STay tunEd: mutational analysis of the HvSTE1 gene in barley provides insight into the balance between semi-dwarfism and maintenance of grain size in brassinosteroid biosynthesis-dependent manner
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40395283
PubMed Central
PMC12089960
DOI
10.3389/fpls.2025.1571368
Knihovny.cz E-zdroje
- Klíčová slova
- TILLING, barley, biosynthesis, brassinosteroids, grain size, plant architecture, plant reproduction,
- Publikační typ
- časopisecké články MeSH
Brassinosteroids (BRs) are steroid phytohormones which regulate various physiological and developmental processes throughout plant life cycle. The BR biosynthesis has been studied mainly in the dicot model species - Arabidopsis thaliana. However, our current understanding of the BR biosynthesis and its regulation in other species, including cereal crops, is limited. Functions of enzymes which catalyze early stages of the BR biosynthesis in cereals remain poorly understood. Moreover, mechanisms regulating expression of genes encoding these enzymes remain obscure. One of the genes which participate in the early stages of the BR biosynthesis in Arabidopsis is STE1 (STEROL DESATURASE1). However, detailed functional analyses of this gene and its promoter region have not been performed. The aim of this study was to identify and functionally analyze the STE1 gene in barley (Hordeum vulgare) which is an important cereal crop. The functional analysis was carried out with the application of TILLING (Targeting Induced Local Lesions IN Genomes) approach. Six mutations were identified within the 1st exon (including three located in the 5'UTR region) and one missense mutation was identified in the 2nd exon of HvSTE1. Effects of the identified alleles on the HvSTE1 gene expression, sequence of the encoded enzyme variants, BR accumulation, as well as on stature, agronomic traits, and reproduction of the identified mutants were characterized. Homozygous mutants carrying two alleles (hvste1.b and hvste1.o) displayed reduced plant height and defects in the BR accumulation. The HvSTE1 expression was considerably decreased in the 3rd internode of the hvste1.b mutant. Interestingly, the hvste1.b mutant plants showed semi-dwarf phenotype without any negative effect on crucial agronomic traits, such as tiller number, spike length, and grain weight. Moreover, weight of grains produced by the hvste1.b mutant was slightly (5%) higher when compared with the reference cultivar. The results of this study provided a novel insight into the function of the HvSTE1 gene in the BR biosynthesis-dependent regulation of architecture and reproduction of barley. Moreover, the hvste1.b allele allows for achieving a balance between the favorable alteration in plant architecture (semi-dwarfism) and maintenance (slight improvement) of grain weight in this species.
Zobrazit více v PubMed
Ahmar S., Gruszka D. (2023). CRISPR/Cas9 boosts wheat yield by reducing brassinosteroid signaling. Trends Biochem. Sci. 48, 917–919. doi: 10.1016/j.tibs.2023.07.005 PubMed DOI
Ahmar S., Gruszka D. (2024). Mutual dependence of brassinosteroid homeostasis and plasmodesmata permeability. Trends Plant Sci. 29, 10–12. doi: 10.1016/j.tplants.2023.10.010 PubMed DOI
Auguie B., Antonov A. (2022). gridExtra: miscellaneous functions for “Grid” Graphics (CRAN; ). Available at: https://cran.r-project.org/web/packages/gridExtra/index.html (Accessed March 20, 2025).
Bailey T. L., Boden M., Buske F. A., Frith M., Grant C. E., Clementi L., et al. . (2009). MEME Suite: Tools for motif discovery and searching. Nucleic Acids Res. 37, W202–W208. doi: 10.1093/nar/gkp335 PubMed DOI PMC
Bajguz A., Chmur M., Gruszka D. (2020). Comprehensive overview of the brassinosteroid biosynthesis pathways: substrates, products, inhibitors, and connections. Front. Plant Sci. 11, 1034. doi: 10.3389/fpls.2020.01034 PubMed DOI PMC
Best N. B., Hartwig T., Budka J., Fujioka S., Johal G., Schulz B., et al. . (2016). Nana plant2 encodes a maize ortholog of the arabidopsis brassinosteroid biosynthesis gene DWARF1, identifying developmental interactions between brassinosteroids and gibberellins. Plant Physiol. 171, 2633–2647. doi: 10.1104/pp.16.00399 PubMed DOI PMC
Catterou M., Dubois F., Schaller H., Aubanelle L., Vilcot B., Sangwan-Norreel B. S., et al. . (2001). Brassinosteroids, microtubules and cell elongation in Arabidopsis thaliana. Molecular, cellular and physiological characterization of the Arabidopsis bul1 mutant, defective in the Δ7-sterol-C5-desaturation step leading to brassinosteroid biosynthesis. Planta 212, 659–672. doi: 10.1007/s004250000466 PubMed DOI
Chandna R., Augustine R., Bisht N. C. (2012). Evaluation of candidate reference genes for gene expression normalization in Brassica juncea using real time quantitative RT-PCR. PloS One 7, e36918. doi: 10.1371/journal.pone.0036918 PubMed DOI PMC
Chen C., Chen H., Zhang Y., Thomas H. R., Frank M. H., He Y., et al. . (2020). TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol. Plant 13, 1194–1202. doi: 10.1016/j.molp.2020.06.009 PubMed DOI
Choe S., Noguchi T., Fujioka S., Takatsuto S., Tissier C. P., Gregory B. D., et al. . (1999). The Arabidopsis dwf7/ste1 mutant is defective in the Δ7 sterol C-5 desaturation step leading to brassinosteroid biosynthesis. Plant Cell 11, 207–221. doi: 10.1105/tpc.11.2.207 PubMed DOI PMC
Chono M., Honda I., Zeniya H., Yoneyama K., Saisho D., Takeda K., et al. . (2003). A semidwarf phenotype of barley uzu results from a nucleotide substitution in the gene encoding a putative brassinosteroid receptor. Plant Physiol. 133, 1209–1219. doi: 10.1104/pp.103.026195 PubMed DOI PMC
Chung Y., Choe S. (2013). The regulation of brassinosteroid biosynthesis in Arabidopsis. Crit. Rev. Plant Sci. 32, 396–410. doi: 10.1080/07352689.2013.797856 DOI
Clouse S. D., Sasse J. M. (1998). Brassinosteroids: essential regulators of plant growth and development. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49, 427–451. doi: 10.1146/annurev.arplant.49.1.427 PubMed DOI
Dockter C., Gruszka D., Braumann I., Druka A., Druka I., Franckowiak J., et al. . (2014). Induced variations in brassinosteroid genes define barley height and sturdiness, and expand the green revolution genetic toolkit. Plant Physiol. 166, 1912–1927. doi: 10.1104/pp.114.250738 PubMed DOI PMC
Dockter C., Hansson M. (2015). Improving barley culm robustness for secured crop yield in a changing climate. J. Exp. Bot. 66, 3499–3509. doi: 10.1093/jxb/eru521 PubMed DOI
Duan K., Li L., Hu P., Xu S. P., Xu Z. H., Xue H. W. (2006). A brassinolide-suppressed rice MADS-box transcription factor, OsMDP1, has a negative regulatory role in BR signaling. Plant J. 47, 519–531. doi: 10.1111/j.1365-313X.2006.02804.x PubMed DOI
Fan Y., Li Y. (2019). Molecular, cellular and Ying-Yang regulation of grain size and number in rice. Mol. Breed. 39, 163. doi: 10.1007/s11032-019-1078-0 DOI
Fujioka S., Yokota T. (2003). Biosynthesis and metabolism of brassinosteroids. Annu. Rev. Plant Biol. 54, 137–164. doi: 10.1146/annurev.arplant.54.031902.134921 PubMed DOI
Grove M. D., Spencer G. F., Rohwedder W. K., Mandava N., Worley J. F., Warthen J. D., et al. . (1979). Brassinolide, a plant growth-promoting steroid isolated from Brassica napus pollen. Nature 281, 216–217. doi: 10.1038/281216a0 DOI
Gruszka D. (2019). “Genetic and molecular bases of brassinosteroid metabolism and interactions with other phytohormones,” in Brassinosteroids: Plant Growth and Development. Eds. Hayat S., Yusuf M., Bhardwaj R., Bajguz A. (Springer Nature Pte Ltd, Singapore: ), 219–249.
Gruszka D., Gorniak M., Glodowska E., Wierus E., Oklestkova J., Janeczko A., et al. . (2016. a). A reverse-genetics mutational analysis of the barley HvDWARF gene results in identification of a series of alleles and mutants with short stature of various degree and disturbance in BR biosynthesis allowing a new insight into the process. Int. J. Mol. Sci. 17, 600. doi: 10.3390/ijms17040600 PubMed DOI PMC
Gruszka D., Janeczko A., Dziurka M., Pociecha E., Oklestkova J., Szarejko I. (2016. b). Barley brassinosteroid mutants provide an insight into phytohormonal homeostasis in plant reaction to drought stress. Front. Plant Sci. 7, 1824. doi: 10.3389/fpls.2016.01824 PubMed DOI PMC
Gruszka D., Szarejko I., Maluszynski M. (2011). Identification of barley DWARF gene involved in brassinosteroid synthesis. Plant Growth Regul. 65, 343–358. doi: 10.1007/s10725-011-9607-9 DOI
Hartwig T., Chuck G. S., Fujioka S., Klempien A., Weizbauer R., Potluri D. P., et al. . (2011). Brassinosteroid control of sex determination in maize. Proc. Natl. Acad. Sci. U.S.A. 108, 19814–19819. doi: 10.1073/pnas.1108359108 PubMed DOI PMC
Hong Z., Ueguchi-Tanaka M., Fujioka S., Takatsuto S., Yoshida S., Hasegawa Y., et al. . (2005). The rice brassinosteroid-deficient dwarf2 mutant, defective in the rice homolog of Arabidopsis DIMINUTO/DWARF1, is rescued by the endogenously accumulated alternative bioactive brassinosteroid, dolichosterone. Plant Cell 17, 2243–2254. doi: 10.1105/tpc.105.030973 PubMed DOI PMC
Hong Z., Ueguchi-Tanaka M., Shimizu-Sato S., Inukai Y., Fujioka S., Shimada Y., et al. . (2002). Loss-of-function of a rice brassinosteroid biosynthetic enzyme, C-6 oxidase, prevents the organized arrangement and polar elongation of cells in the leaves and stem. Plant J. 32, 495–508. doi: 10.1046/j.1365-313X.2002.01438.x PubMed DOI
Huang J., Chen Z., Lin J., Chen J., Wei M., Liu L., et al. . (2022). Natural variation of the BRD2 allele affects plant height and grain size in rice. Planta 256, 27. doi: 10.1007/s00425-022-03939-7 PubMed DOI
Husselstein T., Schaller H., Gachotte D., Benveniste P. (1999). Δ7- sterol C-5 desaturase: molecular characterization and functional expression of wild-type and mutant alleles. Plant Mol. Biol. 39, 891–906. doi: 10.1023/A:1006113919172 PubMed DOI
Kanwar M. K., Bajguz A., Zhou J., Bhardwaj R. (2017). Analysis of brassinosteroids in plants. J. Plant Growth Regul. 36, 1002–1030. doi: 10.1007/s00344-017-9732-4 DOI
Lee S., Choi S. C., An G. (2008). Rice SVP-group MADS-box proteins, OsMADS22 and OsMADS55, are negative regulators of brassinosteroid responses. Plant J. 54, 93–105. doi: 10.1111/j.1365-313X.2008.03406.x PubMed DOI
Li Y., Li X., Fu D., Wu C. (2018). Panicle Morphology Mutant 1 (PMM1) determines the inflorescence architecture of rice by controlling brassinosteroid biosynthesis. BMC Plant Biol. 18, 348. doi: 10.1186/s12870-018-1577-x PubMed DOI PMC
Lindsey K., Pullen M. L., Topping J. F. (2003). Importance of plant sterols in pattern formation and hormone signaling. Trends Plant Sci. 8, 521–525. doi: 10.1016/j.tplants.2003.09.012 PubMed DOI
Liu T., Zhang J., Wang M., Wang Z., Li G., Qu L., et al. . (2007). Expression and functional analysis of ZmDWF4, an ortholog of Arabidopsis DWF4 from maize (Zea mays L.). Plant Cell Rep. 26, 2091–2099. doi: 10.1007/s00299-007-0418-4 PubMed DOI
Makarevitch I., Thompson A., Muehlbauer G. J., Springer N. M. (2012). Brd1 gene in maize encodes a brassinosteroid C-6 oxidase. PloS One 7, e30798. doi: 10.1371/journal.pone.0030798 PubMed DOI PMC
Milne L., Bayer M., Rapazote-Flores P., Mayer C. D., Waugh R., Simpson C. G. (2021). EORNA, a barley gene and transcript abundance database. Sci. Data 8, 90. PubMed PMC
Mitchell J. W., Mandava N., Worley J. F., Plimmer J. R., Smith M. V. (1970). Brassins – a new family of plant hormones from rape pollen. Nature 225, 1065–1066. doi: 10.1038/2251065a0 PubMed DOI
Mori M., Nomura T., Ooka H., Ishizaka M., Yokota T., Sugimoto K., et al. . (2002). Isolation and characterization of a rice dwarf mutant with a defect in brassinosteroid biosynthesis. Plant Physiol. 130, 1152–1161. doi: 10.1104/pp.007179 PubMed DOI PMC
Nolan T. M., Vukasinovic N., Liu D., Russinova E., Yin Y. (2020). Brassinosteroids: multidimensional regulators of plant growth, development, and stress responses. Plant Cell 32, 295–318. doi: 10.1105/tpc.19.00335 PubMed DOI PMC
Patil I. (2021). Visualizations with statistical details: The ‘ggstatsplot’ approach. J. Open Source Software 6, 3167. doi: 10.21105/joss.03167 DOI
Pettersen E. F., Goddard T. D., Huang C. C., Meng E. C., Couch G. S., Croll T. I., et al. . (2021). UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82. doi: 10.1002/pro.v30.1 PubMed DOI PMC
Rapacz M., Stępień A., Skorupa K. (2012). Internal standards for quantative RT-PCR studies of gene expression under drought treatment in barley (Hordeum vulgare L.): effects of developmental stage and leaf age. Acta Physiologiae Plantarum 34, 1723–1733. doi: 10.1007/s11738-012-0967-1 DOI
Sadras V. O. (2007). Evolutionary aspects of the trade-off between seed size and number in crops. Field Crops Res. 100, 125–138. doi: 10.1016/j.fcr.2006.07.004 DOI
Sakamoto T., Morinaka Y., Ohnishi T., Sunohara H., Fujioka S., Ueguchi-Tanaka M., et al. . (2006). Erect leaves caused by brassinosteroid deficiency increase biomass production and grain yield in rice. Nat. Biotechnol. 24, 105–109. doi: 10.1038/nbt1173 PubMed DOI
Sakamoto T., Ohnishi T., Fujioka S., Watanabe B., Mizutani M. (2012). Rice CYP90D2 and CYP90D3 catalyze C-23 hydroxylation of brassinosteroids in vitro . Plant Physiol. Biochem. 58, 220–226. doi: 10.1016/j.plaphy.2012.07.011 PubMed DOI
Schmittgen T. D., Livak K. J. (2008). Analyzing real-time PCR data by the comparative C T method. Nat. Protoc. 3, 1101–1108. doi: 10.1038/nprot.2008.73 PubMed DOI
Shimada Y., Fujioka S., Miyauchi N., Kushiro M., Takatsuto S., Nomura T., et al. . (2001). Brassinosteroid-6-oxidases from Arabidopsis and tomato catalyze multiple C-6 oxidations in brassinosteroid biosynthesis. Plant Physiol. 126, 770–779. doi: 10.1104/pp.126.2.770 PubMed DOI PMC
Sievers F., Wilm A., Dineen D., Gibson T. J., Karplus K., Li W., et al. . (2011). Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539. doi: 10.1038/msb.2011.75 PubMed DOI PMC
Song L., Liu J., Cao B., Liu B., Zhang X., Chen Z., et al. . (2023). Reducing brassinosteroid signalling enhances grain yield in semi-dwarf wheat. Nature 617, 118–124. doi: 10.1038/s41586-023-06023-6 PubMed DOI PMC
Sun H., Xu H., Li B., Shang Y., Wei M., Zhang S., et al. . (2021). The brassinosteroid biosynthesis gene, ZmD11, increases seed size and quality in rice and maize. Plant Physiol. Biochem. 160, 281–293. doi: 10.1016/j.plaphy.2021.01.031 PubMed DOI
Symons G. M., Ross J. J., Jager C. E., Reid J. B. (2008). Brassinosteroid transport. J. Exp. Bot. 59, 17–24. doi: 10.1093/jxb/erm098 PubMed DOI
Szlachtowska Z., Rurek M. (2023). Plant dehydrins and dehydrin-like proteins: characterization and participation in abiotic stress response. Front. Plant Sci. 14, 1213188. doi: 10.3389/fpls.2023.1213188 PubMed DOI PMC
Szurman-Zubrzycka M. E., Zbieszczyk J., Marzec M., Jelonek J., Chmielewska B., Kurowska M. M., et al. . (2018). HorTILLUS — A rich and renewable source of induced mutations for forward/reverse genetics and pre-breeding programs in barley (Hordeum vulgare L.). Front. Plant Sci. 9, 216. doi: 10.3389/fpls.2018.00216 PubMed DOI PMC
Tanabe S., Ashikari M., Fujioka S., Takatsuto S., Yoshida S., Yano M., et al. . (2005). A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant, dwarf11, with reduced seed length. Plant Cell 17, 776–790. doi: 10.1105/tpc.104.024950 PubMed DOI PMC
Tao Y., Zheng J., Xu Z., Zhang X., Zhang K., Wang G. (2004). Functional analysis of ZmDWF1, a maize homolog of the Arabidopsis brassinosteroids biosynthetic DWF1/DIM gene. Plant Sci. 167, 743–751. doi: 10.1016/j.plantsci.2004.05.012 DOI
Taton M., Husselstein T., Benveniste P., Rahier A. (2000). Role of highly conserved residues in the reaction catalyzed by recombinant Δ7-Sterol-C5(6)-Desaturase studied by site-directed mutagenesis. Biochemistry 39, 701–711. doi: 10.1021/bi991467t PubMed DOI
Tong H., Chu C. (2018). Functional specificities of brassinosteroid and potential utilization for crop improvement. Trends Plant Sci. 23, 1016–1028. doi: 10.1016/j.tplants.2018.08.007 PubMed DOI
Vriet C., Russinova E., Reuzeau C. (2012). Boosting crop yields with plant steroids. Plant Cell 24, 842–857. doi: 10.1105/tpc.111.094912 PubMed DOI PMC
Vukasinovic N., Russinova E. (2018). BRexit: possible brassinosteroid export and transport routes. Trends Plant Sci. 23, 285–292. doi: 10.1016/j.tplants.2018.01.005 PubMed DOI
Wang Y., Perez-Sancho J., Platre M. P., Callebaut B., Smokvarska M., Ferrer K., et al. . (2023). Plasmodesmata mediate cell-to-cell transport of brassinosteroid hormones. Nat. Chem. Biol. 19, 1331–1341. doi: 10.1038/s41589-023-01346-x PubMed DOI PMC
Wickham H. (2016). ggplot2: elegant graphics for data analysis (New York: Springer-Verlag; ). Available at: https://ggplot2.tidyverse.org/ ISBN 978-3-319-24277-4 (Accessed March 20, 2025).
Wu Y., Fu Y., Zhao S., Gu P., Zhu Z., Sun C., et al. . (2016). CLUSTERED PRIMARY BRANCH 1, a new allele of DWARF11, controls panicle architecture and seed size in rice. Plant Biotechnol. J. 14, 377–386. doi: 10.1111/pbi.2016.14.issue-1 PubMed DOI PMC
Xu H., Sun H., Dong J., Ma C., Li J., Li Z., et al. . (2022). The brassinosteroid biosynthesis gene TaD11-2A controls grain size and its elite haplotype improves wheat grain yields. Theor. Appl. Genet. 135, 2907–2923. doi: 10.1007/s00122-022-04158-0 PubMed DOI
Yang Y., Chu C., Qian Q., Tong H. (2024). Leveraging brassinosteroids towards the next Green Revolution. Trends Plant Sci. 29, 86–98. doi: 10.1016/j.tplants.2023.09.005 PubMed DOI
Yates A. D., Allen J., Amode R. M., Azov A. G., Barba M., Becerra A., et al. . (2022). Ensembl Genomes 2022: an expanding genome resource for non-vertebrates. Nucleic Acids Res. 50, D996–D1003. doi: 10.1093/nar/gkab1007 PubMed DOI PMC
Ying W., Wang Y., Wei H., Luo Y., Ma Q., Zhu H., et al. . (2024). Structure and function of the Arabidopsis ABC transporter ABCB19 in brassinosteroid export. Science 383, eadj4591. doi: 10.1126/science.adj4591 PubMed DOI
Zebosi B., Vollbrecht E., Best N. B. (2024). Brassinosteroid biosynthesis and signaling: conserved and diversified functions of core genes across multiple plant species. Plant Commun. 5, 100982. doi: 10.1016/j.xplc.2024.100982 PubMed DOI PMC
Zhan H., Lu M., Luo Q., Tan F., Zhao Z., Liu M., et al. . (2022). OsCPD1 and OsCPD2 are functional brassinosteroid biosynthesis genes in rice. Plant Sci. 325, 111482. doi: 10.1016/j.plantsci.2022.111482 PubMed DOI
Zhang X., Meng W., Liu D., Pan D., Yang Y., Chen Z., et al. . (2024). Enhancing rice panicle branching and grain yield through tissue-specific brassinosteroid inhibition. Science 383, eadk8838. doi: 10.1126/science.adk8838 PubMed DOI
Zhou Y., Tao Y., Zhu J., Miao J., Liu J., Liu Y., et al. . (2017). GNS4, a novel allele of DWARF11, regulates grain number and grain size in a high-yield rice variety. Rice 10, 34. doi: 10.1186/s12284-017-0171-4 PubMed DOI PMC