Membrane-Targeting Perylenylethynylphenols Inactivate Medically Important Coronaviruses via the Singlet Oxygen Photogeneration Mechanism

. 2023 Aug 28 ; 28 (17) : . [epub] 20230828

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37687107

Grantová podpora
075-15-2021-1049 Ministry of Science and Higher Education of the Russian Federation

Perylenylethynyl derivatives have been recognized as broad-spectrum antivirals that target the lipid envelope of enveloped viruses. In this study, we present novel perylenylethynylphenols that exhibit nanomolar or submicromolar antiviral activity against Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) and feline infectious peritonitis virus (FIPV) in vitro. Perylenylethynylphenols incorporate into viral and cellular membranes and block the entry of the virus into the host cell. Furthermore, these compounds demonstrate an ability to generate singlet oxygen when exposed to visible light. The rate of singlet oxygen production is positively correlated with antiviral activity, confirming that the inhibition of fusion is primarily due to singlet-oxygen-induced damage to the viral envelope. The unique combination of a shape that affords affinity to the lipid bilayer and the capacity to generate singlet oxygen makes perylenylethynylphenols highly effective scaffolds against enveloped viruses. The anticoronaviral activity of perylenylethynylphenols is strictly light-dependent and disappears in the absence of daylight (under red light). Moreover, these compounds exhibit negligible cytotoxicity, highlighting their significant potential for further exploration of the precise antiviral mechanism and the broader scope and limitations of this compound class.

Zobrazit více v PubMed

Murakami N., Hayden R., Hills T., Al-Samkari H., Casey J., Del Sorbo L., Lawler P.R., Sise M.E., Leaf D.E. Therapeutic advances in COVID-19. Nat. Rev. Nephrol. 2023;19:38–52. doi: 10.1038/s41581-022-00642-4. PubMed DOI PMC

Li G., Hilgenfeld R., Whitley R., De Clercq E. Therapeutic strategies for COVID-19: Progress and lessons learned. Nat. Rev. Drug Discov. 2023;22:449–475. doi: 10.1038/s41573-023-00672-y. PubMed DOI PMC

Von Delft A., Hall M.D., Kwong A.D., Purcell L.A., Saikatendu K.S., Schmitz U., Tallarico J.A., Lee A.A. Accelerating antiviral drug discovery: Lessons from COVID-19. Nat. Rev. Drug Discov. 2023;22:585–603. doi: 10.1038/s41573-023-00692-8. PubMed DOI PMC

Mohammed Ibrahim O., Bara Allawe A., Ali Kadhim H. Isolation and molecular detection of Feline infectious peritonitis virus. Arch. Razi Inst. 2022;77:1709–1714. doi: 10.22092/ari.2022.357997.2135. PubMed DOI PMC

Hudson J.B., Zhou J., Chen J., Harris L., Yip L., Towers G.H.N. Hypocrellin, from Hypocrella bambuase, is phototoxic to human immunodeficiency virus. Photochem. Photobiol. 1994;60:253–255. doi: 10.1111/j.1751-1097.1994.tb05100.x. PubMed DOI

Fehr M.J., Carpenter S.L., Wannemuehler Y., Petrich J.W. Roles of oxygen and photoinduced acidification in the light-dependent antiviral activity of hypocrellin A. Biochemistry. 1995;34:15845–15848. doi: 10.1021/bi00048a030. PubMed DOI

Hirayama J., Ikebuchi K., Abe H., Kwon K.-W., Ohnishi Y., Horiuchi M., Shinagawa M., Ikuta K., Kamo N., Sekiguchi S. Photoinactivation of virus infectivity by hypocrellin A. Photochem. Photobiol. 1997;66:697–700. doi: 10.1111/j.1751-1097.1997.tb03209.x. PubMed DOI

Park J., English D.S., Wannemuehler Y., Carpenter S., Petrich J.W. The role of oxygen in the antiviral activity of hypericin and hypocrellin. Photochem. Photobiol. 1998;68:593–597. doi: 10.1111/j.1751-1097.1998.tb02519.x. PubMed DOI

Sun Y., Chen Y., Xu C., Gao J., Feng Y., Wu Q. Disinfection of influenza A viruses by hypocrellin A-mediated photodynamic inactivation. Photodiagn. Photodyn. Ther. 2023;43:103674. doi: 10.1016/j.pdpdt.2023.103674. PubMed DOI

Carpenter S., Fehr M.J., Kraus G.A., Petrich J.W. Chemiluminescent activation of the antiviral activity of hypericin: A molecular flashlight. Proc. Natl. Acad. Sci. USA. 1994;91:12273–12277. doi: 10.1073/pnas.91.25.12273. PubMed DOI PMC

Lavie G., Mazur Y., Lavie D., Prince A., Pascual D., Liebes L., Levin B., Meruelo D. Hypericin as an inactivator of infectious viruses in blood components. Transfusion. 1995;35:392–400. doi: 10.1046/j.1537-2995.1995.35595259149.x. PubMed DOI

Prince A.M., Pascual D., Meruelo D., Liebes L., Mazur Y., Dubovi E., Mandel M., Lavie G. Strategies for evaluation of enveloped virus inactivation in red cell concentrates using hypericin. Photochem. Photobiol. 2000;71:188–195. doi: 10.1562/0031-8655(2000)0710188SFEOEV2.0.CO2. PubMed DOI

Hudson J.B., Delaey E., de Witte P.A. Bromohypericins are potent photoactive antiviral agents. Photochem. Photobiol. 1999;70:820–822. doi: 10.1111/j.1751-1097.1999.tb08288.x. PubMed DOI

Delcanale P., Uriati E., Mariangeli M., Mussini A., Moreno A., Lelli D., Cavanna L., Bianchini P., Diaspro A., Abbruzzetti S., et al. The interaction of hypericin with SARS-CoV-2 reveals a multimodal antiviral activity. ACS Appl. Mater. Interfaces. 2022;14:14025–14032. doi: 10.1021/acsami.1c22439. PubMed DOI PMC

St. Vincent M.R., Colpitts C.C., Ustinov A.V., Muqadas M., Joyce M.A., Barsby N.L., Epand R.F., Epand R.M., Khramyshev S.A., Valueva O.A., et al. Rigid amphipathic fusion inhibitors, small molecule antiviral compounds against enveloped viruses. Proc. Natl. Acad. Sci. USA. 2010;107:17339–17344. doi: 10.1073/pnas.1010026107. PubMed DOI PMC

Colpitts C.C., Ustinov A.V., Epand R.F., Epand R.M., Korshun V.A., Schang L.M. 5-(Perylen-3-yl)ethynyl-arabino-uridine (aUY11), an arabino-based rigid amphipathic fusion inhibitor, targets virion envelope lipids to inhibit fusion of influenza virus, hepatitis C virus, and other enveloped viruses. J. Virol. 2013;87:3640–3654. doi: 10.1128/JVI.02882-12. PubMed DOI PMC

Speerstra S., Chistov A.A., Proskurin G.V., Aralov A.V., Ulashchik E.A., Streshnev P.P., Shmanai V.V., Korshun V.A., Schang L.M. Antivirals acting on viral envelopes via biophysical mechanisms of action. Antivir. Res. 2018;149:164–173. doi: 10.1016/j.antiviral.2017.11.018. PubMed DOI

Vigant F., Hollmann A., Lee J., Santos N.C., Jung M.E., Lee B. The rigid amphipathic fusion inhibitor dUY11 acts through photosensitization of viruses. J. Virol. 2014;88:1849–1853. doi: 10.1128/JVI.02907-13. PubMed DOI PMC

Chistov A.A., Chumakov S.P., Mikhnovets I.E., Nikitin T.D., Slesarchuk N.A., Uvarova V.I., Rubekina A.A., Nikolaeva Y.V., Radchenko E.V., Khvatov E.V., et al. 5-(Perylen-3-ylethynyl)uracil as an antiviral scaffold: Potent suppression of enveloped virus reproduction by 3-methyl derivatives in vitro. Antivir. Res. 2023;209:105508. doi: 10.1016/j.antiviral.2022.105508. PubMed DOI

Straková P., Bednář P., Kotouček J., Holoubek J., Fořtová A., Svoboda P., Štefánik M., Huvarová I., Šimečková P., Mašek J., et al. Antiviral activity of singlet oxygen-photogenerating perylene compounds against SARS-CoV-2: Interaction with the viral envelope and photodynamic virion inactivation. Virus Res. 2023;334:199158. doi: 10.1016/j.virusres.2023.199158. PubMed DOI PMC

Bacellar I.O.L., Oliveira M.C., Dantas L.S., Costa E.B., Junqueira H.C., Martins W.K., Durantini A.M., Cosa G., Di Mascio P., Wainwright M., et al. Photosensitized membrane permeabilization requires contact-dependent reactions between photosensitizer and lipids. J. Am. Chem. Soc. 2018;140:9606–9615. doi: 10.1021/jacs.8b05014. PubMed DOI

Di Mascio P., Martinez G.R., Miyamoto S., Ronsein G.E., Medeiros M.H.G., Cadet J. Singlet molecular oxygen reactions with nucleic acids, lipids, and proteins. Chem. Rev. 2019;119:2043–2086. doi: 10.1021/acs.chemrev.8b00554. PubMed DOI

Vigant F., Santos N.C., Lee B. Broad-spectrum antivirals against viral fusion. Nat. Rev. Microbiol. 2015;13:426–437. doi: 10.1038/nrmicro3475. PubMed DOI PMC

Hollmann A., Gonçalves S., Augusto M.T., Castanho M.A.R.B., Lee B., Santos N.C. Effects of singlet oxygen generated by a broad-spectrum viral fusion inhibitor on membrane nanoarchitecture. Nanomed. Nanotechnol. Biol. Med. 2015;11:1163–1167. doi: 10.1016/j.nano.2015.02.014. PubMed DOI PMC

Vigant F., Lee J., Hollmann A., Tanner L.B., Akyol Ataman Z., Yun T., Shui G., Aguilar H.C., Zhang D., Meriwether D., et al. A mechanistic paradigm for broad-spectrum antivirals that target virus-cell fusion. PLoS Pathog. 2013;9:e1003297. doi: 10.1371/journal.ppat.1003297. PubMed DOI PMC

Hollmann A., Castanho M.A.R.B., Lee B., Santos N.C. Singlet oxygen effects on lipid membranes: Implications for the mechanism of action of broad-spectrum viral fusion inhibitors. Biochem. J. 2014;459:161–170. doi: 10.1042/BJ20131058. PubMed DOI

Zeng L., Wang M.-D., Ming S.-L., Li G.-L., Yu P.-W., Qi Y.-L., Jiang D.-W., Yang G.-Y., Wang J., Chu B.-B. An effective inactivant based on singlet oxygen-mediated lipid oxidation implicates a new paradigm for broad-spectrum antivirals. Redox Biol. 2020;36:101601. doi: 10.1016/j.redox.2020.101601. PubMed DOI PMC

Wolf M.C., Freiberg A.N., Zhang T., Akyol-Ataman Z., Grock A., Hong P.W., Li J., Watson N.F., Fang A.Q., Aguilar H.C., et al. A broad-spectrum antiviral targeting entry of enveloped viruses. Proc. Natl. Acad. Sci. USA. 2010;107:3157–3162. doi: 10.1073/pnas.0909587107. PubMed DOI PMC

Zhang B., Zheng L., Huang Y., Mo Q., Wang X., Qian K. Detection of nucleic acid lesions during photochemical inactivation of RNA viruses by treatment with methylene blue and light using real-time PCR. Photochem. Photobiol. 2011;87:365–369. doi: 10.1111/j.1751-1097.2010.00870.x. PubMed DOI

Steinmann E., Gravemann U., Friesland M., Doerrbecker J., Müller T.H., Pietschmann T., Seltsam A. Two pathogen reduction technologies—Methylene blue plus light and shortwave ultraviolet light—Effectively inactivate hepatitis C virus in blood products. Transfusion. 2013;53:1010–1018. doi: 10.1111/j.1537-2995.2012.03858.x. PubMed DOI

Gendrot M., Andreani J., Duflot I., Boxberger M., Le Bideau M., Mosnier J., Jardot P., Fonta I., Rolland C., Bogreau H., et al. Methylene blue inhibits replication of SARS-CoV-2 in vitro. Int. J. Antimicrob. Agents. 2020;56:106202. doi: 10.1016/j.ijantimicag.2020.106202. PubMed DOI PMC

Svyatchenko V.A., Nikonov S.D., Mayorov A.P., Gelfond M.L., Loktev V.B. Antiviral photodynamic therapy: Inactivation and inhibition of SARS-CoV-2 in vitro using methylene blue and radachlorin. Photodiagn. Photodyn. Ther. 2021;33:102112. doi: 10.1016/j.pdpdt.2020.102112. PubMed DOI PMC

Crocker L.B., Lee J.H., Mital S., Mills G.C., Schack S., Bistrović-Popov A., Franck C.O., Mela I., Kaminski C.F., Christie G., et al. Tuning riboflavin derivatives for photodynamic inactivation of pathogens. Sci. Rep. 2022;12:6580. doi: 10.1038/s41598-022-10394-7. PubMed DOI PMC

Carpenter B., Situ X., Scholle F., Bartelmess J., Weare W., Ghiladi R. Antiviral, antifungal and antibacterial activities of a BODIPY-based photosensitizer. Molecules. 2015;20:10604–10621. doi: 10.3390/molecules200610604. PubMed DOI PMC

Zarubaev V.V., Belousova I.M., Kiselev O.I., Piotrovsky L.B., Anfimov P.M., Krisko T.C., Muraviova T.D., Rylkov V.V., Starodubzev A.M., Sirotkin A.C. Photodynamic inactivation of influenza virus with fullerene C60 suspension in allantoic fluid. Photodiagn. Photodyn. Ther. 2007;4:31–35. doi: 10.1016/j.pdpdt.2006.08.003. PubMed DOI

Remichkova M., Mukova L., Nikolaeva-Glomb L., Nikolova N., Doumanova L., Mantareva V., Angelov I., Kussovski V., Galabov A.S. Virus inactivation under the photodynamic effect of phthalocyanine Zinc(II) complexes. Z. Naturforsch. C. 2017;72:123–128. doi: 10.1515/znc-2016-0119. PubMed DOI

Sharshov K., Solomatina M., Kurskaya O., Kovalenko I., Kholina E., Fedorov V., Meerovich G., Rubin A., Strakhovskaya M. The photosensitizer octakis(cholinyl)zinc phthalocyanine with ability to bind to a model spike protein leads to a loss of SARS-CoV-2 infectivity in vitro when exposed to far-red LED. Viruses. 2021;13:643. doi: 10.3390/v13040643. PubMed DOI PMC

Korneev D., Kurskaya O., Sharshov K., Eastwood J., Strakhovskaya M. Ultrastructural aspects of photodynamic inactivation of highly pathogenic avian H5N8 influenza virus. Viruses. 2019;11:955. doi: 10.3390/v11100955. PubMed DOI PMC

Meunier T., Desmarets L., Bordage S., Bamba M., Hervouet K., Rouillé Y., François N., Decossas M., Sencio V., Trottein F., et al. A photoactivable natural product with broad antiviral activity against enveloped viruses, including highly pathogenic coronaviruses. Antimicrob. Agents Chemother. 2022;66:e01581-21. doi: 10.1128/AAC.01581-21. PubMed DOI PMC

Yu S., Sun G., Sui Y., Li H., Mai Y., Wang G., Zhang N., Bi Y., Gao G.F., Xu P., et al. Potent inhibition of severe acute respiratory syndrome coronavirus 2 by photosensitizers compounds. Dyes Pigm. 2021;194:109570. doi: 10.1016/j.dyepig.2021.109570. PubMed DOI PMC

Zhdanova K.A., Savelyeva I.O., Ezhov A.V., Zhdanov A.P., Zhizhin K.Y., Mironov A.F., Bragina N.A., Babayants A.A., Frolova I.S., Filippova N.I., et al. Novel cationic meso-arylporphyrins and their antiviral activity against HSV-1. Pharmaceuticals. 2021;14:242. doi: 10.3390/ph14030242. PubMed DOI PMC

Ries A.S., Cargnelutti J.F., Basso G., Acunha T.V., Iglesias B.A., Flores E.F., Weiblen R. Water-soluble tetra-cationic porphyrins display virucidal activity against Bovine adenovirus and Bovine alphaherpesvirus 1. Photodiagn. Photodyn. Ther. 2020;31:101947. doi: 10.1016/j.pdpdt.2020.101947. PubMed DOI

Bai Y., Yu E.Y., Liu Y., Jin H., Liu X., Wu X., Zhang M., Feng N., Huang P., Zhang H., et al. Molecular engineering of AIE photosensitizers for inactivation of rabies virus. Small. 2023;19:2303542. doi: 10.1002/smll.202303542. PubMed DOI

Rubekina A.A., Kamzeeva P.N., Alferova V.A., Shustova E.Y., Kolpakova E.S., Yakovchuk E.V., Karpova E.V., Borodulina M.O., Belyaev E.S., Khrulev A.A., et al. Hydrophobic rose bengal derivatives exhibit submicromolar-to-subnanomolar activity against enveloped viruses. Biomolecules. 2022;12:1609. doi: 10.3390/biom12111609. PubMed DOI PMC

Yao R., Hou J., Zhang X., Li Y., Lai J., Wu Q., Liu Q., Zhou L. Targeted photodynamic neutralization of SARS-CoV-2 mediated by singlet oxygen. Photochem. Photobiol. Sci. 2023;22:1323–1340. doi: 10.1007/s43630-023-00381-w. PubMed DOI PMC

Stevens B., Algar B.E. Photoperoxidation of unsaturated organic molecules. IV. The photosensitized reaction. J. Phys. Chem. 1969;73:1711–1715. doi: 10.1021/j100726a014. DOI

Wu K.C., Trozzolo A.M. Production of singlet molecular oxygen from the oxygen quenching of the lowest excited singlet state of aromatic molecules in n-hexane solution. J. Phys. Chem. 1979;83:3180–3183. doi: 10.1021/j100487a023. DOI

McLean A.J., McGarvey D.J., Truscott T.G., Lambert C.R., Land E.J. Effect of oxygen-enhanced intersystem crossing on the observed efficiency of formation of singlet oxygen. J. Chem. Soc. Faraday Trans. 1990;86:3075–3080. doi: 10.1039/ft9908603075. DOI

Filatov M.A., Karuthedath S., Polestshuk P.M., Callaghan S., Flanagan K.J., Wiesner T., Laquai F., Senge M.O. BODIPY-pyrene and perylene dyads as heavy-atom-free singlet oxygen sensitizers. ChemPhotoChem. 2018;2:606–615. doi: 10.1002/cptc.201800020. DOI

Beri D., Jakoby M., Busko D., Richards B.S., Turshatov A. Enhancing singlet oxygen generation in conjugates of silicon nanocrystals and organic photosensitizers. Front. Chem. 2020;8:567. doi: 10.3389/fchem.2020.00567. PubMed DOI PMC

Schmid M., Brückmann J., Bösking J., Nauroozi D., Karnahl M., Rau S., Tschierlei S. Merging of a perylene moiety enables a RuII photosensitizer with long-lived excited states and the efficient production of singlet oxygen. Chem. Eur. J. 2022;28:e202103609. doi: 10.1002/chem.202103609. PubMed DOI PMC

Arellano-Reyes R.A., Prabhakaran A., Sia R.C.E., Guthmuller J., Jha K.K., Yang T., Dietzek-Ivanšić B., McKee V., Keyes T.E. BODIPY-perylene charge transfer compounds; sensitizers for triplet-triplet annihilation up-conversion. Chem. Eur. J. 2023;29:e202300239. doi: 10.1002/chem.202300239. PubMed DOI

Yang T., Arellano-Reyes R.A., Curley R.C., Jha K.K., Chettri A., Keyes T.E., Dietzek-Ivanšić B. In cellulo light-induced dynamics in a BODIPY-perylene dyad. Chem. Eur. J. 2023;29:e202300224. doi: 10.1002/chem.202300224. PubMed DOI

Brett M.W., Price M.B., Gordon C.K., Thorn K.E., Browne L.D., Hume P.A., Hodgkiss J.M., Stocker B.L., Timmer M.S.M., Davis N.J.L.K. Tuneable emission in single molecule dyads mediated by a charge transfer state. Phys. Chem. Chem. Phys. 2023;25:18990–18997. doi: 10.1039/D3CP02130K. PubMed DOI

Chistov A.A., Ivanov N.M., Kutyakov S.V., Ustinov A.V., Glybin A.V., Streshnev P.P., Mikhura I.V., Korshun V.A. Fluorescent nucleosides with an elongated rigid linker: Attaching perylene to a nucleobase via a one-pot desilylation/Sonogashira reaction. Tetrahedron Lett. 2016;57:4821–4823. doi: 10.1016/j.tetlet.2016.09.050. DOI

Desiraju G.R., Krishna T.S.R. Non-centrosymmetry in organic srystals: A study of molecular conformation in some substituted tolans. J. Chem. Soc. Chem. Commun. 1988:192–194. doi: 10.1039/c39880000192. DOI

Thomas R., Lakshmi S., Pati S.K., Kulkarni G.U. Role of triple bond in 1,2-diphenylacetylene crystal: A combined experimental and theoretical study. J. Phys. Chem. B. 2006;110:24674–24677. doi: 10.1021/jp0655423. PubMed DOI

Bylińska I., Wierzbicka M., Czaplewski C., Wiczk W. Photophysical properties of symmetrically substituted diarylacetylenes and diarylbuta-1,3-diynes. Photochem. Photobiol. Sci. 2016;15:45–56. doi: 10.1039/c5pp00197h. PubMed DOI

Krämer M., Bunz U.H.F., Dreuw A. Comprehensive look at the photochemistry of tolane. J. Phys. Chem. A. 2017;121:946–953. doi: 10.1021/acs.jpca.6b09596. PubMed DOI

Shimizu S., Thazhathethil S., Takahashi K., Nakamura T., Sagara Y. Crystal structure of a 1,6-bis(phenylethynyl)pyrene-based cyclophane that exhibits mechanochromic luminescence. Mol. Syst. Des. Eng. 2021;6:1039–1046. doi: 10.1039/D1ME00131K. DOI

Nikolayeva Y.V., Ulashchik E.A., Chekerda E.V., Galochkina A.V., Slesarchuk N.A., Chistov A.A., Nikitin T.D., Korshun V.A., Shmanai V.V., Ustinov A.V., et al. 5-(Perylen-3-ylethynyl)uracil derivatives inhibit reproduction of respiratory viruses. Russ. J. Bioorg. Chem. 2020;46:315–320. doi: 10.1134/S1068162020030139. PubMed DOI PMC

Hakobyan A., Galindo I., Nañez A., Arabyan E., Karalyan Z., Chistov A.A., Streshnev P.P., Korshun V.A., Alonso C., Zakaryan H. Rigid amphipathic fusion inhibitors demonstrate antiviral activity against African swine fever virus. J. Gen. Virol. 2018;99:148–156. doi: 10.1099/jgv.0.000991. PubMed DOI

Orlov A.A., Chistov A.A., Kozlovskaya L.I., Ustinov A.V., Korshun V.A., Karganova G.G., Osolodkin D.I. Rigid amphipathic nucleosides suppress reproduction of the tick-borne encephalitis virus. Med. Chem. Commun. 2016;7:495–499. doi: 10.1039/C5MD00538H. DOI

Armarego W.L.F. Purification of Laboratory Chemicals. Elsevier; Amsterdam, The Netherlands: 2017. pp. 95–634. DOI

Slesarchuk N.A., Khvatov E.V., Chistov A.A., Proskurin G.V., Nikitin T.D., Lazarevich A.I., Ulanovskaya A.A., Ulashchik E.A., Orlov A.A., Jegorov A.V., et al. Simplistic perylene-related compounds as inhibitors of tick-borne encephalitis virus reproduction. Bioorg. Med. Chem. Lett. 2020;30:127100. doi: 10.1016/j.bmcl.2020.127100. PubMed DOI

Eyer L., Valdés J.J., Gil V.A., Nencka R., Hřebabecký H., Šála M., Salát J., Černý J., Palus M., De Clercq E., et al. Nucleoside inhibitors of tick-borne encephalitis virus. Antimicrob. Agents Chemother. 2015;59:5483–5493. doi: 10.1128/AAC.00807-15. PubMed DOI PMC

Štefánik M., Bhosale D.S., Haviernik J., Straková P., Fojtíková M., Dufková L., Huvarová I., Salát J., Bartáček J., Svoboda J., et al. Diphyllin shows a broad-spectrum antiviral activity against multiple medically important enveloped RNA and DNA viruses. Viruses. 2022;14:354. doi: 10.3390/v14020354. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...