Plasmodesmata mediate cell-to-cell transport of brassinosteroid hormones
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
R01 GM127759
NIGMS NIH HHS - United States
R35 GM131725
NIGMS NIH HHS - United States
PubMed
37365405
PubMed Central
PMC10729306
DOI
10.1038/s41589-023-01346-x
PII: 10.1038/s41589-023-01346-x
Knihovny.cz E-zdroje
- MeSH
- brassinosteroidy * MeSH
- hormony MeSH
- plazmodesmy metabolismus MeSH
- proteiny huseníčku * metabolismus MeSH
- regulace genové exprese u rostlin MeSH
- regulátory růstu rostlin MeSH
- rostliny metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- brassinosteroidy * MeSH
- hormony MeSH
- proteiny huseníčku * MeSH
- regulátory růstu rostlin MeSH
Brassinosteroids (BRs) are steroidal phytohormones that are essential for plant growth, development and adaptation to environmental stresses. BRs act in a dose-dependent manner and do not travel over long distances; hence, BR homeostasis maintenance is critical for their function. Biosynthesis of bioactive BRs relies on the cell-to-cell movement of hormone precursors. However, the mechanism of the short-distance BR transport is unknown, and its contribution to the control of endogenous BR levels remains unexplored. Here we demonstrate that plasmodesmata (PD) mediate the passage of BRs between neighboring cells. Intracellular BR content, in turn, is capable of modulating PD permeability to optimize its own mobility, thereby manipulating BR biosynthesis and signaling. Our work uncovers a thus far unknown mode of steroid transport in eukaryotes and exposes an additional layer of BR homeostasis regulation in plants.
Center for Plant Systems Biology VIB Ghent Belgium
Department of Biology Duke University Durham NC USA
Department of Organic and Macromolecular Chemistry Ghent University Ghent Belgium
Department of Plant Biotechnology and Bioinformatics Ghent University Ghent Belgium
Faculty of Science Hokkaido University Sapporo Japan
Howard Hughes Medical Institute Duke University Durham NC USA
Zobrazit více v PubMed
Nolan TM, Vukasinovic N, Liu D, Russinova E & Yin Y Brassinosteroids: Multidimensional Regulators of Plant Growth, Development, and Stress Responses. Plant Cell 32, 295–318, doi:10.1105/tpc.19.00335 (2020). PubMed DOI PMC
Li J et al. BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling. Cell 110, 213–222, doi:10.1016/s0092-8674(02)00812-7 (2002). PubMed DOI
Yin Y et al. BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation. Cell 109, 181–191, doi:10.1016/s0092-8674(02)00721-3 (2002). PubMed DOI
Anfang M & Shani E Transport mechanisms of plant hormones. Curr Opin Plant Biol 63, 102055, doi:10.1016/j.pbi.2021.102055 (2021). PubMed DOI PMC
He JX et al. BZR1 is a transcriptional repressor with dual roles in brassinosteroid homeostasis and growth responses. Science 307, 1634–1638, doi:10.1126/science.1107580 (2005). PubMed DOI PMC
Vukasinovic N et al. Local brassinosteroid biosynthesis enables optimal root growth. Nat Plants 7, 619–632, doi:10.1038/s41477-021-00917-x (2021). PubMed DOI
Clouse SD Brassinosteroids. Arabidopsis Book 9, e0151, doi:10.1199/tab.0151 (2011). PubMed DOI PMC
Park JW, Reed JR, Brignac-Huber LM & Backes WL Cytochrome P450 system proteins reside in different regions of the endoplasmic reticulum. Biochem J 464, 241–249, doi:10.1042/BJ20140787 (2014). PubMed DOI PMC
Kim HB et al. The regulation of DWARF4 expression is likely a critical mechanism in maintaining the homeostasis of bioactive brassinosteroids in Arabidopsis. Plant Physiol 140, 548–557, doi:10.1104/pp.105.067918 (2006). PubMed DOI PMC
Northey JG et al. Farnesylation mediates brassinosteroid biosynthesis to regulate abscisic acid responses. Nat Plants 2, 16114, doi:10.1038/nplants.2016.114 (2016). PubMed DOI
Contrò V, R. Basile J & Proia P. Sex steroid hormone receptors, their ligands, and nuclear and non-nuclear pathways. AIMS Molecular Science 2, 294–310, doi:10.3934/molsci.2015.3.294 (2015). DOI
Symons GM & Reid JB Brassinosteroids do not undergo long-distance transport in pea. Implications for the regulation of endogenous brassinosteroid levels. Plant Physiol 135, 2196–2206, doi:10.1104/pp.104.043034 (2004). PubMed DOI PMC
Faulkner C Plasmodesmata and the symplast. Curr Biol 28, R1374–R1378, doi:10.1016/j.cub.2018.11.004 (2018). PubMed DOI
Thomas CL, Bayer EM, Ritzenthaler C, Fernandez-Calvino L & Maule AJ Specific targeting of a plasmodesmal protein affecting cell-to-cell communication. PLoS Biol 6, e7, doi:10.1371/journal.pbio.0060007 (2008). PubMed DOI PMC
Lucas WJ et al. Selective Trafficking of KNOTTED1 Homeodomain Protein and Its mRNA ThroughPlasmodesmata. Science 270 (2016). PubMed
Chitwood DH & Timmermans MC Small RNAs are on the move. Nature 467, 415–419, doi:10.1038/nature09351 (2010). PubMed DOI
Lucas WJ & Lee JY Plasmodesmata as a supracellular control network in plants. Nat Rev Mol Cell Biol 5, 712–726, doi:10.1038/nrm1470 (2004). PubMed DOI
Feng Z et al. The ER-Membrane Transport System Is Critical for Intercellular Trafficking of the NSm Movement Protein and Tomato Spotted Wilt Tospovirus. PLoS Pathog 12, e1005443, doi:10.1371/journal.ppat.1005443 (2016). PubMed DOI PMC
Lazarowitz S & Beachy R Viral Movement Proteins as Probes for Intracellular and Intercellular Trafficking in Plants. The Plant Cell 11, 535–548 (1999). PubMed PMC
Sager RE & Lee JY Plasmodesmata at a glance. J Cell Sci 131, doi:10.1242/jcs.209346 (2018). PubMed DOI
Yan D et al. Sphingolipid biosynthesis modulates plasmodesmal ultrastructure and phloem unloading. Nat Plants 5, 604–615, doi:10.1038/s41477-019-0429-5 (2019). PubMed DOI PMC
Burch-Smith TM & Zambryski PC Loss of INCREASED SIZE EXCLUSION LIMIT (ISE)1 or ISE2 increases the formation of secondary plasmodesmata. Curr Biol 20, 989–993, doi:10.1016/j.cub.2010.03.064 (2010). PubMed DOI PMC
Ro DK, Mah N, Ellis BE & Douglas CJ Functional characterization and subcellular localization of poplar (Populus trichocarpa x Populus deltoides) cinnamate 4-hydroxylase. Plant Physiol 126, 317–329, doi:10.1104/pp.126.1.317 (2001). PubMed DOI PMC
Silvestro D, Andersen TG, Schaller H & Jensen PE Plant sterol metabolism. Delta(7)-Sterol-C5-desaturase (STE1/DWARF7), Delta(5,7)-sterol-Delta(7)-reductase (DWARF5) and Delta(24)-sterol-Delta(24)-reductase (DIMINUTO/DWARF1) show multiple subcellular localizations in Arabidopsis thaliana (Heynh) L. PLoS One 8, e56429, doi:10.1371/journal.pone.0056429 (2013). PubMed DOI PMC
Grison MS, Petit JD, Glavier M & Bayer EM Quantification of Protein Enrichment at Plasmodesmata. Bio Protoc 10, e3545, doi:10.21769/BioProtoc.3545 (2020). PubMed DOI PMC
Brault ML et al. Multiple C2 domains and transmembrane region proteins (MCTPs) tether membranes at plasmodesmata. EMBO Rep 20, e47182, doi:10.15252/embr.201847182 (2019). PubMed DOI PMC
Wu S et al. Symplastic signaling instructs cell division, cell expansion, and cell polarity in the ground tissue of Arabidopsis thaliana roots. Proc Natl Acad Sci U S A 113, 11621–11626, doi:10.1073/pnas.1610358113 (2016). PubMed DOI PMC
Wang Y et al. Strigolactone/MAX2-induced degradation of brassinosteroid transcriptional effector BES1 regulates shoot branching. Dev Cell 27, 681–688, doi:10.1016/j.devcel.2013.11.010 (2013). PubMed DOI
Lee JY et al. A plasmodesmata-localized protein mediates crosstalk between cell-to-cell communication and innate immunity in Arabidopsis. Plant Cell 23, 3353–3373, doi:10.1105/tpc.111.087742 (2011). PubMed DOI PMC
Benitez-Alfonso Y et al. Symplastic intercellular connectivity regulates lateral root patterning. Dev Cell 26, 136–147, doi:10.1016/j.devcel.2013.06.010 (2013). PubMed DOI
Hacham Y et al. Brassinosteroid perception in the epidermis controls root meristem size. Development 138, 839–848, doi:10.1242/dev.061804 (2011). PubMed DOI PMC
Jao CY et al. Bioorthogonal probes for imaging sterols in cells. Chembiochem 16, 611–617, doi:10.1002/cbic.201402715 (2015). PubMed DOI PMC
Lee M & Schiefelbein J WEREWOLF, a MYB-Related Protein in Arabidopsis, Is a Position-Dependent Regulator of Epidermal Cell Patterning. Cell 99, 473–483 (1999). PubMed
Gerlitz N, Gerum R, Sauer N & Stadler R Photoinducible DRONPA-s: a new tool for investigating cell-cell connectivity. Plant J 94, 751–766, doi:10.1111/tpj.13918 (2018). PubMed DOI
De Rybel B et al. Chemical inhibition of a subset of Arabidopsis thaliana GSK3-like kinases activates brassinosteroid signaling. Chem Biol 16, 594–604, doi:10.1016/j.chembiol.2009.04.008 (2009). PubMed DOI PMC
Nolan TM et al. Brassinosteroid gene regulatory networks at cellular resolution in the Arabidopsis root. Science 379, eadf4721, doi:10.1126/science.adf4721 (2023). PubMed DOI PMC
Tarkowska D & Strnad M Isoprenoid-derived plant signaling molecules: biosynthesis and biological importance. Planta 247, 1051–1066, doi:10.1007/s00425-018-2878-x (2018). PubMed DOI
Lindsey K, Pullen ML & Topping JF Importance of plant sterols in pattern formation and hormone signalling. Trends Plant Sci 8, 521–525, doi:10.1016/j.tplants.2003.09.012 (2003). PubMed DOI
Fujioka S & Yokota T Biosynthesis and metabolism of brassinosteroids. Annu Rev Plant Biol 54, 137–164, doi:10.1146/annurev.arplant.54.031902.134921 (2003). PubMed DOI
Cano-Delgado A et al. BRL1 and BRL3 are novel brassinosteroid receptors that function in vascular differentiation in Arabidopsis. Development 131, 5341–5351, doi:10.1242/dev.01403 (2004). PubMed DOI
Yamanaka N, Marques G & O’Connor MB Vesicle-Mediated Steroid Hormone Secretion in Drosophila melanogaster. Cell 163, 907–919, doi:10.1016/j.cell.2015.10.022 (2015). PubMed DOI PMC
Atkovska K, Klingler J, Oberwinkler J, Keller S & Hub JS Rationalizing Steroid Interactions with Lipid Membranes: Conformations, Partitioning, and Kinetics. ACS Cent Sci 4, 1155–1165, doi:10.1021/acscentsci.8b00332 (2018). PubMed DOI PMC
Band LR Auxin fluxes through plasmodesmata. New Phytol 231, 1686–1692, doi:10.1111/nph.17517 (2021). PubMed DOI
Wolf S, Mravec J, Greiner S, Mouille G & Hofte H Plant cell wall homeostasis is mediated by brassinosteroid feedback signaling. Curr Biol 22, 1732–1737, doi:10.1016/j.cub.2012.07.036 (2012). PubMed DOI
Isoda R et al. Sensors for the quantification, localization and analysis of the dynamics of plant hormones. Plant J 105, 542–557, doi:10.1111/tpj.15096 (2021). PubMed DOI PMC
Irani NG et al. Fluorescent castasterone reveals BRI1 signaling from the plasma membrane. Nat Chem Biol 8, 583–589, doi:10.1038/nchembio.958 (2012). PubMed DOI
Xiong J et al. Brassinosteroids Positively Regulate Plant Immunity via BRI1-EMS-SUPPRESSOR 1-Mediated GLUCAN SYNTHASE-LIKE 8 Transcription. Front Plant Sci 13, 854899, doi:10.3389/fpls.2022.854899 (2022). PubMed DOI PMC
Mehra P et al. Hydraulic flux–responsive hormone redistributiondetermines root branching. Science 378, 762–768 (2022). PubMed
Liu J, Liu Y, Wang S, Cui Y & Yan D Heat Stress Reduces Root Meristem Size via Induction of Plasmodesmal Callose Accumulation Inhibiting Phloem Unloading in Arabidopsis. Int J Mol Sci 23, doi:10.3390/ijms23042063 (2022). PubMed DOI PMC
Zhang R, Xia X, Lindsey K & da Rocha PS Functional complementation of dwf4 mutants of Arabidopsis by overexpression of CYP724A1. J Plant Physiol 169, 421–428, doi:10.1016/j.jplph.2011.10.013 (2012). PubMed DOI
Szekeres M et al. Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. Cell 85, 171–182, doi:10.1016/s0092-8674(00)81094-6 (1996). PubMed DOI
Karimi M, De Meyer B & Hilson P Modular cloning in plant cells. Trends Plant Sci 10, 103–105, doi:10.1016/j.tplants.2005.01.008 (2005). PubMed DOI
Clough SJ & Bent AF Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16, 735–743, doi:10.1046/j.1365-313x.1998.00343.x (1998). PubMed DOI
Pendle A & Benitez-Alfonso Y Immunofluorescence detection of callose deposition around plasmodesmata sites. Methods Mol Biol 1217, 95–104, doi:10.1007/978-1-4939-1523-1_6 (2015). PubMed DOI
Gu Z, Eils R & Schlesner M Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32, 2847–2849, doi:10.1093/bioinformatics/btw313 (2016). PubMed DOI
Hafemeister C & Satija R Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol 20, 296, doi:10.1186/s13059-019-1874-1 (2019). PubMed DOI PMC
Coulon D, Brocard L, Tuphile K & Brehelin C Arabidopsis LDIP protein locates at a confined area within the lipid droplet surface and favors lipid droplet formation. Biochimie 169, 29–40, doi:10.1016/j.biochi.2019.09.018 (2020). PubMed DOI
Structural insights into brassinosteroid export mediated by the Arabidopsis ABC transporter ABCB1