Structural insights into brassinosteroid export mediated by the Arabidopsis ABC transporter ABCB1
Jazyk angličtina Země Čína Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39497419
PubMed Central
PMC11784272
DOI
10.1016/j.xplc.2024.101181
PII: S2590-3462(24)00597-2
Knihovny.cz E-zdroje
- Klíčová slova
- ABCB1, Arabidopsis, brassinosteroids, signaling, structure, transport,
- MeSH
- ABC transportéry * metabolismus chemie genetika MeSH
- adenosintrifosfát metabolismus MeSH
- Arabidopsis * metabolismus genetika MeSH
- biologický transport MeSH
- brassinosteroidy * metabolismus MeSH
- proteiny huseníčku * metabolismus chemie genetika MeSH
- steroidy heterocyklické metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- ABC transportéry * MeSH
- adenosintrifosfát MeSH
- brassinolide MeSH Prohlížeč
- brassinosteroidy * MeSH
- proteiny huseníčku * MeSH
- steroidy heterocyklické MeSH
Brassinosteroids (BRs) are steroidal phytohormones indispensable for plant growth, development, and responses to environmental stresses. The export of bioactive BRs to the apoplast is essential for BR signaling initiation, which requires binding of a BR molecule to the extracellular domains of the plasma membrane-localized receptor complex. We have previously shown that the Arabidopsis thaliana ATP-binding cassette (ABC) transporter ABCB19 functions as a BR exporter and, together with its close homolog ABCB1, positively regulates BR signaling. Here, we demonstrate that ABCB1 is another BR transporter. The ATP hydrolysis activity of ABCB1 can be stimulated by bioactive BRs, and its transport activity was confirmed in proteoliposomes and protoplasts. Structures of ABCB1 were determined in substrate-unbound (apo), brassinolide (BL)-bound, and ATP plus BL-bound states. In the BL-bound structure, BL is bound to the hydrophobic cavity formed by the transmembrane domain and triggers local conformational changes. Together, our data provide additional insights into ABC transporter-mediated BR export.
Department of Organic and Macromolecular Chemistry Ghent University 9000 Ghent Belgium
Institute of Science and Technology Austria Am Campus 1 3400 Klosterneuburg Austria
Zobrazit více v PubMed
Abramson J., Adler J., Dunger J., Evans R., Green T., Pritzel A., Ronneberger O., Willmore L., Ballard A.J., Bambrick J., et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature. 2024;630:493–500. doi: 10.1038/s41586-024-07487-w. PubMed DOI PMC
Adams P.D., Afonine P.V., Bunkóczi G., Chen V.B., Davis I.W., Echols N., Headd J.J., Hung L.W., Kapral G.J., Grosse-Kunstleve R.W., et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 2010;66:213–221. doi: 10.1107/S0907444909052925. PubMed DOI PMC
Alam A., Locher K.P. Structure and Mechanism of Human ABC Transporters. Annu. Rev. Biophys. 2023;52:275–300. doi: 10.1146/annurev-biophys-111622-091232. PubMed DOI
Alam A., Kowal J., Broude E., Roninson I., Locher K.P. Structural insight into substrate and inhibitor discrimination by human P-glycoprotein. Science. 2019;363:753–756. doi: 10.1126/science.aav7102. PubMed DOI PMC
Atkovska K., Klingler J., Oberwinkler J., Keller S., Hub J.S. Rationalizing Steroid Interactions with Lipid Membranes: Conformations, Partitioning, and Kinetics. ACS Cent. Sci. 2018;4:1155–1165. doi: 10.1021/acscentsci.8b00332. PubMed DOI PMC
Bailly A., Sovero V., Vincenzetti V., Santelia D., Bartnik D., Koenig B.W., Mancuso S., Martinoia E., Geisler M. Modulation of P-glycoproteins by auxin transport inhibitors is mediated by interaction with immunophilins. J. Biol. Chem. 2008;283:21817–21826. doi: 10.1074/jbc.M709655200. PubMed DOI
Bouchard R., Bailly A., Blakeslee J.J., Oehring S.C., Vincenzetti V., Lee O.R., Paponov I., Palme K., Mancuso S., Murphy A.S., et al. Immunophilin-like TWISTED DWARF1 modulates auxin efflux activities of Arabidopsis P-glycoproteins. J. Biol. Chem. 2006;281:30603–30612. doi: 10.1074/jbc.M604604200. PubMed DOI
Cecchetti V., Brunetti P., Napoli N., Fattorini L., Altamura M.M., Costantino P., Cardarelli M. ABCB1 and ABCB19 auxin transporters have synergistic effects on early and late Arabidopsis anther development. J. Integr. Plant Biol. 2015;57:1089–1098. doi: 10.1111/jipb.12332. PubMed DOI
Chen S., McMullan G., Faruqi A.R., Murshudov G.N., Short J.M., Scheres S.H.W., Henderson R. High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy. Ultramicroscopy. 2013;135:24–35. doi: 10.1016/j.ultramic.2013.06.004. PubMed DOI PMC
Choe S., Dilkes B.P., Fujioka S., Takatsuto S., Sakurai A., Feldmann K.A. The DWF4 gene of Arabidopsis encodes a cytochrome P450 that mediates multiple 22alpha-hydroxylation steps in brassinosteroid biosynthesis. Plant Cell. 1998;10:231–243. doi: 10.1105/tpc.10.2.231. PubMed DOI PMC
Decaestecker W., Buono R.A., Pfeiffer M.L., Vangheluwe N., Jourquin J., Karimi M., Van Isterdael G., Beeckman T., Nowack M.K., Jacobs T.B. CRISPR-TSKO: A Technique for Efficient Mutagenesis in Specific Cell Types, Tissues, or Organs in Arabidopsis. Plant Cell. 2019;31:2868–2887. doi: 10.1105/tpc.19.00454. PubMed DOI PMC
Dudler R., Hertig C. Structure of an mdr-Like Gene from Arabidopsis thaliana: Evolutionary implications. J. Biol. Chem. 1992;267:5882–5888. doi: 10.1016/S0021-9258(18)42636-1. PubMed DOI
Emsley P., Cowtan K. coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr. 2004;60:2126–2132. doi: 10.1107/S0907444904019158. PubMed DOI
Fujioka S., Yokota T. Biosynthesis and metabolism of brassinosteroids. Annu. Rev. Plant Biol. 2003;54:137–164. doi: 10.1146/annurev.arplant.54.031902.134921. PubMed DOI
Geertsma E.R., Nik Mahmood N.A.B., Schuurman-Wolters G.K., Poolman B. Membrane reconstitution of ABC transporters and assays of translocator function. Nat. Protoc. 2008;3:256–266. doi: 10.1038/nprot.2007.519. PubMed DOI
Geisler M., Blakeslee J.J., Bouchard R., Lee O.R., Vincenzetti V., Bandyopadhyay A., Titapiwatanakun B., Peer W.A., Bailly A., Richards E.L., et al. Cellular efflux of auxin catalyzed by the Arabidopsis MDR/PGP transporter AtPGP1. Plant J. 2005;44:179–194. doi: 10.1111/j.1365-313X.2005.02519.x. PubMed DOI
Hao P., Xia J., Liu J., Di Donato M., Pakula K., Bailly A., Jasinski M., Geisler M. Auxin-transporting ABC transporters are defined by a conserved D/E-P motif regulated by a prolylisomerase. J. Biol. Chem. 2020;295:13094–13105. doi: 10.1074/jbc.RA120.014104. PubMed DOI PMC
Henrichs S., Wang B., Fukao Y., Zhu J., Charrier L., Bailly A., Oehring S.C., Linnert M., Weiwad M., Endler A., et al. Regulation of ABCB1/PGP1-catalysed auxin transport by linker phosphorylation. EMBO J. 2012;31:2965–2980. doi: 10.1038/emboj.2012.120. PubMed DOI PMC
Hothorn M., Belkhadir Y., Dreux M., Dabi T., Noel J.P., Wilson I.A., Chory J. Structural basis of steroid hormone perception by the receptor kinase BRI1. Nature. 2011;474:467–471. doi: 10.1038/nature10153. PubMed DOI PMC
Huang X., Zhang X., An N., Zhang M., Ma M., Yang Y., Jing L., Wang Y., Chen Z., Zhang P. Cryo-EM structure and molecular mechanism of abscisic acid transporter ABCG25. Nat. Plants. 2023;9:1709–1719. doi: 10.1038/s41477-023-01509-7. PubMed DOI
Jumper J., Evans R., Pritzel A., Green T., Figurnov M., Ronneberger O., Tunyasuvunakool K., Bates R., Žídek A., Potapenko A., et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583–589. doi: 10.1038/s41586-021-03819-2. PubMed DOI PMC
Kim H.B., Kwon M., Ryu H., Fujioka S., Takatsuto S., Yoshida S., An C.S., Lee I., Hwang I., Choe S. The regulation of DWARF4 expression is likely a critical mechanism in maintaining the homeostasis of bioactive brassinosteroids in Arabidopsis. Plant Physiol. 2006;140:548–557. doi: 10.1104/pp.105.067918. PubMed DOI PMC
Kim Y., Chen J. Molecular structure of human P-glycoprotein in the ATP-bound, outward-facing conformation. Science. 2018;359:915–919. doi: 10.1126/science.aar7389. PubMed DOI
Kuromori T., Miyaji T., Yabuuchi H., Shimizu H., Sugimoto E., Kamiya A., Moriyama Y., Shinozaki K. ABC transporter AtABCG25 is involved in abscisic acid transport and responses. Proc Natl Acad Sci USA. 2010;107:2361–2366. doi: 10.1073/pnas.0912516107. PubMed DOI PMC
Lampropoulos A., Sutikovic Z., Wenzl C., Maegele I., Lohmann J.U., Forner J. GreenGate - A Novel, Versatile, and Efficient Cloning System for Plant Transgenesis. PLoS One. 2013;8 doi: 10.1371/journal.pone.0083043. PubMed DOI PMC
Lewis D.R., Miller N.D., Splitt B.L., Wu G., Spalding E.P. Separating the roles of acropetal and basipetal auxin transport on gravitropism with mutations in two ABC transporter genes. Plant Cell. 2007;19:1838–1850. doi: 10.1105/tpc.107.051599. PubMed DOI PMC
Lin R., Wang H. Two homologous ATP-binding cassette transporter proteins, AtMDR1 and AtPGP1, regulate Arabidopsis photomorphogenesis and root development by mediating polar auxin transport. Plant Physiol. 2005;138:949–964. doi: 10.1104/pp.105.061572. PubMed DOI PMC
Noh B., Murphy A.S., Spalding E.P. Multidrug resistance-like genes of Arabidopsis required for auxin transport and auxin-mediated development. Plant Cell. 2001;13:2441–2454. doi: 10.1105/tpc.13.11.2441. PubMed DOI PMC
Noh B., Bandyopadhyay A., Peer W.A., Spalding E.P., Murphy A.S. Enhanced gravi- and phototropism in plant mdr mutants mislocalizing the auxin efflux protein PIN1. Nature. 2003;423:999–1002. doi: 10.1038/nature01716. PubMed DOI
Nolan T.M., Vukašinović N., Liu D., Russinova E., Yin Y. Brassinosteroids: Multidimensional Regulators of Plant Growth, Development, and Stress Responses. Plant Cell. 2020;32:295–318. doi: 10.1105/tpc.19.00335. PubMed DOI PMC
Northey J.G.B., Liang S., Jamshed M., Deb S., Foo E., Reid J.B., McCourt P., Samuel M.A. Farnesylation mediates brassinosteroid biosynthesis to regulate abscisic acid responses. Nat. Plants. 2016;2 doi: 10.1038/Nplants.2016.114. PubMed DOI
Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., Ferrin T.E. UCSF chimera - A visualization system for exploratory research and analysis. J. Comput. Chem. 2004;25:1605–1612. doi: 10.1002/jcc.20084. PubMed DOI
Punjani A., Rubinstein J.L., Fleet D.J., Brubaker M.A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods. 2017;14:290–296. doi: 10.1038/Nmeth.4169. PubMed DOI
Rea P.A. Plant ATP-Binding cassette transporters. Annu. Rev. Plant Biol. 2007;58:347–375. doi: 10.1146/annurev.arplant.57.032905.105406. PubMed DOI
Rohou A., Grigorieff N. CTFFIND4: Fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 2015;192:216–221. doi: 10.1016/j.jsb.2015.08.008. PubMed DOI PMC
Sánchez-Fernández R., Davies T.G., Coleman J.O., Rea P.A. The Arabidopsis thaliana ABC protein superfamily, a complete inventory. J. Biol. Chem. 2001;276:30231–30244. doi: 10.1074/jbc.M103104200. PubMed DOI
Santiago J., Henzler C., Hothorn M. Molecular mechanism for plant steroid receptor activation by somatic embryogenesis co-receptor kinases. Science. 2013;341:889–892. doi: 10.1126/science.1242468. PubMed DOI
She J., Han Z., Kim T.W., Wang J., Cheng W., Chang J., Shi S., Wang J., Yang M., Wang Z.Y., Chai J. Structural insight into brassinosteroid perception by BRI1. Nature. 2011;474:472–476. doi: 10.1038/nature10178. PubMed DOI PMC
Sun Y., Han Z., Tang J., Hu Z., Chai C., Zhou B., Chai J. Structure reveals that BAK1 as a co-receptor recognizes the BRI1-bound brassinolide. Cell Res. 2013;23:1326–1329. doi: 10.1038/cr.2013.131. PubMed DOI PMC
Symons G.M., Reid J.B. Brassinosteroids do not undergo long-distance transport in pea. Implications for the regulation of endogenous brassinosteroid levels. Plant Physiol. 2004;135:2196–2206. doi: 10.1104/pp.104.043034. PubMed DOI PMC
Thomas C., Tampé R. Structural and Mechanistic Principles of ABC Transporters. Annu. Rev. Biochem. 2020;89:605–636. doi: 10.1146/annurev-biochem-011520-105201. PubMed DOI
Thomas C., Aller S.G., Beis K., Carpenter E.P., Chang G., Chen L., Dassa E., Dean M., Duong Van Hoa F., Ekiert D., et al. Structural and functional diversity calls for a new classification of ABC transporters. FEBS Lett. 2020;594:3767–3775. doi: 10.1002/1873-3468.13935. PubMed DOI PMC
Vukasinovic N., Russinova E. BRexit: Possible Brassinosteroid Export and Transport Routes. Trends Plant Sci. 2018;23:285–292. doi: 10.1016/j.tplants.2018.01.005. PubMed DOI
Vukasinovic N., Wang Y.W., Vanhoutte I., Fendrych M., Guo B.Y., Kvasnica M., Jiroutová P., Oklestkova J., Strnad M., Russinova E. Local brassinosteroid biosynthesis enables optimal root growth. Nat. Plants. 2021;7:619–632. doi: 10.1038/s41477-021-00917-x. PubMed DOI
Wang L., Hou W.T., Wang J., Xu D., Guo C., Sun L., Ruan K., Zhou C.Z., Chen Y. Structures of human bile acid exporter ABCB11 reveal a transport mechanism facilitated by two tandem substrate-binding pockets. Cell Res. 2022;32:501–504. doi: 10.1038/s41422-021-00611-9. PubMed DOI PMC
Wang Y., Perez-Sancho J., Platre M.P., Callebaut B., Smokvarska M., Ferrer K., Luo Y., Nolan T.M., Sato T., Busch W., et al. Plasmodesmata mediate cell-to-cell transport of brassinosteroid hormones. Nat. Chem. Biol. 2023;19:1331–1341. doi: 10.1038/s41589-023-01346-x. PubMed DOI PMC
Wu F.H., Shen S.C., Lee L.Y., Lee S.H., Chan M.T., Lin C.S. Tape-Arabidopsis Sandwich - a simpler Arabidopsis protoplast isolation method. Plant Methods. 2009;5:16. doi: 10.1186/1746-4811-5-16. PubMed DOI PMC
Wu G., Otegui M.S., Spalding E.P. The ER-Localized TWD1 Immunophilin Is Necessary for Localization of Multidrug Resistance-Like Proteins Required for Polar Auxin Transport in Arabidopsis Roots. Plant Cell. 2010;22:3295–3304. doi: 10.1105/tpc.110.078360. PubMed DOI PMC
Ye L., Liu L., Xing A., Kang D. Characterization of a dwarf mutant allele of Arabidopsis MDR-like ABC transporter AtPGP1 gene. Biochem Biophys Res Commun. 2013;441:782–786. doi: 10.1016/j.bbrc.2013.10.136. PubMed DOI
Yin Y., Wang Z.Y., Mora-Garcia S., Li J., Yoshida S., Asami T., Chory J. BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation. Cell. 2002;109:181–191. doi: 10.1016/s0092-8674(02)00721-3. PubMed DOI
Ying W., Liao L., Wei H., Gao Y., Liu X., Sun L. Structural basis for abscisic acid efflux mediated by ABCG25 in Arabidopsis thaliana. Nat. Plants. 2023;9:1697–1708. doi: 10.1038/s41477-023-01510-0. PubMed DOI PMC
Ying W., Wang Y., Wei H., Luo Y., Ma Q., Zhu H., Janssens H., Vukašinović N., Kvasnica M., Winne J.M., et al. Structure and function of the Arabidopsis ABC transporter ABCB19 in brassinosteroid export. Science. 2024;383 doi: 10.1126/science.adj4591. PubMed DOI
Zheng S.Q., Palovcak E., Armache J.P., Verba K.A., Cheng Y., Agard D.A. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods. 2017;14:331–332. doi: 10.1038/nmeth.4193. PubMed DOI PMC
Zivanov J., Nakane T., Forsberg B.O., Kimanius D., Hagen W.J., Lindahl E., Scheres S.H. New tools for automated high-resolution cryo-EM structure determination in RELION-3. Elife. 2018;7 doi: 10.7554/eLife.42166. PubMed DOI PMC