NGS-MRD negativity in post-HSCT ALL spares unnecessary therapeutic interventions triggered by borderline qPCR results without an increase in relapse risk
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40201744
PubMed Central
PMC11978274
DOI
10.1002/hem3.70124
PII: HEM370124
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Monitoring of minimal residual disease (MRD) after hematopoietic stem cell transplantation (HSCT) in patients with acute lymphoblastic leukemia (ALL) is vital for timely therapeutic intervention planning. However, interpreting low-positive results from the current standard method, quantitative PCR (qPCR) of immunoglobulin and T-cell receptor gene rearrangements (IG/TR), poses challenges due to the risk of false positivity caused by non-specific amplification. We aimed to improve MRD detection specificity using the next-generation amplicon sequencing (NGS) of IG/TR rearrangements for better relapse prediction. In pediatric and young adult ALL patients undergoing sequential post-HSCT MRD monitoring, we prospectively re-tested positive non-quantifiable qPCR results with NGS-MRD using the EuroClonality-NGS approach. We were able to confirm 13 out of 47 (27.7%) qPCR positive results using the more specific NGS-MRD method. Out of 10 patients with at least one MRD positivity confirmed by NGS, six relapsed (60%) 1-3.7 months after testing. Among 25 patients with all NGS-MRD results negative, two relapses occurred (8%) after 5.1 and 12.1 months. One-year RFS was 40% versus 96% and 3-year OS was 33.3% versus 94.4% for the NGS-positive and NGS-negative groups, respectively. The difference was not attributable to a varying rate of therapeutic interventions. Six patients out of 14 who had immunosuppressive treatment tapered or received donor lymphocyte infusion in response to MRD positivity developed significant graft versus host disease, leading to one fatality. This underscores the importance of enhancing the post-HSCT relapse risk prediction accuracy through NGS-MRD testing to avoid unnecessary interventions.
Zobrazit více v PubMed
Bader P, Hancock J, Kreyenberg H, et al. Minimal residual disease (MRD) status prior to allogeneic stem cell transplantation is a powerful predictor for post‐transplant outcome in children with ALL. Leukemia. 2002;16(9):1668‐1672. PubMed
Knechtli CJ, Goulden NJ, Hancock JP, et al. Minimal residual disease status before allogeneic bone marrow transplantation is an important determinant of successful outcome for children and adolescents with acute lymphoblastic leukemia. Blood. 1998;92(11):4072‐4079. https://pubmed.ncbi.nlm.nih.gov/9834212/ PubMed
Krejci O, van der Velden VHJ, Bader P, et al. Level of minimal residual disease prior to haematopoietic stem cell transplantation predicts prognosis in paediatric patients with acute lymphoblastic leukaemia: a report of the Pre‐BMT MRD Study Group. Bone Marrow Transplant. 2003;32(8):849‐851. PubMed
Sramkova L, Muzikova K, Fronkova E, et al. Detectable minimal residual disease before allogeneic hematopoietic stem cell transplantation predicts extremely poor prognosis in children with acute lymphoblastic leukemia. Pediatr Blood Cancer. 2007;48(1):93‐100. PubMed
Bader P, Salzmann‐Manrique E, Balduzzi A, et al. More precisely defining risk peri‐HCT in pediatric ALL: pre‐ vs post‐MRD measures, serial positivity, and risk modeling. Blood Adv. 2019;3(21):3393‐3405. PubMed PMC
Merli P, Ifversen M, Truong TH, et al. Minimal residual disease prior to and after haematopoietic stem cell transplantation in children and adolescents with acute lymphoblastic leukaemia: what level of negativity is relevant? Front Pediatr. 2021;9:777108. PubMed PMC
Liang EC, Dekker SE, Sabile JMG, et al. Next‐generation sequencing‐based MRD in adults with ALL undergoing hematopoietic cell transplantation. Blood Adv. 2023;7(14):3395‐3402. PubMed PMC
Fronkova E, Muzikova K, Mejstrikova E, et al. B‐cell reconstitution after allogeneic SCT impairs minimal residual disease monitoring in children with ALL. Bone Marrow Transplant. 2008;42(3):187‐196. PubMed
Wu D, Emerson RO, Sherwood A, et al. Detection of minimal residual disease in B lymphoblastic leukemia by high‐throughput sequencing of IGH. Clin Cancer Res. 2014;20(17):4540‐4548. PubMed PMC
Wu D, Sherwood A, Fromm JR, et al. High‐throughput sequencing detects minimal residual disease in acute T lymphoblastic leukemia. Sci Transl Med. 2012;4(134):134ra63. PubMed
Faham M, Zheng J, Moorhead M, et al. Deep‐sequencing approach for minimal residual disease detection in acute lymphoblastic leukemia. Blood. 2012;120(26):5173‐5180. PubMed PMC
Ladetto M, Brüggemann M, Monitillo L, et al. Next‐generation sequencing and real‐time quantitative PCR for minimal residual disease detection in B‐cell disorders. Leukemia. 2014;28(6):1299‐1307. PubMed
Logan AC, Vashi N, Faham M, et al. Immunoglobulin and T cell receptor gene high‐throughput sequencing quantifies minimal residual disease in acute lymphoblastic leukemia and predicts post‐transplantation relapse and survival. Biol Blood Marrow Transplant. 2014;20(9):1307‐1313. PubMed PMC
Short NJ, Kantarjian H, Ravandi F, et al. High‐sensitivity next‐generation sequencing MRD assessment in ALL identifies patients at very low risk of relapse. Blood Adv. 2022;6(13):4006‐4014. PubMed PMC
Cheng S, Inghirami G, Cheng S, Tam W. Simple deep sequencing‐based post‐remission MRD surveillance predicts clinical relapse in B‐ALL. J Hematol Oncol. 2018;11(1):105. PubMed PMC
Kotrová M, Koopmann J, Trautmann H, et al. Prognostic value of low‐level MRD in adult acute lymphoblastic leukemia detected by low‐ and high‐throughput methods. Blood Adv. 2022;6(10):3006‐3010. PubMed PMC
Huang Y, Zhao H, Shao M, et al. Predictive value of next‐generation sequencing‐based minimal residual disease after CAR‐T cell therapy. Bone Marrow Transplant. 2022;57(8):1350‐1353. PubMed
Ashouri K, Nittur V, Ginosyan AA, et al. Concordance of next‐generation sequencing and multiparametric flow cytometry methods for detecting measurable residual disease in adult acute lymphoblastic leukemia: optimizing prediction of clinical outcomes from a single‐center study. Clin Lymphoma Myeloma Leuk. 2024;24(3):e59‐e66.e2. PubMed
Pulsipher MA, Carlson C, Langholz B, et al. IgH‐V(D)J NGS‐MRD measurement pre‐ and early post‐allotransplant defines very low‐ and very high‐risk ALL patients. Blood. 2015;125(22):3501‐3508. PubMed PMC
Sekiya Y, Xu Y, Muramatsu H, et al. Clinical utility of next‐generation sequencing‐based minimal residual disease in paediatric B‐cell acute lymphoblastic leukaemia. Br J Haematol. 2017;176(2):248‐257. PubMed
Kotrova M, Muzikova K, Mejstrikova E, et al. The predictive strength of next‐generation sequencing MRD detection for relapse compared with current methods in childhood ALL. Blood. 2015;126(8):1045‐1047. PubMed PMC
Kotrova M, van der Velden VHJ, van Dongen JJM, et al. Next‐generation sequencing indicates false‐positive MRD results and better predicts prognosis after SCT in patients with childhood ALL. Bone Marrow Transplant. 2017;52(7):962‐968. PubMed
Svaton M, Skotnicova A, Reznickova L, et al. NGS better discriminates true MRD positivity for the risk stratification of childhood ALL treated on an MRD‐based protocol. Blood. 2023;141(5):529‐533. PubMed PMC
Wood B, Wu D, Crossley B, et al. Measurable residual disease detection by high‐throughput sequencing improves risk stratification for pediatric B‐ALL. Blood. 2018;131(12):1350‐1359. PubMed PMC
Pulsipher MA, Han X, Maude SL, et al. Next‐generation sequencing of minimal residual disease for predicting relapse after tisagenlecleucel in children and young adults with acute lymphoblastic leukemia. Blood Cancer Discov. 2022;3(1):66‐81. PubMed PMC
Bartram J, Wright G, Adams S, et al. High‐throughput sequencing of peripheral blood for minimal residual disease monitoring in childhood precursor B‐cell acute lymphoblastic leukemia: a prospective feasibility study. Pediatr Blood Cancer. 2022;69(3):e29513. PubMed
Caldwell IR, Ingbritsen M, Yap YZ, et al. Utility of high‐throughput sequencing of immunoglobulin genes for MRD in lymphoid malignancy in the context of current immunotherapeutics. Blood. 2022;140:10731‐10732.
Horn B, Petrovic A, Wahlstrom J, et al. Chimerism‐based pre‐emptive immunotherapy with fast withdrawal of immunosuppression and donor lymphocyte infusions after allogeneic stem cell transplantation for pediatric hematologic malignancies. Biol Blood Marrow Transplant. 2015;21(4):729‐737. PubMed
Yeshurun M, Weisdorf D, Rowe JM, et al. The impact of the graft‐versus‐leukemia effect on survival in acute lymphoblastic leukemia. Blood Adv. 2019;3(4):670‐680. PubMed PMC
Lankester AC, Bierings MB, Van Wering ER, et al. Preemptive alloimmune intervention in high‐risk pediatric acute lymphoblastic leukemia patients guided by minimal residual disease level before stem cell transplantation. Leukemia. 2010;24(8):1462‐1469. PubMed
Rettinger E, Merker M, Salzmann‐Manrique E, et al. Pre‐emptive immunotherapy for clearance of molecular disease in childhood acute lymphoblastic leukemia after transplantation. Biol Blood Marrow Transplant. 2017;23(1):87‐95. PubMed
Pochon C, Oger E, Michel G, et al. Follow‐up of post‐transplant minimal residual disease and chimerism in childhood lymphoblastic leukaemia: 90 d to react. Br J Haematol. 2015;169(2):249‐261. PubMed
Bader P, Kreyenberg H, Hoelle W, et al. Increasing mixed chimerism is an important prognostic factor for unfavorable outcome in children with acute lymphoblastic leukemia after allogeneic stem‐cell transplantation: possible role for pre‐emptive immunotherapy? J Clin Oncol. 2004;22(9):1696‐1705. PubMed
Scarisbrick JJ, Dignan FL, Tulpule S, et al. A multicentre UK study of GVHD following DLI: rates of GVHD are high but mortality from GVHD is infrequent. Bone Marrow Transplant. 2015;50(1):62‐67. PubMed
Elmaagacli A, Beelen D, Trenn G, Schmidt O, Nahler M, Schaefer U. Induction of a graft‐versus‐leukemia reaction by cyclosporin A withdrawal as immunotherapy for leukemia relapsing after allogeneic bone marrow transplantation. Bone Marrow Transplant. 1999;23(8):771‐777. PubMed
Raida L, Rusinakova Z, Szotkowska R, et al. Allogeneic stem cell transplantation after fludarabine, melphalan and thymoglobulin followed by early withdrawal of prophylactic immunosuppression could be an effective approach to patients with acute lymphoblastic leukemia. Neoplasma. 2015;62(05):805‐811. PubMed
Pongers‐Willemse MJ, Seriu T, Stolz F, et al. Primers and protocols for standardized detection of minimal residual disease in acute lymphoblastic leukemia using immunoglobulin and T cell receptor gene rearrangements and TAL1 deletions as PCR targets: report of the BIOMED‐1 CONCERTED ACTION: investigation of minimal residual disease in acute leukemia. Leukemia. 1999;13(1):110‐118. PubMed
van Dongen JJM, Langerak AW, Brüggemann M, et al. Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T‐cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED‐2 Concerted Action BMH4‐CT98‐3936. Leukemia. 2003;17(12):2257‐2317. PubMed
Pongers‐Willemse M, Verhagen O, Tibbe G, et al. Real‐time quantitative PCR for the detection of minimal residual disease in acute lymphoblastic leukemia using junctional region specific TaqMan probes. Leukemia. 1998;12(12):2006‐2014. PubMed
Langerak AW, Wolvers‐Tettero ILM, van Gastel‐Mol EJ, Oud MECM, van Dongen JJM. Basic helix‐loop‐helix proteins E2A and HEB induce immature T‐cell receptor rearrangements in nonlymphoid cells. Blood. 2001;98(8):2456‐2465. PubMed
van der Velden V, Wijkhuijs J, Jacobs D, van Wering E, van Dongen J. T cell receptor gamma gene rearrangements as targets for detection of minimal residual disease in acute lymphoblastic leukemia by real‐time quantitative PCR analysis. Leukemia. 2002;16(7):1372‐1380. PubMed
van der Velden V, Willemse M, van der Schoot C, Hählen K, van Wering E, van Dongen J. Immunoglobulin kappa deleting element rearrangements in precursor‐B acute lymphoblastic leukemia are stable targets for detection of minimal residual disease by real‐time quantitative PCR. Leukemia. 2002;16(5):928‐936. PubMed
Verhagen O, Willemse M, Breunis W, et al. Application of germline IGH probes in real‐time quantitative PCR for the detection of minimal residual disease in acute lymphoblastic leukemia. Leukemia. 2000;14(8):1426‐1435. PubMed
Brüggemann M, Kotrová M, Knecht H, et al. Standardized next‐generation sequencing of immunoglobulin and T‐cell receptor gene recombinations for MRD marker identification in acute lymphoblastic leukaemia; a EuroClonality‐NGS validation study. Leukemia. 2019;33(9):2241‐2253. PubMed PMC
van der Velden VHJ, Cazzaniga G, Schrauder A, et al. Analysis of minimal residual disease by Ig/TCR gene rearrangements: guidelines for interpretation of real‐time quantitative PCR data. Leukemia. 2007;21(4):604‐611. PubMed
Bystry V, Reigl T, Krejci A, et al. ARResT/Interrogate: an interactive immunoprofiler for IG/TR NGS data. Bioinformatics. 2017;33(3):435‐437. PubMed
Knecht H, Reigl T, Kotrová M, et al. Quality control and quantification in IG/TR next‐generation sequencing marker identification: protocols and bioinformatic functionalities by EuroClonality‐NGS. Leukemia. 2019;33(9):2254‐2265. PubMed PMC
Harris AC, Young R, Devine S, et al. International, Multicenter standardization of acute graft‐versus‐host disease clinical data collection: a report from the Mount Sinai Acute GVHD International Consortium. Biol Blood Marrow Transplant. 2016;22(1):4‐10. PubMed PMC
Jagasia MH, Greinix HT, Arora M, et al. National Institutes of Health consensus development project on criteria for clinical trials in chronic graft‐versus‐host disease: I. The 2014 Diagnosis and Staging Working Group report. Biol Blood Marrow Transplant. 2015;21(3):389‐401.e1. PubMed PMC
Slamova L, Starkova J, Fronkova E, et al. CD2‐positive B‐cell precursor acute lymphoblastic leukemia with an early switch to the monocytic lineage. Leukemia. 2014;28(3):609‐620. PubMed
Knechtli CJC, Goulden NJ, Hancock JP, et al. Minimal residula disease status as a predictor of relapse after allogenic bone marrow transplantation for children with acute lymphoblastic leukaemia. Br J Haematol. 1998;102(3):860‐871. PubMed
Bendig S, Bufe S, Kotrova M, et al. Next‐generation sequencing and high DNA input identify previously missed measurable residual disease in peripheral blood of B‐cell precursor acute lymphoblastic leukaemia. Br J Haematol. 2024;206:353‐356. 10.1111/bjh.19834 PubMed DOI PMC
van der Velden VHJ, Dombrink I, Alten J, et al. Analysis of measurable residual disease by IG/TR gene rearrangements: quality assurance and updated EuroMRD guidelines. Leukemia. 2024;38(6):1315‐1322. PubMed PMC
Kotrova M, Fronkova E, Svaton M, et al. The gray area of RQ‐PCR‐based measurable residual disease: subdividing the “positive, below quantitative range” category. Leukemia. 2024;38:1617‐1620. PubMed PMC