Antiviral activity of singlet oxygen-photogenerating perylene compounds against SARS-CoV-2: Interaction with the viral envelope and photodynamic virion inactivation

. 2023 Sep ; 334 () : 199158. [epub] 20230629

Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37339718

The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has prompted great interest in novel broad-spectrum antivirals, including perylene-related compounds. In the present study, we performed a structure-activity relationship analysis of a series of perylene derivatives, which comprised a large planar perylene residue, and structurally divergent polar groups connected to the perylene core by a rigid ethynyl or thiophene linker. Most of the tested compounds did not exhibit significant cytotoxicity towards multiple cell types susceptible to SARS-CoV-2 infection, and did not change the expressions of cellular stress-related genes under normal light conditions. These compounds showed nanomolar or sub-micromolar dose-dependent anti-SARS-CoV-2 activity, and also suppressed the in vitro replication of feline coronavirus (FCoV), also termed feline infectious peritonitis virus (FIPV). Perylene compounds exhibited high affinity for liposomal and cellular membranes, and efficiently intercalated into the envelopes of SARS-CoV-2 virions, thereby blocking the viral-cell fusion machinery. Furthermore, the studied compounds were demonstrated to be potent photosensitizers, generating reactive oxygen species (ROS), and their anti-SARS-CoV-2 activities were considerably enhanced after irradiation with blue light. Our results indicated that photosensitization is the major mechanism underlying the anti-SARS-CoV-2 activity of perylene derivatives, with these compounds completely losing their antiviral potency under red light. Overall, perylene-based compounds are broad-spectrum antivirals against multiple enveloped viruses, with antiviral action based on light-induced photochemical damage (ROS-mediated, likely singlet oxygen-mediated), causing impairment of viral membrane rheology.

Department of Biology Lomonosov Moscow State University Moscow 119991 Russia

Department of Chemistry and Biochemistry Mendel University in Brno CZ 61300 Brno Czech Republic

Department of Chemistry Lomonosov Moscow State University Moscow 119991 Russia; Shemyakin Ovchinnikov Institute of Bioorganic Chemistry Moscow 117997 Russia

Department of Pharmacology and Toxicology Veterinary Research Institute CZ 621 00 Brno Czech Republic

Laboratory of Emerging Viral Diseases Veterinary Research Institute CZ 621 00 Brno Czech Republic

Laboratory of Emerging Viral Diseases Veterinary Research Institute CZ 621 00 Brno Czech Republic; Department of Experimental Biology Faculty of Science Masaryk University CZ 62500 Brno Czech Republic

Laboratory of Emerging Viral Diseases Veterinary Research Institute CZ 621 00 Brno Czech Republic; Institute of Parasitology Biology Centre of the Czech Academy of Sciences CZ 370 05 České Budějovice Czech Republic; Department of Experimental Biology Faculty of Science Masaryk University CZ 62500 Brno Czech Republic

Laboratory of Emerging Viral Diseases Veterinary Research Institute CZ 621 00 Brno Czech Republic; Institute of Parasitology Biology Centre of the Czech Academy of Sciences CZ 370 05 České Budějovice Czech Republic; Department of Experimental Biology Faculty of Science Masaryk University CZ 62500 Brno Czech Republic; Department of Pharmacology and Pharmacy Faculty of Veterinary Medicine University of Veterinary Sciences Brno CZ 612 42 Brno Czech Republic

Laboratory of Emerging Viral Diseases Veterinary Research Institute CZ 621 00 Brno Czech Republic; Institute of Parasitology Biology Centre of the Czech Academy of Sciences CZ 370 05 České Budějovice Czech Republic; Department of Experimental Biology Faculty of Science Masaryk University CZ 62500 Brno Czech Republic; Faculty of Science University of South Bohemia Ceske Budejovice CZ 37005 Czech Republic

Shemyakin Ovchinnikov Institute of Bioorganic Chemistry Moscow 117997 Russia

Zobrazit více v PubMed

Alferova, V.A., Mikhnovets, I.E., Chistov, A.A., Korshun, V.A., Tyurin, A.P., Ustinov, A.V. Perylene as a controversial antiviral scaffold. doi:10.1016/bs.armc.2022.08.001. DOI

Andronova V.L., Skorobogatyi M.V., Manasova E.V., Berlin Y.A., Korshun V.A., Galegov G.A. Antiviral activity of some 5-arylethynyl 2′-deoxyuridine derivatives. Russ. J. Bioorg. Chem. 2003;29 doi: 10.1023/A:1023936516589. PubMed DOI

Astakhova I.V., Korshun V.A., Jahn K., Kjems J., Wengel J. Perylene attached to 2′-Amino-LNA: synthesis, incorporation into oligonucleotides, and remarkable fluorescence properties in Vitro and in cell culture. Bioconjug. Chem. 2008;19 doi: 10.1021/bc800202v. PubMed DOI

Assunção-Miranda I., Cruz-Oliveira C., Neris R.L., Figueiredo C.M., Pereira L.P., Rodrigues D., Araujo D.F., Da Poian A.T., Bozza M.T. Inactivation of Dengue and Yellow Fever viruses by heme, cobalt-protoporphyrin IX and tin-protoporphyrin IX. J. Appl. Microbiol. 2016;120 doi: 10.1111/jam.13038. PubMed DOI

Bekerman E., Einav S. Combating emerging viral threats. Science. 2015;348(1979) doi: 10.1126/science.aaa3778. PubMed DOI PMC

Chistov A.A., Chumakov S.P., Mikhnovets I.E., Nikitin T.D., Slesarchuk N.A., Uvarova V.I., Rubekina A.A., Nikolaeva Y.V., Radchenko E.V., Khvatov E.V., Orlov A.A., Frolenko V.S., Sukhorukov M.V., Kolpakova E.S., Shustova E.Y., Galochkina A.V., Streshnev P.P., Osipov E.M., Sapozhnikova K.A., Moiseenko A.V., Brylev V.A., Proskurin G.V., Dokukin Y.S., Kutyakov S.V., Aralov A.V., Korshun V.A., Strelkov S.V., Palyulin V.A., Ishmukhametov A.A., Shirshin E.A., Osolodkin D.I., Shtro A.A., Kozlovskaya L.I., Alferova V.A., Ustinov A.V. 5-(Perylen-3-ylethynyl)uracil as an antiviral scaffold: potent suppression of enveloped virus reproduction by 3-methyl derivatives in vitro. Antiviral. Res. 2023;209 doi: 10.1016/j.antiviral.2022.105508. PubMed DOI

Chistov A.A., Kutyakov S.V., Guz A.V., Mikhura I.V., Ustinov A.V., Korshun V.A. Improved Large-scale Synthesis of 5-(Perylen-3-ylethynyl)- arabino -uridine (aUY11), the Broad-Spectrum Antiviral. Org. Prep. Proced. Int. 2017;49 doi: 10.1080/00304948.2017.1343040. DOI

Chistov A.A., Orlov A.A., Streshnev P.P., Slesarchuk N.A., Aparin I.O., Rathi B., Brylev V.A., Kutyakov S.V., Mikhura I.V., Ustinov A.V., Westman G., Palyulin V.A., Jain N., Osolodkin D.I., Kozlovskaya L.I., Korshun V.A. Compounds based on 5-(perylen-3-ylethynyl)uracil scaffold: high activity against tick-borne encephalitis virus and non-specific activity against enterovirus A. Eur. J. Med. Chem. 2019;171 doi: 10.1016/j.ejmech.2019.03.029. PubMed DOI

Colpitts C.C., Ustinov A.V., Epand R.F., Epand R.M., Korshun V.A., Schang L.M. 5-(Perylen-3-yl)Ethynyl-arabino-Uridine (aUY11), an Arabino-Based Rigid Amphipathic Fusion Inhibitor, Targets Virion Envelope Lipids To Inhibit Fusion of Influenza Virus, Hepatitis C Virus, and Other Enveloped Viruses. J. Virol. 2013;87 doi: 10.1128/JVI.02882-12. PubMed DOI PMC

Correa Sierra C.B., Schang L.M. On the sensitivity of the virion envelope to lipid peroxidation. Microbiol. Spectr. 2022;10 doi: 10.1128/spectrum.03009-22. PubMed DOI PMC

Fulda S., Gorman A.M., Hori O., Samali A. Cellular stress responses: cell survival and cell death. Int. J. Cell Biol. 2010;2010 doi: 10.1155/2010/214074. PubMed DOI PMC

Gvozdev D.A., Ramonova A.A., Maksimov E.G., Paschenko V.Z. Specific features of the interaction between chemical traps and phthalocyanine dyes affecting the measurement of the yield of reactive oxygen species. Dyes Pigm. 2020;181 doi: 10.1016/j.dyepig.2020.108538. DOI

Hakobyan A., Galindo I., Nañez A., Arabyan E., Karalyan Z., Chistov A.A., Streshnev P.P., Korshun V.A., Alonso C., Zakaryan H. Rigid amphipathic fusion inhibitors demonstrate antiviral activity against African swine fever virus. J. General Virol. 2018;99 doi: 10.1099/jgv.0.000991. PubMed DOI

Hu C.-M.J., Chang W.-S., Fang Z.-S., Chen Y.-T., Wang W.-L., Tsai H.-H., Chueh L.-L., Takano T., Hohdatsu T., Chen H.-W. Nanoparticulate vacuolar ATPase blocker exhibits potent host-targeted antiviral activity against feline coronavirus. Sci. Rep. 2017;7 doi: 10.1038/s41598-017-13316-0. PubMed DOI PMC

Ianevski A., Yao R., Simonsen R.M., Myhre V., Ravlo E., Kaynova G.D., Zusinaite E., White J.M., Polyak S.J., Oksenych V., Windisch M.P., Pan Q., Lastauskienė E., Vitkauskienė A., Matukevičius A., Tenson T., Bjørås M., Kainov D.E. Mono- and combinational drug therapies for global viral pandemic preparedness. iScience. 2022;25 doi: 10.1016/j.isci.2022.104112. PubMed DOI PMC

Kim K.H., Lee M.-S. GDF15 as a central mediator for integrated stress response and a promising therapeutic molecule for metabolic disorders and NASH. Biochim. Biophys. Acta (BBA) - General Subjects. 2021;1865 doi: 10.1016/j.bbagen.2020.129834. PubMed DOI

Kozma I.Z., Krok P., Riedle E. Direct measurement of the group-velocity mismatch and derivation of the refractive-index dispersion for a variety of solvents in the ultraviolet. J. Opt. Soc. Am. B. 2005;22 doi: 10.1364/JOSAB.22.001479. DOI

Ku H.-C., Cheng C.-F. Master regulator activating transcription factor 3 (ATF3) in metabolic homeostasis and cancer. Front. Endocrinol. (Lausanne) 2020;11 doi: 10.3389/fendo.2020.00556. PubMed DOI PMC

Limonciel A., Ates G., Carta G., Wilmes A., Watzele M., Shepard P.J., VanSteenhouse H.C., Seligmann B., Yeakley J.M., van de Water B., Vinken M., Jennings P. Comparison of base-line and chemical-induced transcriptomic responses in HepaRG and RPTEC/TERT1 cells using TempO-Seq. Arch. Toxicol. 2018;92 doi: 10.1007/s00204-018-2256-2. PubMed DOI PMC

Machala M., Vondráček J., Bláha L., Ciganek M., Neča J. Aryl hydrocarbon receptor-mediated activity of mutagenic polycyclic aromatic hydrocarbons determined using in vitro reporter gene assay. Mutation Res./Genetic Toxicol. Environ. Mutagen. 2001;497 doi: 10.1016/S1383-5718(01)00240-6. PubMed DOI

Magde D., Rojas G.E., Seybold P.G. Solvent dependence of the fluorescence lifetimes of xanthene dyes. Photochem. Photobiol. 1999;70 doi: 10.1111/j.1751-1097.1999.tb08277.x. DOI

Mariewskaya K.A., Tyurin A.P., Chistov A.A., Korshun V.A., Alferova V.A., Ustinov A.V. Photosensitizing antivirals. Molecules. 2021;26 doi: 10.3390/molecules26133971. PubMed DOI PMC

Martinez M.A. Efficacy of repurposed antiviral drugs: lessons from COVID-19. Drug Discov. Today. 2022;27 doi: 10.1016/j.drudis.2022.02.012. PubMed DOI PMC

Mercorelli B., Palù G., Loregian A. Drug repurposing for viral infectious diseases: how far are we? Trends Microbiol. 2018;26 doi: 10.1016/j.tim.2018.04.004. PubMed DOI PMC

Nikolayeva Y.V., Ulashchik E.A., Chekerda E.V., Galochkina A.V., Slesarchuk N.A., Chistov A.A., Nikitin T.D., Korshun V.A., Shmanai V.V., Ustinov A.V., Shtro A.A. 5-(Perylen-3-ylethynyl)uracil derivatives inhibit reproduction of respiratory viruses. Russ. J. Bioorg. Chem. 2020;46 doi: 10.1134/S1068162020030139. PubMed DOI PMC

Orlov A.A., Chistov A.A., Kozlovskaya L.I., Ustinov A.V., Korshun V.A., Karganova G.G., Osolodkin D.I. Rigid amphipathic nucleosides suppress reproduction of the tick-borne encephalitis virus. Medchemcomm. 2016;7:495–499. doi: 10.1039/C5MD00538H. DOI

Paraskevis D., Kostaki E.G., Magiorkinis G., Panayiotakopoulos G., Sourvinos G., Tsiodras S. Full-genome evolutionary analysis of the novel corona virus (2019-nCoV) rejects the hypothesis of emergence as a result of a recent recombination event. Infect. Genet. Evol. 2020;79 doi: 10.1016/j.meegid.2020.104212. PubMed DOI PMC

Park S., Cho N.-J. Lipid membrane interface viewpoint: from viral entry to antiviral and vaccine development. Langmuir. 2023;39 doi: 10.1021/acs.langmuir.2c02501. PubMed DOI

Procházková J., Strapáčová S., Svržková L., Andrysík Z., Hýžďalová M., Hrubá E., Pěnčíková K., Líbalová H., Topinka J., Kléma J., Espinosa J.M., Vondráček J., Machala M. Adaptive changes in global gene expression profile of lung carcinoma A549 cells acutely exposed to distinct types of AhR ligands. Toxicol. Lett. 2018;292 doi: 10.1016/j.toxlet.2018.04.024. PubMed DOI

Proskurin G.V., Orlov A.A., Brylev V.A., Kozlovskaya L.I., Chistov A.A., Karganova G.G., Palyulin V.A., Osolodkin D.I., Korshun V.A., Aralov A.V. 3′-O-Substituted 5-(perylen-3-ylethynyl)-2′-deoxyuridines as tick-borne encephalitis virus reproduction inhibitors. Eur. J. Med. Chem. 2018;155 doi: 10.1016/j.ejmech.2018.05.040. PubMed DOI

Punekar M., Kshirsagar M., Tellapragada C., Patil K. Repurposing of antiviral drugs for COVID-19 and impact of repurposed drugs on the nervous system. Microb. Pathog. 2022;168 doi: 10.1016/j.micpath.2022.105608. PubMed DOI PMC

Sardar A., Dewangan N., Panda B., Bhowmick D., Tarafdar P.K. Lipid and lipidation in membrane fusion. J. Membr. Biol. 2022;255 doi: 10.1007/s00232-022-00267-5. PubMed DOI PMC

Schmittgen T.D., Livak K.J. Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 2008;3 doi: 10.1038/nprot.2008.73. PubMed DOI

Shimizu M., Sato R. Endocrine fibroblast growth factors in relation to stress signaling. Cells. 2022;11 doi: 10.3390/cells11030505. PubMed DOI PMC

Sikorska E., Khmelinskii I., Komasa A., Koput J., Ferreira L.F.V., Herance J.R., Bourdelande J.L., Williams S.L., Worrall D.R., Insińska-Rak M., Sikorski M. Spectroscopy and photophysics of flavin relared compounds: riboflavin and iso-(6,7)-riboflavin. Chem. Phys. 2005;314:239–247. doi: 10.1016/j.chemphys.2005.03.005. DOI

Šimečková P., Hubatka F., Kotouček J., Turánek Knötigová P., Mašek J., Slavík J., Kováč O., Neča J., Kulich P., Hrebík D., Stráská J., Pěnčíková K., Procházková J., Diviš P., Macaulay S., Mikulík R., Raška M., Machala M., Turánek J. Gadolinium labelled nanoliposomes as the platform for MRI theranostics: in vitro safety study in liver cells and macrophages. Sci. Rep. 2020;10 doi: 10.1038/s41598-020-60284-z. PubMed DOI PMC

Simmons S.O., Fan C.-Y., Ramabhadran R. Cellular stress response pathway system as a sentinel ensemble in toxicological screening. Toxicol. Sci. 2009;111 doi: 10.1093/toxsci/kfp140. PubMed DOI

Slesarchuk N.A., Khvatov E.V., Chistov A.A., Proskurin G.V., Nikitin T.D., Lazarevich A.I., Ulanovskaya A.A., Ulashchik E.A., Orlov A.A., Jegorov A.V., Ustinov A.V., Tyurin A.P., Shmanai V.V., Ishmukhametov A.A., Korshun V.A., Osolodkin D.I., Kozlovskaya L.I., Aralov A.V. Simplistic perylene-related compounds as inhibitors of tick-borne encephalitis virus reproduction. Bioorg. Med. Chem. Lett. 2020;30 doi: 10.1016/j.bmcl.2020.127100. PubMed DOI

Speerstra S., Chistov A.A., Proskurin G.V., Aralov A.V., Ulashchik E.A., Streshnev P.P., Shmanai V.V., Korshun V.A., Schang L.M. Antivirals acting on viral envelopes via biophysical mechanisms of action. Antiviral. Res. 2018;149 doi: 10.1016/j.antiviral.2017.11.018. PubMed DOI

Štefánik M., Bhosale D.S., Haviernik J., Straková P., Fojtíková M., Dufková L., Huvarová I., Salát J., Bartáček J., Svoboda J., Sedlák M., Růžek D., Miller A.D., Eyer L. Diphyllin Shows a Broad-Spectrum Antiviral Activity against Multiple Medically Important Enveloped RNA and DNA Viruses. Viruses. 2022;14 doi: 10.3390/v14020354. PubMed DOI PMC

Stefanik M., Strakova P., Haviernik J., Miller A.D., Ruzek D., Eyer L. Antiviral activity of vacuolar ATPase blocker diphyllin against SARS-CoV-2. Microorganisms. 2021;9 doi: 10.3390/microorganisms9030471. PubMed DOI PMC

St.Vincent M.R., Colpitts C.C., Ustinov A.V., Muqadas M., Joyce M.A., Barsby N.L., Epand R.F., Epand R.M., Khramyshev S.A., Valueva O.A., Korshun V.A., Tyrrell D.L.J., Schang L.M. Rigid amphipathic fusion inhibitors, small molecule antiviral compounds against enveloped viruses. Proc. Natl. Acad. Sci. 2010;107 doi: 10.1073/pnas.1010026107. PubMed DOI PMC

Tu Y.-F., Chien C.-S., Yarmishyn A.A., Lin Y.-Y., Luo Y.-H., Lin Y.-T., Lai W.-Y., Yang D.-M., Chou S.-J., Yang Y.-P., Wang M.-L., Chiou S.-H. A review of SARS-CoV-2 and the ongoing clinical trials. Int. J. Mol. Sci. 2020;21 doi: 10.3390/ijms21072657. PubMed DOI PMC

Vigant F., Hollmann A., Lee J., Santos N.C., Jung M.E., Lee B. The rigid amphipathic fusion inhibitor dUY11 acts through photosensitization of viruses. J. Virol. 2014;88 doi: 10.1128/JVI.02907-13. PubMed DOI PMC

White J.M., Whittaker G.R. Fusion of enveloped viruses in endosomes. Traffic. 2016;17 doi: 10.1111/tra.12389. PubMed DOI PMC

Williams A.T.R., Winfield S.A., Miller J.N. Relative fluorescence quantum yields using a computer-controlled luminescence spectrometer. Analyst. 1983;108 doi: 10.1039/an9830801067. DOI

Wolf M.C., Freiberg A.N., Zhang T., Akyol-Ataman Z., Grock A., Hong P.W., Li J., Watson N.F., Fang A.Q., Aguilar H.C., Porotto M., Honko A.N., Damoiseaux R., Miller J.P., Woodson S.E., Chantasirivisal S., Fontanes V., Negrete O.A., Krogstad P., Dasgupta A., Moscona A., Hensley L.E., Whelan S.P., Faull K.F., Holbrook M.R., Jung M.E., Lee B. A broad-spectrum antiviral targeting entry of enveloped viruses. Proc. Natl. Acad. Sci. 2010;107 doi: 10.1073/pnas.0909587107. PubMed DOI PMC

Xiao Q., Wu J., Pang X., Jiang Y., Wang P., Leung A.W., Gao L., Jiang S., Xu C. Discovery and development of natural products and their derivatives as photosensitizers for photodynamic therapy. Curr. Med. Chem. 2018;25 doi: 10.2174/0929867324666170823143137. PubMed DOI

Zeng L., Wang M.-D., Ming S.-L., Li G.-L., Yu P.-W., Qi Y.-L., Jiang D.-W., Yang G.-Y., Wang J., Chu B.-B. An effective inactivant based on singlet oxygen-mediated lipid oxidation implicates a new paradigm for broad-spectrum antivirals. Redox. Biol. 2020;36 doi: 10.1016/j.redox.2020.101601. PubMed DOI PMC

Zhang J.D., Berntenis N., Roth A., Ebeling M. Data mining reveals a network of early-response genes as a consensus signature of drug-induced in vitro and in vivo toxicity. Pharmacogenomics J. 2014;14 doi: 10.1038/tpj.2013.39. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace