Alkyl Derivatives of Perylene Photosensitizing Antivirals: Towards Understanding the Influence of Lipophilicity
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
23-15-00158
Russian Science Foundation
LX22NPO5103
National Institute of Virology and Bacteriology (Programme EXCELES), Next Generation EU
PubMed
38003673
PubMed Central
PMC10671050
DOI
10.3390/ijms242216483
PII: ijms242216483
Knihovny.cz E-zdroje
- Klíčová slova
- antivirals, lipophilicity, perylene, photosensitizers, singlet oxygen,
- MeSH
- antivirové látky farmakologie chemie MeSH
- fotochemoterapie * MeSH
- fotosenzibilizující látky farmakologie MeSH
- lidský herpesvirus 1 * MeSH
- perylen * farmakologie MeSH
- singletový kyslík MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antivirové látky MeSH
- fotosenzibilizující látky MeSH
- perylen * MeSH
- singletový kyslík MeSH
Amphipathic perylene derivatives are broad-spectrum antivirals against enveloped viruses that act as fusion inhibitors in a light-dependent manner. The compounds target the lipid bilayer of the viral envelope using the lipophilic perylene moiety and photogenerating singlet oxygen, thereby causing damage to unsaturated lipids. Previous studies show that variation of the polar part of the molecule is important for antiviral activity. Here, we report modification of the lipophilic part of the molecule, perylene, by the introduction of 4-, 8-, and 12-carbon alkyls into position 9(10) of the perylene residue. Using Friedel-Crafts acylation and Wolff-Kishner reduction, three 3-acetyl-9(10)-alkylperylenes were synthesized from perylene and used to prepare 9 nucleoside and 12 non-nucleoside amphipathic derivatives. These compounds were characterized as fluorophores and singlet oxygen generators, as well as tested as antivirals against herpes virus-1 (HSV-1) and vesicular stomatitis virus (VSV), both known for causing superficial skin/mucosa lesions and thus serving as suitable candidates for photodynamic therapy. The results suggest that derivatives with a short alkyl chain (butyl) have strong antiviral activity, whereas the introduction of longer alkyl substituents (n = 8 and 12) to the perylenyethynyl scaffold results in a dramatic reduction of antiviral activity. This phenomenon is likely attributable to the increased lipophilicity of the compounds and their ability to form insoluble aggregates. Moreover, molecular dynamic studies revealed that alkylated perylene derivatives are predominately located closer to the middle of the bilayer compared to non-alkylated derivatives. The predicted probability of superficial positioning correlated with antiviral activity, suggesting that singlet oxygen generation is achieved in the subsurface layer of the membrane, where the perylene group is more accessible to dissolved oxygen.
Department of Biology Lomonosov Moscow State University Leninskie Gory 1 12 119234 Moscow Russia
Department of Chemistry Lomonosov Moscow State University Leninskie Gory 1 3 119991 Moscow Russia
Shemyakin Ovchinnikov Institute of Bioorganic Chemistry Miklukho Maklaya 16 10 117997 Moscow Russia
Zobrazit více v PubMed
Chang J.Y., Balch C., Puccio J., Oh H.S. A narrative review of alternative symptomatic treatments for herpes simplex virus. Viruses. 2023;15:1314. doi: 10.3390/v15061314. PubMed DOI PMC
De Clercq E. Fifty years in search of selective antiviral arugs: Miniperspective. J. Med. Chem. 2019;62:7322–7339. doi: 10.1021/acs.jmedchem.9b00175. PubMed DOI
Jurak I., Cokarić Brdovčak M., Djaković L., Bertović I., Knežević K., Lončarić M., Jurak Begonja A., Malatesti N. Photodynamic inhibition of herpes simplex virus 1 infection by tricationic amphiphilic porphyrin with a long alkyl chain. Pharmaceutics. 2023;15:956. doi: 10.3390/pharmaceutics15030956. PubMed DOI PMC
Khalil M., Hamadah O. Association of photodynamic therapy and photobiomodulation as a promising treatment of herpes labialis: A systematic review. Photobiomodul. Photomed. Laser. Surg. 2022;40:299–307. doi: 10.1089/photob.2021.0186. PubMed DOI
Teitelbaum S., Azevedo L.H., Bernaola-Paredes W.E. Antimicrobial photodynamic therapy used as first choice to treat herpes zoster virus infection in younger patient: A case report. Photobiomodul. Photomed. Laser. Surg. 2020;38:232–236. doi: 10.1089/photob.2019.4725. PubMed DOI
Adcock A.F., Wang P., Ferguson I.S., Obu S.C., Sun Y.-P., Yang L. Inactivation of vesicular stomatitis virus with light-activated carbon dots and mechanistic implications. ACS Appl. Bio Mater. 2022;5:3158–3166. doi: 10.1021/acsabm.2c00153. PubMed DOI
Meisel P., Kocher T. Photodynamic therapy for periodontal diseases: State of the art. J. Photochem. Photobiol. B. 2005;79:159–170. doi: 10.1016/j.jphotobiol.2004.11.023. PubMed DOI
Ryu W.-S. Molecular Virology of Human Pathogenic Viruses. Academic Press; Cambridge, MA, USA: 2017. Virus life cycle; pp. 31–45. DOI
Tang T., Bidon M., Jaimes J.A., Whittaker G.R., Daniel S. Coronavirus membrane fusion mechanism offers a potential target for antiviral development. Antivir. Res. 2020;178:104792. doi: 10.1016/j.antiviral.2020.104792. PubMed DOI PMC
Pattnaik G.P., Chakraborty H. Entry inhibitors: Efficient means to block viral infection. J. Membr. Biol. 2020;253:425–444. doi: 10.1007/s00232-020-00136-z. PubMed DOI PMC
Vigant F., Lee J., Hollmann A., Tanner L.B., Akyol Ataman Z., Yun T., Shui G., Aguilar H.C., Zhang D., Meriwether D., et al. A mechanistic paradigm for broad-spectrum antivirals that target virus-cell fusion. PLoS Pathog. 2013;9:e1003297. doi: 10.1371/journal.ppat.1003297. PubMed DOI PMC
Wisskirchen K., Lucifora J., Michler T., Protzer U. New pharmacological strategies to fight enveloped viruses. Tr. Pharm. Sc. 2014;35:470–478. doi: 10.1016/j.tips.2014.06.004. PubMed DOI PMC
Vigant F., Santos N.C., Lee B. Broad-spectrum antivirals against viral fusion. Nat. Rev. Microbiol. 2015;13:426–437. doi: 10.1038/nrmicro3475. PubMed DOI PMC
Park S., Cho N.-J. Lipid membrane interface viewpoint: From viral entry to antiviral and vaccine development. Langmuir. 2023;39:1–11. doi: 10.1021/acs.langmuir.2c02501. PubMed DOI
Gee Y.J., Sea Y.L., Lal S.K. Viral modulation of lipid rafts and their potential as putative antiviral targets. Rev. Med. Virol. 2023;33:e2413. doi: 10.1002/rmv.2413. PubMed DOI
St.Vincent M.R., Colpitts C.C., Ustinov A.V., Muqadas M., Joyce M.A., Barsby N.L., Epand R.F., Epand R.M., Khramyshev S.A., Valueva O.A., et al. Rigid amphipathic fusion inhibitors, small molecule antiviral compounds against enveloped viruses. Proc. Natl. Acad. Sci. USA. 2010;107:17339–17344. doi: 10.1073/pnas.1010026107. PubMed DOI PMC
Colpitts C.C., Ustinov A.V., Epand R.F., Epand R.M., Korshun V.A., Schang L.M. 5-(Perylen-3-yl)ethynyl-arabino-uridine (aUY11), an arabino-based rigid amphipathic fusion inhibitor, targets virion envelope lipids to inhibit fusion of influenza virus, hepatitis C virus, and other enveloped viruses. J. Virol. 2013;87:3640–3654. doi: 10.1128/JVI.02882-12. PubMed DOI PMC
Hakobyan A., Galindo I., Nañez A., Arabyan E., Karalyan Z., Chistov A.A., Streshnev P.P., Korshun V.A., Alonso C., Zakaryan H. Rigid amphipathic fusion inhibitors demonstrate antiviral activity against African swine fever virus. J. Gen. Virol. 2018;99:148–156. doi: 10.1099/jgv.0.000991. PubMed DOI
Chistov A.A., Orlov A.A., Streshnev P.P., Slesarchuk N.A., Aparin I.O., Rathi B., Brylev V.A., Kutyakov S.V., Mikhura I.V., Ustinov A.V., et al. Compounds based on 5-(perylen-3-ylethynyl)uracil scaffold: High activity against tick-borne encephalitis virus and non-specific activity against enterovirus A. Eur. J. Med. Chem. 2019;171:93–103. doi: 10.1016/j.ejmech.2019.03.029. PubMed DOI
Slesarchuk N.A., Khvatov E.V., Chistov A.A., Proskurin G.V., Nikitin T.D., Lazarevich A.I., Ulanovskaya A.A., Ulashchik E.A., Orlov A.A., Jegorov A.V., et al. Simplistic perylene-related compounds as inhibitors of tick-borne encephalitis virus reproduction. Bioorg. Med. Chem. 2020;30:127100. doi: 10.1016/j.bmcl.2020.127100. PubMed DOI
Vigant F., Hollmann A., Lee J., Santos N.C., Jung M.E., Lee B. The rigid amphipathic fusion inhibitor dUY11 acts through photosensitization of viruses. J. Virol. 2014;88:1849–1853. doi: 10.1128/JVI.02907-13. PubMed DOI PMC
Chistov A.A., Chumakov S.P., Mikhnovets I.E., Nikitin T.D., Slesarchuk N.A., Uvarova V.I., Rubekina A.A., Nikolaeva Y.V., Radchenko E.V., Khvatov E.V., et al. 5-(Perylen-3-ylethynyl)uracil as an antiviral scaffold: Potent suppression of enveloped virus reproduction by 3-methyl derivatives in vitro. Antivir. Res. 2023;209:105508. doi: 10.1016/j.antiviral.2022.105508. PubMed DOI
Straková P., Bednář P., Kotouček J., Holoubek J., Fořtová A., Svoboda P., Štefánik M., Huvarová I., Šimečková P., Mašek J., et al. Antiviral activity of singlet oxygen-photogenerating perylene compounds against SARS-CoV-2: Interaction with the viral envelope and photodynamic virion inactivation. Virus Res. 2023;334:199158. doi: 10.1016/j.virusres.2023.199158. PubMed DOI PMC
Mariewskaya K.A., Gvozdev D.A., Chistov A.A., Straková P., Huvarová I., Svoboda P., Kotouček J., Ivanov N.M., Krasilnikov M.S., Zhitlov M.Y., et al. Membrane-targeting perylenylethynylphenols inactivate medically important coronaviruses via the singlet oxygen photogeneration mechanism. Molecules. 2023;28:6278. doi: 10.3390/molecules28176278. PubMed DOI PMC
Speerstra S., Chistov A.A., Proskurin G.V., Aralov A.V., Ulashchik E.A., Streshnev P.P., Shmanai V.V., Korshun V.A., Schang L.M. Antivirals acting on viral envelopes via biophysical mechanisms of action. Antivir. Res. 2018;149:164–173. doi: 10.1016/j.antiviral.2017.11.018. PubMed DOI
Aralov A.V., Proskurin G.V., Orlov A.A., Kozlovskaya L.I., Chistov A.A., Kutyakov S.V., Karganova G.G., Palyulin V.A., Osolodkin D.I., Korshun V.A. Perylenyltriazoles inhibit reproduction of enveloped viruses. Eur. J. Med. Chem. 2017;138:293–299. doi: 10.1016/j.ejmech.2017.06.014. PubMed DOI
Bacellar I.O.L., Oliveira M.C., Dantas L.S., Costa E.B., Junqueira H.C., Martins W.K., Durantini A.M., Cosa G., Di Mascio P., Wainwright M., et al. Photosensitized membrane permeabilization requires contact-dependent reactions between photosensitizer and lipids. J. Am. Chem. Soc. 2018;140:9606–9615. doi: 10.1021/jacs.8b05014. PubMed DOI
Watabe N., Ishida Y., Ochiai A., Tokuoka Y., Kawashima N. Oxidation decomposition of unsaturated fatty acids by singlet oxygen in phospholipid bilayer membranes. J. Oleo Sci. 2007;56:73–80. doi: 10.5650/jos.56.73. PubMed DOI
Kracht M., Rokos H., Özel M., Kowall M., Pauli G., Vater J. Antiviral and hemolytic activities of surfactin isoforms and their methyl ester derivatives. J. Antibiot. 1999;52:613–619. doi: 10.7164/antibiotics.52.613. PubMed DOI
Yuan L., Zhang S., Wang Y., Li Y., Wang X., Yang Q. Surfactin inhibits membrane fusion during invasion of epithelial cells by enveloped viruses. J. Virol. 2018;92:e00809-18. doi: 10.1128/JVI.00809-18. PubMed DOI PMC
Yuan L., Zhang S., Peng J., Li Y., Yang Q. Synthetic surfactin analogues have improved anti-PEDV properties. PLoS ONE. 2019;14:e0215227. doi: 10.1371/journal.pone.0215227. PubMed DOI PMC
Johnson B.A., Hage A., Kalveram B., Mears M., Plante J.A., Rodriguez S.E., Ding Z., Luo X., Bente D., Bradrick S.S., et al. Peptidoglycan-associated cyclic lipopeptide disrupts viral infectivity. J. Virol. 2019;93:e01282-19. doi: 10.1128/JVI.01282-19. PubMed DOI PMC
Crovella S., De Freitas L.C., Zupin L., Fontana F., Ruscio M., Pena E.P.N., Pinheiro I.O., Calsa Junior T. Surfactin bacterial antiviral lipopeptide blocks in vitro replication of SARS-CoV-2. Appl. Microbiol. 2022;2:680–687. doi: 10.3390/applmicrobiol2030052. DOI
Tarafdar P.K., Sardar A., Bhowmick S., Kamble M., Hazra B., Dewangan N., Mallick A.I. De novo design of lipopeptide-based fusion inhibitor as potential broad-spectrum antiviral agent. ChemRxiv. 2023 doi: 10.26434/chemrxiv-2023-3ld59. DOI
Wang C., Zhao L., Xia S., Zhang T., Cao R., Liang G., Li Y., Meng G., Wang W., Shi W., et al. De novo design of α-helical lipopeptides targeting viral fusion proteins: A promising strategy for relatively broad-spectrum antiviral drug discovery. J. Med. Chem. 2018;61:8734–8745. doi: 10.1021/acs.jmedchem.8b00890. PubMed DOI PMC
Shekunov E.V., Zlodeeva P.D., Efimova S.S., Muryleva A.A., Zarubaev V.V., Slita A.V., Ostroumova O.S. Cyclic lipopeptides as membrane fusion Inhibitors against SARS-CoV-2: New tricks for old dogs. Antivir. Res. 2023;212:105575. doi: 10.1016/j.antiviral.2023.105575. PubMed DOI PMC
Tate P.M., Mastrodomenico V., Cunha C., McClure J., Barron A.E., Diamond G., Mounce B.C., Kirshenbaum K. Peptidomimetic oligomers targeting membrane phosphatidylserine exhibit broad antiviral activity. ACS Infect. Dis. 2023;9:1508–1522. doi: 10.1021/acsinfecdis.3c00063. PubMed DOI PMC
Keller L., Oueis E., Kaur A., Safaei N., Kirsch S.H., Gunesch A.P., Haid S., Rand U., Čičin-Šain L., Fu C., et al. Persicamidines—Unprecedented sesquarterpenoids with potent antiviral bioactivity against coronaviruses. Angew. Chem. Int. Ed. 2023;62:e202214595. doi: 10.1002/anie.202214595. PubMed DOI PMC
Le M.-H., Taghuo K.E.S., Schrader T. Molecular tweezers—A new class of potent broad-spectrum antivirals against enveloped viruses. Chem. Commun. 2022;58:2954–2966. doi: 10.1039/D1CC06737K. PubMed DOI
Weil T., Kirupakaran A., Le M.-H., Rebmann P., Mieres-Perez J., Issmail L., Conzelmann C., Müller J.A., Rauch L., Gilg A., et al. Advanced molecular tweezers with lipid anchors against SARS-CoV-2 and other respiratory viruses. JACS Au. 2022;2:2187–2202. doi: 10.1021/jacsau.2c00220. PubMed DOI PMC
Kurtzhals P., Østergaard S., Nishimura E., Kjeldsen T. Derivatization with fatty acids in peptide and protein drug discovery. Nat. Rev. Drug Discov. 2023;22:59–80. doi: 10.1038/s41573-022-00529-w. PubMed DOI
Niwa Y., Kanoh T., Kasama T., Negishi M. Activation of antioxidant activity in natural medicinal products by heating, brewing and lipophilization. A new drug delivery system. Drugs Exp. Clin. Res. 1988;14:361–372. PubMed
Farooq S., Abdullah, Zhang H., Weiss J. A comprehensive review on polarity, partitioning, and interactions of phenolic antioxidants at oil–water interface of food emulsions. Comprehens. Rev. Food Sci. Food Saf. 2021;20:4250–4277. doi: 10.1111/1541-4337.12792. PubMed DOI
Laguerre M., Bayrasy C., Lecomte J., Chabi B., Decker E.A., Wrutniak-Cabello C., Cabello G., Villeneuve P. How to boost antioxidants by lipophilization? Biochimie. 2013;95:20–26. doi: 10.1016/j.biochi.2012.07.018. PubMed DOI
Zieger H.E. Alkylperylenes. The isomeric ethylperylenes. J. Org. Chem. 1966;31:2977–2981. doi: 10.1021/jo01347a053. DOI
Chistov A.A., Kutyakov S.V., Ustinov A.V., Aparin I.O., Glybin A.V., Mikhura I.V., Korshun V.A. 2-Ethynylperylene and improved synthesis of 3-ethynylperylene. Tetrahedron Lett. 2016;57:1003–1005. doi: 10.1016/j.tetlet.2016.01.067. DOI
Markovic V., Villamaina D., Barabanov I., Lawson Daku L.M., Vauthey E. Photoinduced symmetry-breaking charge separation: The direction of the charge transfer. Angew. Chem. Int. Ed. 2011;50:7596–7598. doi: 10.1002/anie.201102601. PubMed DOI
Minlon H. A simple modification of the Wolff-Kishner reduction. J. Am. Chem. Soc. 1946;68:2487–2488. doi: 10.1021/ja01216a013. DOI
Bodendorf K., Kloss P. Acetylene derivatives from a fragmentation reaction. Angew. Chem. Int. Ed. 1963;2:98–99. doi: 10.1002/anie.196300983. DOI
Bodendorf K., Mayer R. Über die Darstellung und Fragmentierung von β-Chlor-acroleinen. Chem. Ber. 1965;98:3554–3560. doi: 10.1002/cber.19650981117. DOI
Chistov A.A., Ivanov N.M., Kutyakov S.V., Ustinov A.V., Glybin A.V., Streshnev P.P., Mikhura I.V., Korshun V.A. Fluorescent nucleosides with an elongated rigid linker: Attaching perylene to a nucleobase via a one-pot desilylation/Sonogashira reaction. Tetrahedron Lett. 2016;57:4821–4823. doi: 10.1016/j.tetlet.2016.09.050. DOI
Detty M.R., Merkel P.B. Chalcogenapyrylium dyes as potential photochemotherapeutic agents. Solution studies of heavy atom effects on triplet yields, quantum efficiencies of singlet oxygen generation, rates of reaction with singlet oxygen, and emission quantum yields. J. Am. Chem. Soc. 1990;112:3845–3855. doi: 10.1021/ja00166a019. DOI
Zhang X.-F., Yang X. Singlet oxygen generation and triplet excited-state spectra of brominated BODIPY. J. Phys. Chem. B. 2013;117:5533–5539. doi: 10.1021/jp4013812. PubMed DOI
Proskurin G.V., Orlov A.A., Brylev V.A., Kozlovskaya L.I., Chistov A.A., Karganova G.G., Palyulin V.A., Osolodkin D.I., Korshun V.A., Aralov A.V. 3′-O-Substituted 5-(perylen-3-ylethynyl)-2′-deoxyuridines as tick-borne encephalitis virus reproduction inhibitors. Eur. J. Med. Chem. 2018;155:77–83. doi: 10.1016/j.ejmech.2018.05.040. PubMed DOI
Heyne B. Self-assembly of organic dyes in supramolecular aggregates. Photochem. Photobiol. Sci. 2016;15:1103–1114. doi: 10.1039/c6pp00221h. PubMed DOI
Más-Montoya M., García Alcaraz A., Espinosa Ferao A., Bautista D., Curiel D. Insight into the Stokes shift, divergent solvatochromism and aggregation-induced emission of boron complexes with locked and unlocked benzophenanthridine ligands. Dyes Pigm. 2023;209:110924. doi: 10.1016/j.dyepig.2022.110924. DOI
Tanielian C., Wolff C., Esch M. Singlet oxygen production in water: Aggregation and charge-transfer effects. J. Phys. Chem. 1996;100:6555–6560. doi: 10.1021/jp952107s. DOI
Tanielian C., Schweitzer C., Mechin R., Wolff C. Quantum yield of singlet oxygen production by monomeric and aggregated forms of hematoporphyrin derivative. Free Radic. Biol. Med. 2001;30:208–212. doi: 10.1016/S0891-5849(00)00460-3. PubMed DOI
Moreira L.M., Lyon J.P., Lima A., Codognoto L., Severino D., da Silva Baptista M., Tessaro A.L., Gerola A.P., Hioka N., Rodrigues M.R. The methylene blue self-aggregation in water/organic solvent mixtures: Relationship between solvatochromic properties and singlet oxygen production. Orbital Electron. J. Chem. 2017:279–289. doi: 10.17807/orbital.v9i4.996. DOI
Zhang B., Zheng L., Huang Y., Mo Q., Wang X., Qian K. Detection of nucleic acid lesions during photochemical inactivation of RNA viruses by treatment with methylene blue and light using real-time PCR. Photochem. Photobiol. 2011;87:365–369. doi: 10.1111/j.1751-1097.2010.00870.x. PubMed DOI
Steinmann E., Gravemann U., Friesland M., Doerrbecker J., Müller T.H., Pietschmann T., Seltsam A. Two pathogen reduction technologies—Methylene blue plus light and shortwave ultraviolet light—Effectively inactivate hepatitis C virus in blood products. Transfusion. 2013;53:1010–1018. doi: 10.1111/j.1537-2995.2012.03858.x. PubMed DOI
Zeng L., Wang M.-D., Ming S.-L., Li G.-L., Yu P.-W., Qi Y.-L., Jiang D.-W., Yang G.-Y., Wang J., Chu B.-B. An effective inactivant based on singlet oxygen-mediated lipid oxidation implicates a new paradigm for broad-spectrum antivirals. Redox Biol. 2020;36:101601. doi: 10.1016/j.redox.2020.101601. PubMed DOI PMC
Wolf M.C., Freiberg A.N., Zhang T., Akyol-Ataman Z., Grock A., Hong P.W., Li J., Watson N.F., Fang A.Q., Aguilar H.C., et al. A broad-spectrum antiviral targeting entry of enveloped viruses. Proc. Natl. Acad. Sci. USA. 2010;107:3157–3162. doi: 10.1073/pnas.0909587107. PubMed DOI PMC
Hollmann A., Castanho M.A.R.B., Lee B., Santos N.C. Singlet oxygen effects on lipid membranes: Implications for the mechanism of action of broad-spectrum viral fusion inhibitors. Biochem. J. 2014;459:161–170. doi: 10.1042/BJ20131058. PubMed DOI
Hollmann A., Gonçalves S., Augusto M.T., Castanho M.A.R.B., Lee B., Santos N.C. Effects of singlet oxygen generated by a broad-spectrum viral fusion inhibitor on membrane nanoarchitecture. Nanomed. Nanotechnol. Biol. Med. 2015;11:1163–1167. doi: 10.1016/j.nano.2015.02.014. PubMed DOI PMC
Carpenter B., Situ X., Scholle F., Bartelmess J., Weare W., Ghiladi R. Antiviral, antifungal and antibacterial activities of a BODIPY-based photosensitizer. Molecules. 2015;20:10604–10621. doi: 10.3390/molecules200610604. PubMed DOI PMC
Lebedeva N.S., Gubarev Y.A., Koifman M.O., Koifman O.I. The application of porphyrins and their analogues for inactivation of viruses. Molecules. 2020;25:4368. doi: 10.3390/molecules25194368. PubMed DOI PMC
Ziganshyna S., Szczepankiewicz G., Kuehnert M., Schulze A., Liebert U.G., Pietsch C., Eulenburg V., Werdehausen R. Photodynamic inactivation of SARS-CoV-2 infectivity and antiviral treatment effects in vitro. Viruses. 2022;14:1301. doi: 10.3390/v14061301. PubMed DOI PMC
Meunier T., Desmarets L., Bordage S., Bamba M., Hervouet K., Rouillé Y., François N., Decossas M., Sencio V., Trottein F., et al. A photoactivable natural product with broad antiviral activity against enveloped viruses, including highly pathogenic coronaviruses. Antimicrob. Agents Chemother. 2022;66:e01581-21. doi: 10.1128/AAC.01581-21. PubMed DOI PMC
Crocker L.B., Lee J.H., Mital S., Mills G.C., Schack S., Bistrović-Popov A., Franck C.O., Mela I., Kaminski C.F., Christie G., et al. Tuning riboflavin derivatives for photodynamic inactivation of pathogens. Sci. Rep. 2022;12:6580. doi: 10.1038/s41598-022-10394-7. PubMed DOI PMC
Liu Y., Gu M., Ding Q., Zhang Z., Gong W., Yuan Y., Miao X., Ma H., Hong X., Hu W., et al. Highly twisted conformation thiopyrylium photosensitizers for in vivo near infrared-II imaging and rapid inactivation of coronavirus. Angew. Chem. Int. Ed. 2023;62:e202214875. doi: 10.1002/anie.202214875. PubMed DOI PMC
Armarego W.L.F. Purification of Laboratory Chemicals. 8th ed. Butterworth-Heinemann; Oxford, UK: Elsevier; Amsterdam, The Netherlands: 2017.
Sikorska E., Khmelinskii I., Komasa A., Koput J., Ferreira L.F.V., Herance J.R., Bourdelande J.L., Williams S.L., Worrall D.R., Insińska-Rak M., et al. Spectroscopy and photophysics of flavin related compounds: Riboflavin and iso-(6,7)-riboflavin. Chem. Phys. 2005;314:239–247. doi: 10.1016/j.chemphys.2005.03.005. DOI
Gvozdev D.A., Ramonova A.A., Maksimov E.G., Paschenko V.Z. Specific features of the interaction between chemical traps and phthalocyanine dyes affecting the measurement of the yield of reactive oxygen species. Dyes Pigm. 2020;181:108535. doi: 10.1016/j.dyepig.2020.108538. DOI
Jo S., Kim T., Iyer V.G., Im W. CHARMM-GUI: A web-based graphical user interface for CHARMM. J. Comput. Chem. 2008;29:1859–1865. doi: 10.1002/jcc.20945. PubMed DOI
Kim S., Lee J., Jo S., Brooks C.L., Lee H.S., Im W. CHARMM-GUI ligand reader and modeler for CHARMM force field generation of small molecules. J. Comput. Chem. 2017;38:1879–1886. doi: 10.1002/jcc.24829. PubMed DOI PMC
Park S.-J., Kern N., Brown T., Lee J., Im W. CHARMM-GUI PDB manipulator: Various PDB structural modifications for biomolecular modeling and simulation. J. Mol. Biol. 2023;435:167995. doi: 10.1016/j.jmb.2023.167995. PubMed DOI PMC
Lee J., Cheng X., Swails J.M., Yeom M.S., Eastman P.K., Lemkul J.A., Wei S., Buckner J., Jeong J.C., Qi Y., et al. CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. J. Chem. Theory Comput. 2016;12:405–413. doi: 10.1021/acs.jctc.5b00935. PubMed DOI PMC
Abraham M.J., Murtola T., Schulz R., Páll S., Smith J.C., Hess B., Lindahl E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1–2:19–25. doi: 10.1016/j.softx.2015.06.001. DOI
Huang J., MacKerell A.D. CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data. J. Comput. Chem. 2013;34:2135–2145. doi: 10.1002/jcc.23354. PubMed DOI PMC
Best R.B., Zhu X., Shim J., Lopes P.E.M., Mittal J., Feig M., MacKerell A.D. Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone ϕ, ψ and side-chain χ1 and χ2 dihedral angles. J. Chem. Theory Comput. 2012;8:3257–3273. doi: 10.1021/ct300400x. PubMed DOI PMC
Klauda J.B., Monje V., Kim T., Im W. Improving the CHARMM force field for polyunsaturated fatty acid chains. J. Phys. Chem. B. 2012;116:9424–9431. doi: 10.1021/jp304056p. PubMed DOI
Jorgensen W.L., Chandrasekhar J., Madura J.D., Impey R.W., Klein M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983;79:926–935. doi: 10.1063/1.445869. DOI
Essmann U., Perera L., Berkowitz M.L., Darden T., Lee H., Pedersen L.G. A smooth particle mesh Ewald method. J. Chem. Phys. 1995;103:8577–8593. doi: 10.1063/1.470117. DOI
Bussi G., Donadio D., Parrinello M. Canonical sampling through velocity rescaling. J. Chem. Phys. 2007;126:014101. doi: 10.1063/1.2408420. PubMed DOI
Parrinello M., Rahman A. Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys. 1981;52:7182–7190. doi: 10.1063/1.328693. DOI
Hubbard S.J., Thornton J.M. ‘NACCESS’, Computer Program. Department of Biochemistry and Molecular Biology, University College; London, UK: 1993.
The PyMOL Molecular Graphics System. Schrödinger, LLC; New York, NY, USA: 2020. Version 2.5.0.
Lei C., Yang J., Hu J., Sun X. On the calculation of TCID50 for quantitation of virus infectivity. Virol. Sin. 2020;36:141–144. doi: 10.1007/s12250-020-00230-5. PubMed DOI PMC