Cardenas D, Zerella A, Fajardo LL, Tilcock C. Biodistribution and clearance of liposomal gadolinium-DTPA. Invest. Radiol. 1990;25:638–644. doi: 10.1097/00004424-199006000-00004. PubMed DOI
Kabalka GW, et al. Gadolinium-labeled liposomes containing various amphiphilic Gd-DTPA derivatives: targeted MRI contrast enhancement agents for the liver. Magn. Reson. Med. 1991;19:406–415. doi: 10.1002/mrm.1910190231. PubMed DOI
Gu MJ, et al. In vitro study of novel gadolinium-loaded liposomes guided by GBI-10 aptamer for promising tumor targeting and tumor diagnosis by magnetic resonance imaging. Int. J. Nanomed. 2015;10:5187–5204. PubMed PMC
Bartheldyova E, et al. Hyaluronic Acid Surface Modified Liposomes Prepared via Orthogonal Aminoxy Coupling: Synthesis of Nontoxic Aminoxylipids Based on Symmetrically alpha-Branched Fatty Acids, Preparation of Liposomes by Microfluidic Mixing, and Targeting to Cancer Cells Expressing CD44. Bioconjug Chem. 2018;29:2343–2356. doi: 10.1021/acs.bioconjchem.8b00311. PubMed DOI
Borresen B, et al. Theranostic Imaging May Vaccinate against the Therapeutic Benefit of Long Circulating PEGylated Liposomes and Change Cargo Pharmacokinetics. ACS Nano. 2018;12:11386–11398. doi: 10.1021/acsnano.8b06266. PubMed DOI
Bartheldyova E, et al. N-Oxy lipid-based click chemistry for orthogonal coupling of mannan onto nanoliposomes prepared by microfluidic mixing: Synthesis of lipids, characterisation of mannan-coated nanoliposomes and in vitro stimulation of dendritic cells. Carbohydr. Polym. 2019;207:521–532. doi: 10.1016/j.carbpol.2018.10.121. PubMed DOI
Zaborova, O. V. et al. A Novel Approach to Increase the Stability of Liposomal Containers via In Prep Coating by Poly[N-(2-Hydroxypropyl)Methacrylamide] with Covalently Attached Cholesterol Groups. Macromol Chem Phys219 (2018).
Kuijten MM, et al. Multimodal targeted high relaxivity thermosensitive liposome for in vivo imaging. Sci. Rep. 2015;5:17220. doi: 10.1038/srep17220. PubMed DOI PMC
Zhang JD, Berntenis N, Roth A, Ebeling M. Data mining reveals a network of early-response genes as a consensus signature of drug-induced in vitro and in vivo toxicity. Pharmacogenomics J. 2014;14:208–216. doi: 10.1038/tpj.2013.39. PubMed DOI PMC
Vihervaara A, Sistonen L. HSF1 at a glance. J. Cell Sci. 2014;127:261–266. doi: 10.1242/jcs.132605. PubMed DOI
Oslowski CM, Urano F, Measuring ER. stress and the unfolded protein response using mammalian tissue culture system. Methods Enzymol. 2011;490:71–92. doi: 10.1016/B978-0-12-385114-7.00004-0. PubMed DOI PMC
Loboda A, Damulewicz M, Pyza E, Jozkowicz A, Dulak J. Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism. Cell Mol. Life Sci. 2016;73:3221–3247. doi: 10.1007/s00018-016-2223-0. PubMed DOI PMC
Christmann M, Tomicic MT, Roos WP, Kaina B. Mechanisms of human DNA repair: an update. Toxicol. 2003;193:3–34. doi: 10.1016/S0300-483X(03)00287-7. PubMed DOI
Guillouzo A, et al. The human hepatoma HepaRG cells: a highly differentiated model for studies of liver metabolism and toxicity of xenobiotics. Chem. Biol. Interact. 2007;168:66–73. doi: 10.1016/j.cbi.2006.12.003. PubMed DOI
Hakkola J, et al. Cytochrome P450 Induction and Xeno-Sensing Receptors Pregnane X Receptor, Constitutive Androstane Receptor, Aryl Hydrocarbon Receptor and Peroxisome Proliferator-Activated Receptor alpha at the Crossroads of Toxicokinetics and Toxicodynamics. Basic. Clin. Pharmacol. Toxicol. 2018;123(Suppl 5):42–50. doi: 10.1111/bcpt.13004. PubMed DOI
Rohrer M, Bauer H, Mintorovitch J, Requardt M, Weinmann HJ. Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths. Invest. Radiol. 2005;40:715–724. doi: 10.1097/01.rli.0000184756.66360.d3. PubMed DOI
Guenoun J, Doeswijk GN, Krestin GP, Bernsen MR. Compartmentalization of Gd liposomes: the quenching effect explained. Contrast Media Mol. Imaging. 2016;11:106–114. doi: 10.1002/cmmi.1669. PubMed DOI
Bayer Inc. Gadovist Product Monograph 2018, www.bayer.ca/omr/online/gadovist-pm-en.pdf accessed 19 June 2019.
Endrikat J, Vogtlaender K, Dohanish S, Balzer T, Breuer J. Safety of Gadobutrol: Results From 42 Clinical Phase II to IV Studies and Postmarketing Surveillance After 29 Million Applications. Invest. Radiol. 2016;51:537–543. doi: 10.1097/RLI.0000000000000270. PubMed DOI PMC
Mercantepe T, et al. Effects of gadolinium-based MRI contrast agents on liver tissue. J. Magn. Reson. Imaging. 2018;48:1367–1374. doi: 10.1002/jmri.26031. PubMed DOI
Unger E, Needleman P, Cullis P, Tilcock C. Gadolinium-Dtpa Liposomes as a Potential Mri Contrast Agent Work in Progress. Investig. Radiology. 1988;23:928–932. doi: 10.1097/00004424-198812000-00010. PubMed DOI
Guenoun J, et al. Cationic Gd-DTPA liposomes for highly efficient labeling of mesenchymal stem cells and cell tracking with MRI. Cell Transpl. 2012;21:191–205. doi: 10.3727/096368911X593118. PubMed DOI
Poisson J, et al. Liver sinusoidal endothelial cells: Physiology and role in liver diseases. J. Hepatol. 2017;66:212–227. doi: 10.1016/j.jhep.2016.07.009. PubMed DOI
Kyffin JA, et al. Impact of cell types and culture methods on the functionality of in vitro liver systems - A review of cell systems for hepatotoxicity assessment. Toxicol. Vitro. 2018;48:262–275. doi: 10.1016/j.tiv.2018.01.023. PubMed DOI
McGill MR, et al. HepaRG cells: a human model to study mechanisms of acetaminophen hepatotoxicity. Hepatology. 2011;53:974–982. doi: 10.1002/hep.24132. PubMed DOI PMC
Rubin K, et al. HepaRG cells as human-relevant in vitro model to study the effects of inflammatory stimuli on cytochrome P450 isoenzymes. Drug. Metab. Dispos. 2015;43:119–125. doi: 10.1124/dmd.114.059246. PubMed DOI
Tolosa L, et al. Advantageous use of HepaRG cells for the screening and mechanistic study of drug-induced steatosis. Toxicol. Appl. Pharmacol. 2016;302:1–9. doi: 10.1016/j.taap.2016.04.007. PubMed DOI
Lu D, Chen J, Hai T. The regulation of ATF3 gene expression by mitogen-activated protein kinases. Biochem. J. 2007;401:559–567. doi: 10.1042/BJ20061081. PubMed DOI PMC
Hai T, Wolford CC, Chang YS. ATF3, a hub of the cellular adaptive-response network, in the pathogenesis of diseases: is modulation of inflammation a unifying component? Gene Expr. 2010;15:1–11. doi: 10.3727/105221610X12819686555015. PubMed DOI PMC
Tanaka Y, et al. Systems Analysis of ATF3 in Stress Response and Cancer Reveals Opposing Effects on Pro-Apoptotic Genes in p53 Pathway. PLoS One. 2011;6:e26848. doi: 10.1371/journal.pone.0026848. PubMed DOI PMC
Bhattacharyya S, Fang F, Tourtellotte W, Varga J. Egr-1: new conductor for the tissue repair orchestra directs harmony (regeneration) or cacophony (fibrosis) J. Pathol. 2013;229:286–297. doi: 10.1002/path.4131. PubMed DOI PMC
Schaap FG, Kremer AE, Lamers WH, Jansen PL, Gaemers IC. Fibroblast growth factor 21 is induced by endoplasmic reticulum stress. Biochim. 2013;95:692–699. doi: 10.1016/j.biochi.2012.10.019. PubMed DOI
Wan XS, Wang X, Xiao J, Li XK, Zhou H. Corrigendum to “ATF4- and CHOP-Dependent Induction of FGF21 through Endoplasmic Reticulum Stress”. Biomed. Res. Int. 2018;2018:3218606. doi: 10.1155/2018/3218606. PubMed DOI PMC
Zhang M, Sun W, Qian J, Tang Y. Fasting exacerbates hepatic growth differentiation factor 15 to promote fatty acid beta-oxidation and ketogenesis via activating XBP1 signaling in liver. Redox Biol. 2018;16:87–96. doi: 10.1016/j.redox.2018.01.013. PubMed DOI PMC
Fulda S, Gorman AM, Hori O, Samali A. Cellular stress responses: cell survival and cell death. Int. J. Cell Biol. 2010;2010:214074. doi: 10.1155/2010/214074. PubMed DOI PMC
Li J, Labbadia J, Morimoto RI. Rethinking HSF1 in Stress, Development, and Organismal Health. Trends Cell Biol. 2017;27:895–905. doi: 10.1016/j.tcb.2017.08.002. PubMed DOI PMC
Dai C. The heat-shock, or HSF1-mediated proteotoxic stress, response in cancer: from proteomic stability to oncogenesis. Philos. Trans. R. Soc. B: Biol. Sci. 2018;373:20160525. doi: 10.1098/rstb.2016.0525. PubMed DOI PMC
Dutto I, Tillhon M, Cazzalini O, Stivala LA, Prosperi E. Biology of the cell cycle inhibitor p21(CDKN1A): molecular mechanisms and relevance in chemical toxicology. Arch. Toxicol. 2015;89:155–178. doi: 10.1007/s00204-014-1430-4. PubMed DOI
Rasheva VI, Domingos PM. Cellular responses to endoplasmic reticulum stress and apoptosis. Apoptosis. 2009;14:996–1007. doi: 10.1007/s10495-009-0341-y. PubMed DOI
Yoshida Y, Umeno A, Shichiri M. Lipid peroxidation biomarkers for evaluating oxidative stress and assessing antioxidant capacity in vivo. J. Clin. Biochem. Nutr. 2013;52:9–16. doi: 10.3164/jcbn.12-112. PubMed DOI PMC
Wang D, Dubois RN. Eicosanoids and cancer. Nat. Rev. Cancer. 2010;10:181–193. doi: 10.1038/nrc2809. PubMed DOI PMC
Rynning I, et al. In Vitro Transformation of Human Bronchial Epithelial Cells by Diesel Exhaust Particles: Gene Expression Profiling and Early Toxic Responses. Toxicol. Sci. 2018;166:51–64. doi: 10.1093/toxsci/kfy183. PubMed DOI PMC
Knotigova, P. T. et al. Application of Advanced Microscopic Methods to Study the Interaction of Carboxylated Fluorescent Nanodiamonds with Membrane Structures in THP-1 Cells: Activation of Inflammasome NLRP3 as the Result of Lysosome Destabilization. Mol Pharm, 10.1021/acs.molpharmaceut.9b00225 (2019). PubMed
Mukherjee SP, Bottini M, Fadeel B. Graphene and the Immune System: A Romance of Many Dimensions. Front. Immunol. 2017;8:673. doi: 10.3389/fimmu.2017.00673. PubMed DOI PMC
Saleem J, Wang LM, Chen CY. Immunological effects of graphene family nanomaterials. Nanoimpact. 2017;5:109–118. doi: 10.1016/j.impact.2017.01.005. DOI
Guo H, Callaway JB, Ting JP. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat. Med. 2015;21:677–687. doi: 10.1038/nm.3893. PubMed DOI PMC
Mackowiak B, Wang H. Mechanisms of xenobiotic receptor activation: Direct vs. indirect. Biochim. Biophys. Acta. 2016;1859:1130–1140. doi: 10.1016/j.bbagrm.2016.02.006. PubMed DOI PMC
Aitken AE, Richardson TA, Morgan ET. Regulation of drug-metabolizing enzymes and transporters in inflammation. Annu. Rev. Pharmacol. 2006;46:123–149. doi: 10.1146/annurev.pharmtox.46.120604.141059. PubMed DOI
Aninat C, et al. Expression of cytochromes P450, conjugating enzymes and nuclear receptors in human hepatoma HepaRG cells. Drug. Metab. Dispos. 2006;34:75–83. doi: 10.1124/dmd.105.006759. PubMed DOI
van Schadewijk A, van’t Wout EF, Stolk J, Hiemstra PS. A quantitative method for detection of spliced X-box binding protein-1 (XBP1) mRNA as a measure of endoplasmic reticulum (ER) stress. Cell Stress. Chaperones. 2012;17:275–279. doi: 10.1007/s12192-011-0306-2. PubMed DOI PMC
Pencikova K, et al. Atropisomers of 2,2′,3,3′,6,6′-hexachlorobiphenyl (PCB 136) exhibit stereoselective effects on activation of nuclear receptors in vitro. Env. Sci. Pollut. R. 2018;25:16411–16419. doi: 10.1007/s11356-017-0683-x. PubMed DOI PMC
Soucek K, et al. Presence of growth/differentiation factor-15 cytokine in human follicular fluid, granulosa cells, and oocytes. J. Assist. Reprod. Genet. 2018;35:1407–1417. doi: 10.1007/s10815-018-1230-5. PubMed DOI PMC
Prochazkova J, et al. Adaptive changes in global gene expression profile of lung carcinoma A549 cells acutely exposed to distinct types of AhR ligands. Toxicol. Lett. 2018;292:162–174. doi: 10.1016/j.toxlet.2018.04.024. PubMed DOI
Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 2008;3:1101–1108. doi: 10.1038/nprot.2008.73. PubMed DOI
Effenberg R, et al. Nonpyrogenic Molecular Adjuvants Based on norAbu-Muramyldipeptide and norAbu-Glucosaminyl Muramyldipeptide: Synthesis, Molecular Mechanisms of Action, and Biological Activities in Vitro and in Vivo. J. Med. Chem. 2017;60:7745–7763. doi: 10.1021/acs.jmedchem.7b00593. PubMed DOI
Pencikova K, et al. In vitro profiling of toxic effects of prominent environmental lower-chlorinated PCB congeners linked with endocrine disruption and tumor promotion. Env. Pollut. 2018;237:473–486. doi: 10.1016/j.envpol.2018.02.067. PubMed DOI PMC