Plasmodesmata mediate cell-to-cell transport of brassinosteroid hormones

. 2023 Nov ; 19 (11) : 1331-1341. [epub] 20230626

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37365405

Grantová podpora
R01 GM127759 NIGMS NIH HHS - United States
R35 GM131725 NIGMS NIH HHS - United States

Odkazy

PubMed 37365405
PubMed Central PMC10729306
DOI 10.1038/s41589-023-01346-x
PII: 10.1038/s41589-023-01346-x
Knihovny.cz E-zdroje

Brassinosteroids (BRs) are steroidal phytohormones that are essential for plant growth, development and adaptation to environmental stresses. BRs act in a dose-dependent manner and do not travel over long distances; hence, BR homeostasis maintenance is critical for their function. Biosynthesis of bioactive BRs relies on the cell-to-cell movement of hormone precursors. However, the mechanism of the short-distance BR transport is unknown, and its contribution to the control of endogenous BR levels remains unexplored. Here we demonstrate that plasmodesmata (PD) mediate the passage of BRs between neighboring cells. Intracellular BR content, in turn, is capable of modulating PD permeability to optimize its own mobility, thereby manipulating BR biosynthesis and signaling. Our work uncovers a thus far unknown mode of steroid transport in eukaryotes and exposes an additional layer of BR homeostasis regulation in plants.

Zobrazit více v PubMed

Nolan TM, Vukasinovic N, Liu D, Russinova E & Yin Y Brassinosteroids: Multidimensional Regulators of Plant Growth, Development, and Stress Responses. Plant Cell 32, 295–318, doi:10.1105/tpc.19.00335 (2020). PubMed DOI PMC

Li J et al. BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling. Cell 110, 213–222, doi:10.1016/s0092-8674(02)00812-7 (2002). PubMed DOI

Yin Y et al. BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation. Cell 109, 181–191, doi:10.1016/s0092-8674(02)00721-3 (2002). PubMed DOI

Anfang M & Shani E Transport mechanisms of plant hormones. Curr Opin Plant Biol 63, 102055, doi:10.1016/j.pbi.2021.102055 (2021). PubMed DOI PMC

He JX et al. BZR1 is a transcriptional repressor with dual roles in brassinosteroid homeostasis and growth responses. Science 307, 1634–1638, doi:10.1126/science.1107580 (2005). PubMed DOI PMC

Vukasinovic N et al. Local brassinosteroid biosynthesis enables optimal root growth. Nat Plants 7, 619–632, doi:10.1038/s41477-021-00917-x (2021). PubMed DOI

Clouse SD Brassinosteroids. Arabidopsis Book 9, e0151, doi:10.1199/tab.0151 (2011). PubMed DOI PMC

Park JW, Reed JR, Brignac-Huber LM & Backes WL Cytochrome P450 system proteins reside in different regions of the endoplasmic reticulum. Biochem J 464, 241–249, doi:10.1042/BJ20140787 (2014). PubMed DOI PMC

Kim HB et al. The regulation of DWARF4 expression is likely a critical mechanism in maintaining the homeostasis of bioactive brassinosteroids in Arabidopsis. Plant Physiol 140, 548–557, doi:10.1104/pp.105.067918 (2006). PubMed DOI PMC

Northey JG et al. Farnesylation mediates brassinosteroid biosynthesis to regulate abscisic acid responses. Nat Plants 2, 16114, doi:10.1038/nplants.2016.114 (2016). PubMed DOI

Contrò V, R. Basile J & Proia P. Sex steroid hormone receptors, their ligands, and nuclear and non-nuclear pathways. AIMS Molecular Science 2, 294–310, doi:10.3934/molsci.2015.3.294 (2015). DOI

Symons GM & Reid JB Brassinosteroids do not undergo long-distance transport in pea. Implications for the regulation of endogenous brassinosteroid levels. Plant Physiol 135, 2196–2206, doi:10.1104/pp.104.043034 (2004). PubMed DOI PMC

Faulkner C Plasmodesmata and the symplast. Curr Biol 28, R1374–R1378, doi:10.1016/j.cub.2018.11.004 (2018). PubMed DOI

Thomas CL, Bayer EM, Ritzenthaler C, Fernandez-Calvino L & Maule AJ Specific targeting of a plasmodesmal protein affecting cell-to-cell communication. PLoS Biol 6, e7, doi:10.1371/journal.pbio.0060007 (2008). PubMed DOI PMC

Lucas WJ et al. Selective Trafficking of KNOTTED1 Homeodomain Protein and Its mRNA ThroughPlasmodesmata. Science 270 (2016). PubMed

Chitwood DH & Timmermans MC Small RNAs are on the move. Nature 467, 415–419, doi:10.1038/nature09351 (2010). PubMed DOI

Lucas WJ & Lee JY Plasmodesmata as a supracellular control network in plants. Nat Rev Mol Cell Biol 5, 712–726, doi:10.1038/nrm1470 (2004). PubMed DOI

Feng Z et al. The ER-Membrane Transport System Is Critical for Intercellular Trafficking of the NSm Movement Protein and Tomato Spotted Wilt Tospovirus. PLoS Pathog 12, e1005443, doi:10.1371/journal.ppat.1005443 (2016). PubMed DOI PMC

Lazarowitz S & Beachy R Viral Movement Proteins as Probes for Intracellular and Intercellular Trafficking in Plants. The Plant Cell 11, 535–548 (1999). PubMed PMC

Sager RE & Lee JY Plasmodesmata at a glance. J Cell Sci 131, doi:10.1242/jcs.209346 (2018). PubMed DOI

Yan D et al. Sphingolipid biosynthesis modulates plasmodesmal ultrastructure and phloem unloading. Nat Plants 5, 604–615, doi:10.1038/s41477-019-0429-5 (2019). PubMed DOI PMC

Burch-Smith TM & Zambryski PC Loss of INCREASED SIZE EXCLUSION LIMIT (ISE)1 or ISE2 increases the formation of secondary plasmodesmata. Curr Biol 20, 989–993, doi:10.1016/j.cub.2010.03.064 (2010). PubMed DOI PMC

Ro DK, Mah N, Ellis BE & Douglas CJ Functional characterization and subcellular localization of poplar (Populus trichocarpa x Populus deltoides) cinnamate 4-hydroxylase. Plant Physiol 126, 317–329, doi:10.1104/pp.126.1.317 (2001). PubMed DOI PMC

Silvestro D, Andersen TG, Schaller H & Jensen PE Plant sterol metabolism. Delta(7)-Sterol-C5-desaturase (STE1/DWARF7), Delta(5,7)-sterol-Delta(7)-reductase (DWARF5) and Delta(24)-sterol-Delta(24)-reductase (DIMINUTO/DWARF1) show multiple subcellular localizations in Arabidopsis thaliana (Heynh) L. PLoS One 8, e56429, doi:10.1371/journal.pone.0056429 (2013). PubMed DOI PMC

Grison MS, Petit JD, Glavier M & Bayer EM Quantification of Protein Enrichment at Plasmodesmata. Bio Protoc 10, e3545, doi:10.21769/BioProtoc.3545 (2020). PubMed DOI PMC

Brault ML et al. Multiple C2 domains and transmembrane region proteins (MCTPs) tether membranes at plasmodesmata. EMBO Rep 20, e47182, doi:10.15252/embr.201847182 (2019). PubMed DOI PMC

Wu S et al. Symplastic signaling instructs cell division, cell expansion, and cell polarity in the ground tissue of Arabidopsis thaliana roots. Proc Natl Acad Sci U S A 113, 11621–11626, doi:10.1073/pnas.1610358113 (2016). PubMed DOI PMC

Wang Y et al. Strigolactone/MAX2-induced degradation of brassinosteroid transcriptional effector BES1 regulates shoot branching. Dev Cell 27, 681–688, doi:10.1016/j.devcel.2013.11.010 (2013). PubMed DOI

Lee JY et al. A plasmodesmata-localized protein mediates crosstalk between cell-to-cell communication and innate immunity in Arabidopsis. Plant Cell 23, 3353–3373, doi:10.1105/tpc.111.087742 (2011). PubMed DOI PMC

Benitez-Alfonso Y et al. Symplastic intercellular connectivity regulates lateral root patterning. Dev Cell 26, 136–147, doi:10.1016/j.devcel.2013.06.010 (2013). PubMed DOI

Hacham Y et al. Brassinosteroid perception in the epidermis controls root meristem size. Development 138, 839–848, doi:10.1242/dev.061804 (2011). PubMed DOI PMC

Jao CY et al. Bioorthogonal probes for imaging sterols in cells. Chembiochem 16, 611–617, doi:10.1002/cbic.201402715 (2015). PubMed DOI PMC

Lee M & Schiefelbein J WEREWOLF, a MYB-Related Protein in Arabidopsis, Is a Position-Dependent Regulator of Epidermal Cell Patterning. Cell 99, 473–483 (1999). PubMed

Gerlitz N, Gerum R, Sauer N & Stadler R Photoinducible DRONPA-s: a new tool for investigating cell-cell connectivity. Plant J 94, 751–766, doi:10.1111/tpj.13918 (2018). PubMed DOI

De Rybel B et al. Chemical inhibition of a subset of Arabidopsis thaliana GSK3-like kinases activates brassinosteroid signaling. Chem Biol 16, 594–604, doi:10.1016/j.chembiol.2009.04.008 (2009). PubMed DOI PMC

Nolan TM et al. Brassinosteroid gene regulatory networks at cellular resolution in the Arabidopsis root. Science 379, eadf4721, doi:10.1126/science.adf4721 (2023). PubMed DOI PMC

Tarkowska D & Strnad M Isoprenoid-derived plant signaling molecules: biosynthesis and biological importance. Planta 247, 1051–1066, doi:10.1007/s00425-018-2878-x (2018). PubMed DOI

Lindsey K, Pullen ML & Topping JF Importance of plant sterols in pattern formation and hormone signalling. Trends Plant Sci 8, 521–525, doi:10.1016/j.tplants.2003.09.012 (2003). PubMed DOI

Fujioka S & Yokota T Biosynthesis and metabolism of brassinosteroids. Annu Rev Plant Biol 54, 137–164, doi:10.1146/annurev.arplant.54.031902.134921 (2003). PubMed DOI

Cano-Delgado A et al. BRL1 and BRL3 are novel brassinosteroid receptors that function in vascular differentiation in Arabidopsis. Development 131, 5341–5351, doi:10.1242/dev.01403 (2004). PubMed DOI

Yamanaka N, Marques G & O’Connor MB Vesicle-Mediated Steroid Hormone Secretion in Drosophila melanogaster. Cell 163, 907–919, doi:10.1016/j.cell.2015.10.022 (2015). PubMed DOI PMC

Atkovska K, Klingler J, Oberwinkler J, Keller S & Hub JS Rationalizing Steroid Interactions with Lipid Membranes: Conformations, Partitioning, and Kinetics. ACS Cent Sci 4, 1155–1165, doi:10.1021/acscentsci.8b00332 (2018). PubMed DOI PMC

Band LR Auxin fluxes through plasmodesmata. New Phytol 231, 1686–1692, doi:10.1111/nph.17517 (2021). PubMed DOI

Wolf S, Mravec J, Greiner S, Mouille G & Hofte H Plant cell wall homeostasis is mediated by brassinosteroid feedback signaling. Curr Biol 22, 1732–1737, doi:10.1016/j.cub.2012.07.036 (2012). PubMed DOI

Isoda R et al. Sensors for the quantification, localization and analysis of the dynamics of plant hormones. Plant J 105, 542–557, doi:10.1111/tpj.15096 (2021). PubMed DOI PMC

Irani NG et al. Fluorescent castasterone reveals BRI1 signaling from the plasma membrane. Nat Chem Biol 8, 583–589, doi:10.1038/nchembio.958 (2012). PubMed DOI

Xiong J et al. Brassinosteroids Positively Regulate Plant Immunity via BRI1-EMS-SUPPRESSOR 1-Mediated GLUCAN SYNTHASE-LIKE 8 Transcription. Front Plant Sci 13, 854899, doi:10.3389/fpls.2022.854899 (2022). PubMed DOI PMC

Mehra P et al. Hydraulic flux–responsive hormone redistributiondetermines root branching. Science 378, 762–768 (2022). PubMed

Liu J, Liu Y, Wang S, Cui Y & Yan D Heat Stress Reduces Root Meristem Size via Induction of Plasmodesmal Callose Accumulation Inhibiting Phloem Unloading in Arabidopsis. Int J Mol Sci 23, doi:10.3390/ijms23042063 (2022). PubMed DOI PMC

Zhang R, Xia X, Lindsey K & da Rocha PS Functional complementation of dwf4 mutants of Arabidopsis by overexpression of CYP724A1. J Plant Physiol 169, 421–428, doi:10.1016/j.jplph.2011.10.013 (2012). PubMed DOI

Szekeres M et al. Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. Cell 85, 171–182, doi:10.1016/s0092-8674(00)81094-6 (1996). PubMed DOI

Karimi M, De Meyer B & Hilson P Modular cloning in plant cells. Trends Plant Sci 10, 103–105, doi:10.1016/j.tplants.2005.01.008 (2005). PubMed DOI

Clough SJ & Bent AF Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16, 735–743, doi:10.1046/j.1365-313x.1998.00343.x (1998). PubMed DOI

Pendle A & Benitez-Alfonso Y Immunofluorescence detection of callose deposition around plasmodesmata sites. Methods Mol Biol 1217, 95–104, doi:10.1007/978-1-4939-1523-1_6 (2015). PubMed DOI

Gu Z, Eils R & Schlesner M Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32, 2847–2849, doi:10.1093/bioinformatics/btw313 (2016). PubMed DOI

Hafemeister C & Satija R Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol 20, 296, doi:10.1186/s13059-019-1874-1 (2019). PubMed DOI PMC

Coulon D, Brocard L, Tuphile K & Brehelin C Arabidopsis LDIP protein locates at a confined area within the lipid droplet surface and favors lipid droplet formation. Biochimie 169, 29–40, doi:10.1016/j.biochi.2019.09.018 (2020). PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Structural insights into brassinosteroid export mediated by the Arabidopsis ABC transporter ABCB1

. 2025 Jan 13 ; 6 (1) : 101181. [epub] 20241104

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...