Gadolinium labelled nanoliposomes as the platform for MRI theranostics: in vitro safety study in liver cells and macrophages

. 2020 Mar 16 ; 10 (1) : 4780. [epub] 20200316

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32179785
Odkazy

PubMed 32179785
PubMed Central PMC7075985
DOI 10.1038/s41598-020-60284-z
PII: 10.1038/s41598-020-60284-z
Knihovny.cz E-zdroje

Gadolinium (Gd)-based contrast agents are extensively used for magnetic resonance imaging (MRI). Liposomes are potential nanocarrier-based biocompatible platforms for development of new generations of MRI diagnostics. Liposomes with Gd-complexes (Gd-lip) co-encapsulated with thrombolytic agents can serve both for imaging and treatment of various pathological states including stroke. In this study, we evaluated nanosafety of Gd-lip containing PE-DTPA chelating Gd+3 prepared by lipid film hydration method. We detected no cytotoxicity of Gd-lip in human liver cells including cancer HepG2, progenitor (non-differentiated) HepaRG, and differentiated HepaRG cells. Furthermore, no potential side effects of Gd-lip were found using a complex system including general biomarkers of toxicity, such as induction of early response genes, oxidative, heat shock and endoplasmic reticulum stress, DNA damage responses, induction of xenobiotic metabolizing enzymes, and changes in sphingolipid metabolism in differentiated HepaRG. Moreover, Gd-lip did not show pro-inflammatory effects, as assessed in an assay based on activation of inflammasome NLRP3 in a model of human macrophages, and release of eicosanoids from HepaRG cells. In conclusion, this in vitro study indicates potential in vivo safety of Gd-lip with respect to hepatotoxicity and immunopathology caused by inflammation.

Zobrazit více v PubMed

Cao Y, Xu LJ, Kuang Y, Xiong DS, Pei RJ. Gadolinium-based nanoscale MRI contrast agents for tumor imaging. J. Mater. Chem. B. 2017;5:3431–3461. doi: 10.1039/C7TB00382J. PubMed DOI

Rogosnitzky M, Branch S. Gadolinium-based contrast agent toxicity: a review of known and proposed mechanisms. Biometals. 2016;29:365–376. doi: 10.1007/s10534-016-9931-7. PubMed DOI PMC

Marasini, R., Thanh Nguyen, T. D. & Aryal, S. Integration of gadolinium in nanostructure for contrast enhanced-magnetic resonance imaging. Wiley Interdiscip Rev Nanomed Nanobiotechnol, e1580, 10.1002/wnan.1580 (2019). PubMed

Granata V, et al. Immediate Adverse Reactions to Gadolinium-Based MR Contrast Media: A Retrospective Analysis on 10,608 Examinations. Biomed. Res. Int. 2016;2016:3918292. doi: 10.1155/2016/3918292. PubMed DOI PMC

Koudelka S, et al. Liposomal nanocarriers for plasminogen activators. J. Control. Rel. 2016;227:45–57. doi: 10.1016/j.jconrel.2016.02.019. PubMed DOI

Unger E, Cardenas D, Zerella A, Fajardo LL, Tilcock C. Biodistribution and clearance of liposomal gadolinium-DTPA. Invest. Radiol. 1990;25:638–644. doi: 10.1097/00004424-199006000-00004. PubMed DOI

Kabalka GW, et al. Gadolinium-labeled liposomes containing various amphiphilic Gd-DTPA derivatives: targeted MRI contrast enhancement agents for the liver. Magn. Reson. Med. 1991;19:406–415. doi: 10.1002/mrm.1910190231. PubMed DOI

Gu MJ, et al. In vitro study of novel gadolinium-loaded liposomes guided by GBI-10 aptamer for promising tumor targeting and tumor diagnosis by magnetic resonance imaging. Int. J. Nanomed. 2015;10:5187–5204. PubMed PMC

Bartheldyova E, et al. Hyaluronic Acid Surface Modified Liposomes Prepared via Orthogonal Aminoxy Coupling: Synthesis of Nontoxic Aminoxylipids Based on Symmetrically alpha-Branched Fatty Acids, Preparation of Liposomes by Microfluidic Mixing, and Targeting to Cancer Cells Expressing CD44. Bioconjug Chem. 2018;29:2343–2356. doi: 10.1021/acs.bioconjchem.8b00311. PubMed DOI

Borresen B, et al. Theranostic Imaging May Vaccinate against the Therapeutic Benefit of Long Circulating PEGylated Liposomes and Change Cargo Pharmacokinetics. ACS Nano. 2018;12:11386–11398. doi: 10.1021/acsnano.8b06266. PubMed DOI

Bartheldyova E, et al. N-Oxy lipid-based click chemistry for orthogonal coupling of mannan onto nanoliposomes prepared by microfluidic mixing: Synthesis of lipids, characterisation of mannan-coated nanoliposomes and in vitro stimulation of dendritic cells. Carbohydr. Polym. 2019;207:521–532. doi: 10.1016/j.carbpol.2018.10.121. PubMed DOI

Zaborova, O. V. et al. A Novel Approach to Increase the Stability of Liposomal Containers via In Prep Coating by Poly[N-(2-Hydroxypropyl)Methacrylamide] with Covalently Attached Cholesterol Groups. Macromol Chem Phys219 (2018).

Kuijten MM, et al. Multimodal targeted high relaxivity thermosensitive liposome for in vivo imaging. Sci. Rep. 2015;5:17220. doi: 10.1038/srep17220. PubMed DOI PMC

Zhang JD, Berntenis N, Roth A, Ebeling M. Data mining reveals a network of early-response genes as a consensus signature of drug-induced in vitro and in vivo toxicity. Pharmacogenomics J. 2014;14:208–216. doi: 10.1038/tpj.2013.39. PubMed DOI PMC

Vihervaara A, Sistonen L. HSF1 at a glance. J. Cell Sci. 2014;127:261–266. doi: 10.1242/jcs.132605. PubMed DOI

Oslowski CM, Urano F, Measuring ER. stress and the unfolded protein response using mammalian tissue culture system. Methods Enzymol. 2011;490:71–92. doi: 10.1016/B978-0-12-385114-7.00004-0. PubMed DOI PMC

Loboda A, Damulewicz M, Pyza E, Jozkowicz A, Dulak J. Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism. Cell Mol. Life Sci. 2016;73:3221–3247. doi: 10.1007/s00018-016-2223-0. PubMed DOI PMC

Christmann M, Tomicic MT, Roos WP, Kaina B. Mechanisms of human DNA repair: an update. Toxicol. 2003;193:3–34. doi: 10.1016/S0300-483X(03)00287-7. PubMed DOI

Guillouzo A, et al. The human hepatoma HepaRG cells: a highly differentiated model for studies of liver metabolism and toxicity of xenobiotics. Chem. Biol. Interact. 2007;168:66–73. doi: 10.1016/j.cbi.2006.12.003. PubMed DOI

Hakkola J, et al. Cytochrome P450 Induction and Xeno-Sensing Receptors Pregnane X Receptor, Constitutive Androstane Receptor, Aryl Hydrocarbon Receptor and Peroxisome Proliferator-Activated Receptor alpha at the Crossroads of Toxicokinetics and Toxicodynamics. Basic. Clin. Pharmacol. Toxicol. 2018;123(Suppl 5):42–50. doi: 10.1111/bcpt.13004. PubMed DOI

Rohrer M, Bauer H, Mintorovitch J, Requardt M, Weinmann HJ. Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths. Invest. Radiol. 2005;40:715–724. doi: 10.1097/01.rli.0000184756.66360.d3. PubMed DOI

Guenoun J, Doeswijk GN, Krestin GP, Bernsen MR. Compartmentalization of Gd liposomes: the quenching effect explained. Contrast Media Mol. Imaging. 2016;11:106–114. doi: 10.1002/cmmi.1669. PubMed DOI

Bayer Inc. Gadovist Product Monograph 2018, www.bayer.ca/omr/online/gadovist-pm-en.pdf accessed 19 June 2019.

Endrikat J, Vogtlaender K, Dohanish S, Balzer T, Breuer J. Safety of Gadobutrol: Results From 42 Clinical Phase II to IV Studies and Postmarketing Surveillance After 29 Million Applications. Invest. Radiol. 2016;51:537–543. doi: 10.1097/RLI.0000000000000270. PubMed DOI PMC

Mercantepe T, et al. Effects of gadolinium-based MRI contrast agents on liver tissue. J. Magn. Reson. Imaging. 2018;48:1367–1374. doi: 10.1002/jmri.26031. PubMed DOI

Unger E, Needleman P, Cullis P, Tilcock C. Gadolinium-Dtpa Liposomes as a Potential Mri Contrast Agent Work in Progress. Investig. Radiology. 1988;23:928–932. doi: 10.1097/00004424-198812000-00010. PubMed DOI

Guenoun J, et al. Cationic Gd-DTPA liposomes for highly efficient labeling of mesenchymal stem cells and cell tracking with MRI. Cell Transpl. 2012;21:191–205. doi: 10.3727/096368911X593118. PubMed DOI

Poisson J, et al. Liver sinusoidal endothelial cells: Physiology and role in liver diseases. J. Hepatol. 2017;66:212–227. doi: 10.1016/j.jhep.2016.07.009. PubMed DOI

Kyffin JA, et al. Impact of cell types and culture methods on the functionality of in vitro liver systems - A review of cell systems for hepatotoxicity assessment. Toxicol. Vitro. 2018;48:262–275. doi: 10.1016/j.tiv.2018.01.023. PubMed DOI

McGill MR, et al. HepaRG cells: a human model to study mechanisms of acetaminophen hepatotoxicity. Hepatology. 2011;53:974–982. doi: 10.1002/hep.24132. PubMed DOI PMC

Rubin K, et al. HepaRG cells as human-relevant in vitro model to study the effects of inflammatory stimuli on cytochrome P450 isoenzymes. Drug. Metab. Dispos. 2015;43:119–125. doi: 10.1124/dmd.114.059246. PubMed DOI

Tolosa L, et al. Advantageous use of HepaRG cells for the screening and mechanistic study of drug-induced steatosis. Toxicol. Appl. Pharmacol. 2016;302:1–9. doi: 10.1016/j.taap.2016.04.007. PubMed DOI

Lu D, Chen J, Hai T. The regulation of ATF3 gene expression by mitogen-activated protein kinases. Biochem. J. 2007;401:559–567. doi: 10.1042/BJ20061081. PubMed DOI PMC

Hai T, Wolford CC, Chang YS. ATF3, a hub of the cellular adaptive-response network, in the pathogenesis of diseases: is modulation of inflammation a unifying component? Gene Expr. 2010;15:1–11. doi: 10.3727/105221610X12819686555015. PubMed DOI PMC

Tanaka Y, et al. Systems Analysis of ATF3 in Stress Response and Cancer Reveals Opposing Effects on Pro-Apoptotic Genes in p53 Pathway. PLoS One. 2011;6:e26848. doi: 10.1371/journal.pone.0026848. PubMed DOI PMC

Bhattacharyya S, Fang F, Tourtellotte W, Varga J. Egr-1: new conductor for the tissue repair orchestra directs harmony (regeneration) or cacophony (fibrosis) J. Pathol. 2013;229:286–297. doi: 10.1002/path.4131. PubMed DOI PMC

Schaap FG, Kremer AE, Lamers WH, Jansen PL, Gaemers IC. Fibroblast growth factor 21 is induced by endoplasmic reticulum stress. Biochim. 2013;95:692–699. doi: 10.1016/j.biochi.2012.10.019. PubMed DOI

Wan XS, Wang X, Xiao J, Li XK, Zhou H. Corrigendum to “ATF4- and CHOP-Dependent Induction of FGF21 through Endoplasmic Reticulum Stress”. Biomed. Res. Int. 2018;2018:3218606. doi: 10.1155/2018/3218606. PubMed DOI PMC

Zhang M, Sun W, Qian J, Tang Y. Fasting exacerbates hepatic growth differentiation factor 15 to promote fatty acid beta-oxidation and ketogenesis via activating XBP1 signaling in liver. Redox Biol. 2018;16:87–96. doi: 10.1016/j.redox.2018.01.013. PubMed DOI PMC

Fulda S, Gorman AM, Hori O, Samali A. Cellular stress responses: cell survival and cell death. Int. J. Cell Biol. 2010;2010:214074. doi: 10.1155/2010/214074. PubMed DOI PMC

Li J, Labbadia J, Morimoto RI. Rethinking HSF1 in Stress, Development, and Organismal Health. Trends Cell Biol. 2017;27:895–905. doi: 10.1016/j.tcb.2017.08.002. PubMed DOI PMC

Dai C. The heat-shock, or HSF1-mediated proteotoxic stress, response in cancer: from proteomic stability to oncogenesis. Philos. Trans. R. Soc. B: Biol. Sci. 2018;373:20160525. doi: 10.1098/rstb.2016.0525. PubMed DOI PMC

Dutto I, Tillhon M, Cazzalini O, Stivala LA, Prosperi E. Biology of the cell cycle inhibitor p21(CDKN1A): molecular mechanisms and relevance in chemical toxicology. Arch. Toxicol. 2015;89:155–178. doi: 10.1007/s00204-014-1430-4. PubMed DOI

Rasheva VI, Domingos PM. Cellular responses to endoplasmic reticulum stress and apoptosis. Apoptosis. 2009;14:996–1007. doi: 10.1007/s10495-009-0341-y. PubMed DOI

Yoshida Y, Umeno A, Shichiri M. Lipid peroxidation biomarkers for evaluating oxidative stress and assessing antioxidant capacity in vivo. J. Clin. Biochem. Nutr. 2013;52:9–16. doi: 10.3164/jcbn.12-112. PubMed DOI PMC

Wang D, Dubois RN. Eicosanoids and cancer. Nat. Rev. Cancer. 2010;10:181–193. doi: 10.1038/nrc2809. PubMed DOI PMC

Rynning I, et al. In Vitro Transformation of Human Bronchial Epithelial Cells by Diesel Exhaust Particles: Gene Expression Profiling and Early Toxic Responses. Toxicol. Sci. 2018;166:51–64. doi: 10.1093/toxsci/kfy183. PubMed DOI PMC

Knotigova, P. T. et al. Application of Advanced Microscopic Methods to Study the Interaction of Carboxylated Fluorescent Nanodiamonds with Membrane Structures in THP-1 Cells: Activation of Inflammasome NLRP3 as the Result of Lysosome Destabilization. Mol Pharm, 10.1021/acs.molpharmaceut.9b00225 (2019). PubMed

Mukherjee SP, Bottini M, Fadeel B. Graphene and the Immune System: A Romance of Many Dimensions. Front. Immunol. 2017;8:673. doi: 10.3389/fimmu.2017.00673. PubMed DOI PMC

Saleem J, Wang LM, Chen CY. Immunological effects of graphene family nanomaterials. Nanoimpact. 2017;5:109–118. doi: 10.1016/j.impact.2017.01.005. DOI

Guo H, Callaway JB, Ting JP. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat. Med. 2015;21:677–687. doi: 10.1038/nm.3893. PubMed DOI PMC

Mackowiak B, Wang H. Mechanisms of xenobiotic receptor activation: Direct vs. indirect. Biochim. Biophys. Acta. 2016;1859:1130–1140. doi: 10.1016/j.bbagrm.2016.02.006. PubMed DOI PMC

Aitken AE, Richardson TA, Morgan ET. Regulation of drug-metabolizing enzymes and transporters in inflammation. Annu. Rev. Pharmacol. 2006;46:123–149. doi: 10.1146/annurev.pharmtox.46.120604.141059. PubMed DOI

Aninat C, et al. Expression of cytochromes P450, conjugating enzymes and nuclear receptors in human hepatoma HepaRG cells. Drug. Metab. Dispos. 2006;34:75–83. doi: 10.1124/dmd.105.006759. PubMed DOI

van Schadewijk A, van’t Wout EF, Stolk J, Hiemstra PS. A quantitative method for detection of spliced X-box binding protein-1 (XBP1) mRNA as a measure of endoplasmic reticulum (ER) stress. Cell Stress. Chaperones. 2012;17:275–279. doi: 10.1007/s12192-011-0306-2. PubMed DOI PMC

Pencikova K, et al. Atropisomers of 2,2′,3,3′,6,6′-hexachlorobiphenyl (PCB 136) exhibit stereoselective effects on activation of nuclear receptors in vitro. Env. Sci. Pollut. R. 2018;25:16411–16419. doi: 10.1007/s11356-017-0683-x. PubMed DOI PMC

Soucek K, et al. Presence of growth/differentiation factor-15 cytokine in human follicular fluid, granulosa cells, and oocytes. J. Assist. Reprod. Genet. 2018;35:1407–1417. doi: 10.1007/s10815-018-1230-5. PubMed DOI PMC

Prochazkova J, et al. Adaptive changes in global gene expression profile of lung carcinoma A549 cells acutely exposed to distinct types of AhR ligands. Toxicol. Lett. 2018;292:162–174. doi: 10.1016/j.toxlet.2018.04.024. PubMed DOI

Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 2008;3:1101–1108. doi: 10.1038/nprot.2008.73. PubMed DOI

Effenberg R, et al. Nonpyrogenic Molecular Adjuvants Based on norAbu-Muramyldipeptide and norAbu-Glucosaminyl Muramyldipeptide: Synthesis, Molecular Mechanisms of Action, and Biological Activities in Vitro and in Vivo. J. Med. Chem. 2017;60:7745–7763. doi: 10.1021/acs.jmedchem.7b00593. PubMed DOI

Pencikova K, et al. In vitro profiling of toxic effects of prominent environmental lower-chlorinated PCB congeners linked with endocrine disruption and tumor promotion. Env. Pollut. 2018;237:473–486. doi: 10.1016/j.envpol.2018.02.067. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...