Ig gene (IG) clonality analysis has an important role in the distinction of benign and malignant B-cell lymphoid proliferations and is mostly performed with the conventional EuroClonality/BIOMED-2 multiplex PCR protocol and GeneScan fragment size analysis. Recently, the EuroClonality-NGS Working Group developed a method for next-generation sequencing (NGS)-based IG clonality analysis. Herein, we report the results of an international multicenter biological validation of this novel method compared with the gold standard EuroClonality/BIOMED-2 protocol, based on 209 specimens of reactive and neoplastic lymphoproliferations. NGS-based IG clonality analysis showed a high interlaboratory concordance (99%) and high concordance with conventional clonality analysis (98%) for the molecular conclusion. Detailed analysis of the individual IG heavy chain and kappa light chain targets showed that NGS-based clonality analysis was more often able to detect a clonal rearrangement or yield an interpretable result. NGS-based and conventional clonality analysis detected a clone in 96% and 95% of B-cell neoplasms, respectively, and all but one of the reactive cases were scored polyclonal. We conclude that NGS-based IG clonality analysis performs comparable to conventional clonality analysis. We provide critical parameters for interpretation and discuss a first step toward a quantitative scoring approach for NGS clonality results. Considering the advantages of NGS-based clonality analysis, including its high sensitivity and possibilities for accurate clonal comparison, this supports implementation in diagnostic practice.
- MeSH
- Lymphoma, B-Cell genetics MeSH
- B-Lymphocytes immunology MeSH
- Clone Cells immunology MeSH
- Phenotype MeSH
- Lymphoma, Follicular genetics MeSH
- Gene Rearrangement * MeSH
- Genes, Immunoglobulin * MeSH
- Immunoglobulin kappa-Chains genetics MeSH
- Humans MeSH
- Multiplex Polymerase Chain Reaction methods MeSH
- Sensitivity and Specificity MeSH
- Data Accuracy MeSH
- Immunoglobulin Heavy Chains genetics MeSH
- High-Throughput Nucleotide Sequencing methods MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Multicenter Study MeSH
- Research Support, Non-U.S. Gov't MeSH
- Validation Study MeSH
- MeSH
- Precursor Cell Lymphoblastic Leukemia-Lymphoma genetics metabolism pathology MeSH
- Immunogenetics * MeSH
- Humans MeSH
- Biomarkers, Tumor genetics MeSH
- Prognosis MeSH
- Neoplasm, Residual genetics metabolism pathology MeSH
- Whole Genome Sequencing standards MeSH
- RNA-Seq standards MeSH
- Transcriptome * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Letter MeSH
- Research Support, Non-U.S. Gov't MeSH
Assessment of clonality, marker identification and measurement of minimal residual disease (MRD) of immunoglobulin (IG) and T cell receptor (TR) gene rearrangements in lymphoid neoplasms using next-generation sequencing (NGS) is currently under intensive development for use in clinical diagnostics. So far, however, there is a lack of suitable quality control (QC) options with regard to standardisation and quality metrics to ensure robust clinical application of such approaches. The EuroClonality-NGS Working Group has therefore established two types of QCs to accompany the NGS-based IG/TR assays. First, a central polytarget QC (cPT-QC) is used to monitor the primer performance of each of the EuroClonality multiplex NGS assays; second, a standardised human cell line-based DNA control is spiked into each patient DNA sample to work as a central in-tube QC and calibrator for MRD quantification (cIT-QC). Having integrated those two reference standards in the ARResT/Interrogate bioinformatic platform, EuroClonality-NGS provides a complete protocol for standardised IG/TR gene rearrangement analysis by NGS with high reproducibility, accuracy and precision for valid marker identification and quantification in diagnostics of lymphoid malignancies.
- MeSH
- Genetic Markers genetics MeSH
- Gene Rearrangement genetics MeSH
- Immunoglobulins genetics MeSH
- Humans MeSH
- Receptors, Antigen, T-Cell genetics MeSH
- Reproducibility of Results MeSH
- Neoplasm, Residual genetics MeSH
- Quality Control MeSH
- Computational Biology methods MeSH
- High-Throughput Nucleotide Sequencing methods MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
One of the hallmarks of B lymphoid malignancies is a B cell clone characterized by a unique footprint of clonal immunoglobulin (IG) gene rearrangements that serves as a diagnostic marker for clonality assessment. The EuroClonality/BIOMED-2 assay is currently the gold standard for analyzing IG heavy chain (IGH) and κ light chain (IGK) gene rearrangements of suspected B cell lymphomas. Here, the EuroClonality-NGS Working Group presents a multicentre technical feasibility study of a novel approach involving next-generation sequencing (NGS) of IGH and IGK loci rearrangements that is highly suitable for detecting IG gene rearrangements in frozen and formalin-fixed paraffin-embedded tissue specimens. By employing gene-specific primers for IGH and IGK amplifying smaller amplicon sizes in combination with deep sequencing technology, this NGS-based IG clonality analysis showed robust performance, even in DNA samples of suboptimal DNA integrity, and a high clinical sensitivity for the detection of clonal rearrangements. Bioinformatics analyses of the high-throughput sequencing data with ARResT/Interrogate, a platform developed within the EuroClonality-NGS Working Group, allowed accurate identification of clonotypes in both polyclonal cell populations and monoclonal lymphoproliferative disorders. This multicentre feasibility study is an important step towards implementation of NGS-based clonality assessment in clinical practice, which will eventually improve lymphoma diagnostics.
- MeSH
- Lymphoma, B-Cell genetics MeSH
- Gene Rearrangement genetics MeSH
- Genes, Immunoglobulin genetics MeSH
- Immunoglobulin kappa-Chains genetics MeSH
- Humans MeSH
- Lymphoproliferative Disorders genetics MeSH
- Feasibility Studies MeSH
- Immunoglobulin Heavy Chains genetics MeSH
- High-Throughput Nucleotide Sequencing methods MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH