Protective Effects of Flavonoids Against Mitochondriopathies and Associated Pathologies: Focus on the Predictive Approach and Personalized Prevention
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
34445360
PubMed Central
PMC8395457
DOI
10.3390/ijms22168649
PII: ijms22168649
Knihovny.cz E-zdroje
- Klíčová slova
- anti-oxidant activity, cancer, cardiovascular disease, dysfunction, flavonoids, genoprotection, injury, mitochondrial function, mitochondrial impairment, mitochondriopathy, natural substances, neurodegeneration, patient stratification, phytochemicals, predictive preventive personalized medicine (PPPM/3PM), stress, tumorigenesis,
- MeSH
- antioxidancia farmakologie terapeutické užití MeSH
- cytoprotekce účinky léků MeSH
- flavonoidy farmakologie terapeutické užití MeSH
- individualizovaná medicína metody MeSH
- lidé MeSH
- mitochondriální nemoci diagnóza prevence a kontrola MeSH
- mitochondrie účinky léků metabolismus MeSH
- mitofagie účinky léků MeSH
- oxidační stres účinky léků MeSH
- prognóza MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- antioxidancia MeSH
- flavonoidy MeSH
Multi-factorial mitochondrial damage exhibits a "vicious circle" that leads to a progression of mitochondrial dysfunction and multi-organ adverse effects. Mitochondrial impairments (mitochondriopathies) are associated with severe pathologies including but not restricted to cancers, cardiovascular diseases, and neurodegeneration. However, the type and level of cascading pathologies are highly individual. Consequently, patient stratification, risk assessment, and mitigating measures are instrumental for cost-effective individualized protection. Therefore, the paradigm shift from reactive to predictive, preventive, and personalized medicine (3PM) is unavoidable in advanced healthcare. Flavonoids demonstrate evident antioxidant and scavenging activity are of great therapeutic utility against mitochondrial damage and cascading pathologies. In the context of 3PM, this review focuses on preclinical and clinical research data evaluating the efficacy of flavonoids as a potent protector against mitochondriopathies and associated pathologies.
European Association for Predictive Preventive and Personalised Medicine EPMA 1150 Brussels Belgium
Lambda Life JSC 851 01 Bratislava Slovakia
Museum of Literature in Moravia Klášter 1 664 61 Rajhrad Czech Republic
Zobrazit více v PubMed
Natarajan V., Chawla R., Mah T., Vivekanandan R., Tan S.Y., Sato P.Y., Mallilankaraman K. Mitochondrial Dysfunction in Age-Related Metabolic Disorders. Proteom. 2020;20:e1800404. doi: 10.1002/pmic.201800404. PubMed DOI
Calvo S., Jain M., Xie X., A Sheth S., Chang B., A Goldberger O., Spinazzola A., Zeviani M., A Carr S., Mootha V.K. Systematic identification of human mitochondrial disease genes through integrative genomics. Nat. Genet. 2006;38:576–582. doi: 10.1038/ng1776. PubMed DOI
Molnar M.J., Kovacs G.G. Mitochondrial diseases. Hum. Hypothal. Neuropsychiatr. Disord. 2018;145:147–155. doi: 10.1016/b978-0-12-802395-2.00010-9. PubMed DOI
Golubnitschaja O., Topolcan O., Kucera R., Costigliola V. Anniversary of the European Association for Predictive, Preventive and Personalised (3P) Medicine–EPMA World Congress Supplement 2020. EPMA J. 2020;11:1–133. doi: 10.1007/s13167-020-00206-1. PubMed DOI PMC
Crigna A.T., Samec M., Koklesova L., Liskova A., Giordano F.A., Kubatka P., Golubnitschaja O. Cell-free nucleic acid patterns in disease prediction and monitoring—hype or hope? EPMA J. 2020;11:603–627. doi: 10.1007/s13167-020-00226-x. PubMed DOI PMC
Stastny I., Zubor P., Kajo K., Kubatka P., Golubnitschaja O., Dankova Z. Aberrantly Methylated cfDNA in Body Fluids as a Promising Diagnostic Tool for Early Detection of Breast Cancer. Clin. Breast Cancer. 2020;20:e711–e722. doi: 10.1016/j.clbc.2020.05.009. PubMed DOI
Gerner C., Costigliola V., Golubnitschaja O. Multiomic patterns in body fluids: Technological challenge with a great potential to implement the advanced paradigm of 3P medicine. Mass Spectrom. Rev. 2020;39:442–451. doi: 10.1002/mas.21612. PubMed DOI
Sica D.A. Drug Absorption in the Management of Congestive Heart Failure: Loop Diuretics. Congest. Hear. Fail. 2003;9:287–292. doi: 10.1111/j.1527-5299.2003.02399.x. PubMed DOI
Barrett M., Boyne J., Brandts J., Rocca H.-P.B.-L., De Maesschalck L., De Wit K., Dixon L., Eurlings C., Fitzsimons D., Golubnitschaja O., et al. Artificial intelligence supported patient self-care in chronic heart failure: a paradigm shift from reactive to predictive, preventive and personalised care. EPMA J. 2019;10:445–464. doi: 10.1007/s13167-019-00188-9. PubMed DOI PMC
Golubnitschaja O., Costigliola V. Common origin but individual outcomes: time for new guidelines in personalized healthcare. Pers. Med. 2010;7:561–568. doi: 10.2217/pme.10.42. PubMed DOI
El-Hattab A.W., Zarante A.M., Almannai M., Scaglia F. Therapies for mitochondrial diseases and current clinical trials. Mol. Genet. Metab. 2017;122:1–9. doi: 10.1016/j.ymgme.2017.09.009. PubMed DOI PMC
Koklesova L., Samec M., Liskova A., Zhai K., Büsselberg D., Giordano F.A., Kubatka P., Golunitschaja O. Mitochondrial impairments in aetiopathology of multifactorial diseases: common origin but individual outcomes in context of 3P medicine. EPMA J. 2021;12:27–40. doi: 10.1007/s13167-021-00237-2. PubMed DOI PMC
Liu W., Li W., Liu H., Yu X. Xanthohumol inhibits colorectal cancer cells via downregulation of Hexokinases II-mediated glycolysis. Int. J. Biol. Sci. 2019;15:2497–2508. doi: 10.7150/ijbs.37481. PubMed DOI PMC
Wei R., Mao L., Xu P., Zheng X., Hackman R.M., Mackenzie G.G., Wang Y. Suppressing glucose metabolism with epigallocatechin-3-gallate (EGCG) reduces breast cancer cell growth in preclinical models. Food Funct. 2018;9:5682–5696. doi: 10.1039/C8FO01397G. PubMed DOI PMC
Yu L.-M., Dong X., Xue X.-D., Zhang J., Li Z., Wu H.-J., Yang Z.-L., Yang Y., Wang H.-S. Naringenin improves mitochondrial function and reduces cardiac damage following ischemia-reperfusion injury: the role of the AMPK-SIRT3 signaling pathway. Food Funct. 2019;10:2752–2765. doi: 10.1039/C9FO00001A. PubMed DOI
Wu B., Song H., Fan M., You F., Zhang L., Luo J., Li J., Wang L., Li C., Yuan M. Luteolin attenuates sepsis-induced myocardial injury by enhancing autophagy in mice. Int. J. Mol. Med. 2020;45:1477–1487. doi: 10.3892/ijmm.2020.4536. PubMed DOI PMC
Karuppagounder S., Madathil S., Pandey M., Haobam R., Rajamma U., Mohanakumar K. Quercetin up-regulates mitochondrial complex-I activity to protect against programmed cell death in rotenone model of Parkinson’s disease in rats. Neuroscience. 2013;236:136–148. doi: 10.1016/j.neuroscience.2013.01.032. PubMed DOI
Chen L., Feng P., Peng A., Qiu X., Lai W., Zhang L. Protective effects of isoquercitrin on streptozotocin-induced neurotoxicity. J. Cell. Mol. Med. 2020;24:10458–10467. doi: 10.1111/jcmm.15658. PubMed DOI PMC
Ashrafizadeh M., Bakhoda M.R., Bahmanpour Z., Ilkhani K., Zarrabi A., Makvandi P., Khan H., Mazaheri S., Darvish M., Mirzaei H. Apigenin as Tumor Suppressor in Cancers: Biotherapeutic Activity, Nanodelivery, and Mechanisms With Emphasis on Pancreatic Cancer. Front. Chem. 2020;8:829. doi: 10.3389/fchem.2020.00829. PubMed DOI PMC
Chistiakov D.A., Sobenin I., Revin V.V., Orekhov A.N., Bobryshev Y.V. Mitochondrial Aging and Age-Related Dysfunction of Mitochondria. BioMed Res. Int. 2014;2014:1–7. doi: 10.1155/2014/238463. PubMed DOI PMC
John J.C.S., Srirattana K., Tsai T.-S., Sun X. The mitochondrial genome: how it drives fertility. Reprod. Fertil. Dev. 2018;30:118–139. doi: 10.1071/RD17408. PubMed DOI
Anderson S., Bankier A.T., Barrell B.G., De Bruijn M.H.L., Coulson A.R., Drouin J., Eperon I.C., Nierlich D.P., Roe B.A., Sanger F., et al. Sequence and organization of the human mitochondrial genome. Nature. 1981;290:457–465. doi: 10.1038/290457a0. PubMed DOI
Srinivasan S., Guha M., Kashina A., Avadhani N.G. Mitochondrial dysfunction and mitochondrial dynamics-The cancer connection. Biochim. Biophys. Acta (BBA) Bioenerg. 2017;1858:602–614. doi: 10.1016/j.bbabio.2017.01.004. PubMed DOI PMC
Mandavilli B.S., Santos J.H., Van Houten B. Mitochondrial DNA repair and aging. Mutat. Res. Mol. Mech. Mutagen. 2002;509:127–151. doi: 10.1016/S0027-5107(02)00220-8. PubMed DOI
Bajpai R., Sharma A., Achreja A., Edgar C.L., Wei C., Siddiqa A.A., Gupta V.A., Matulis S.M., McBrayer S.K., Mittal A., et al. Electron transport chain activity is a predictor and target for venetoclax sensitivity in multiple myeloma. Nat. Commun. 2020;11:1–16. doi: 10.1038/s41467-020-15051-z. PubMed DOI PMC
Czarny P., Wigner P., Galecki P., Sliwinski T. The interplay between inflammation, oxidative stress, DNA damage, DNA repair and mitochondrial dysfunction in depression. Prog. Neuro-Psychopharmacol. Biol. Psychiatr. 2018;80:309–321. doi: 10.1016/j.pnpbp.2017.06.036. PubMed DOI
Prakash A., Doublie S. Base Excision Repair in the Mitochondria. J. Cell. Biochem. 2015;116:1490–1499. doi: 10.1002/jcb.25103. PubMed DOI PMC
A Butow R., Avadhani N.G. Mitochondrial Signaling: The Retrograde Response. Mol. Cell. 2004;14:1–15. doi: 10.1016/S1097-2765(04)00179-0. PubMed DOI
Picard M., Hirano M. Disentangling (Epi)Genetic and Environmental Contributions to the Mitochondrial 3243A>G Mutation Phenotype. JAMA Neurol. 2016;73:923–925. doi: 10.1001/jamaneurol.2016.1676. PubMed DOI PMC
Taylor R.W., Turnbull D.M. Mitochondrial DNA mutations in human disease. Nat. Rev. Genet. 2005;6:389–402. doi: 10.1038/nrg1606. PubMed DOI PMC
Andrews R.M., Kubacka I., Chinnery P.F., Lightowlers R.N., Turnbull D.M., Howell N. Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat. Genet. 1999;23:147. doi: 10.1038/13779. PubMed DOI
El-Hattab A.W., Craigen W.J., Scaglia F. Mitochondrial DNA maintenance defects. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 2017;1863:1539–1555. doi: 10.1016/j.bbadis.2017.02.017. PubMed DOI
Wei Y.-H., Wu S.-B., Ma Y.-S., Lee H.-C. Respiratory function decline and DNA mutation in mitochondria, oxidative stress and altered gene expression during aging. Chang. Gung Med. J. 2009;32:113–132. PubMed
Boggan R., Lim A., Taylor R.W., McFarland R., Pickett S.J. Resolving complexity in mitochondrial disease: Towards precision medicine. Mol. Genet. Metab. 2019;128:19–29. doi: 10.1016/j.ymgme.2019.09.003. PubMed DOI
Lopez J., Tait S.W.G. Mitochondrial apoptosis: killing cancer using the enemy within. Br. J. Cancer. 2015;112:957–962. doi: 10.1038/bjc.2015.85. PubMed DOI PMC
Pfeffer C.M., Singh A.T.K. Apoptosis: A Target for Anticancer Therapy. Int. J. Mol. Sci. 2018;19:448. doi: 10.3390/ijms19020448. PubMed DOI PMC
Warburg O. On respiratory impairment in cancer cells. Science. 1956;124:269–270. PubMed
Potter M., Newport E., Morten K.J. The Warburg effect: 80 years on. Biochem. Soc. Trans. 2016;44:1499–1505. doi: 10.1042/BST20160094. PubMed DOI PMC
Yang K.M., Kim K. Protein kinase CK2 modulation of pyruvate kinase M isoforms augments the Warburg effect in cancer cells. J. Cell. Biochem. 2018;119:8501–8510. doi: 10.1002/jcb.27078. PubMed DOI
Tseng L.-M., Yin P.-H., Chi C.-W., Hsu C.-Y., Wu C.-W., Lee L.-M., Wei Y.-H., Lee H.-C. Mitochondrial DNA mutations and mitochondrial DNA depletion in breast cancer. Genes Chromosom. Cancer. 2006;45:629–638. doi: 10.1002/gcc.20326. PubMed DOI
Horton T.M., Petros J.A., Heddi A., Shoffner J., Kaufman A.E., Graham S.D., Gramlich T., Wallace D.C. Novel mitochondrial DNA deletion found in a renal cell carcinoma. Genes Chromosom. Cancer. 1996;15:95–101. doi: 10.1002/(SICI)1098-2264(199602)15:2<95::AID-GCC3>3.0.CO;2-Z. PubMed DOI
Petros J.A., Baumann A.K., Ruiz-Pesini E., Amin M.B., Sun C.Q., Hall J., Lim S., Issa M.M., Flanders W.D., Hosseini S.H., et al. mtDNA mutations increase tumorigenicity in prostate cancer. Proc. Natl. Acad. Sci. USA. 2005;102:719–724. doi: 10.1073/pnas.0408894102. PubMed DOI PMC
Kujoth G.C., Hiona A., Pugh T.D., Someya S., Panzer K., Wohlgemuth S.E., Hofer T., Seo A.Y., Sullivan R., Jobling W.A., et al. Mitochondrial DNA Mutations, Oxidative Stress, and Apoptosis in Mammalian Aging. Science. 2005;309:481–484. doi: 10.1126/science.1112125. PubMed DOI
Wallace D.C. Mitochondria and cancer. Nat. Rev. Cancer. 2012;12:685–698. doi: 10.1038/nrc3365. PubMed DOI PMC
Raimundo N., Baysal B.E., Shadel G.S. Revisiting the TCA cycle: signaling to tumor formation. Trends Mol. Med. 2011;17:641–649. doi: 10.1016/j.molmed.2011.06.001. PubMed DOI PMC
Pustylnikov S., Costabile F., Beghi S., Facciabene A. Targeting mitochondria in cancer: current concepts and immunotherapy approaches. Transl. Res. 2018;202:35–51. doi: 10.1016/j.trsl.2018.07.013. PubMed DOI PMC
Sajnani K., Islam F., Smith R.A., Gopalan V., Lam A.K.-Y. Genetic alterations in Krebs cycle and its impact on cancer pathogenesis. Biochimie. 2017;135:164–172. doi: 10.1016/j.biochi.2017.02.008. PubMed DOI
Farhood B., Ashrafizadeh M., Khodamoradi E., Hoseini-Ghahfarokhi M., Afrashi S., Musa A.E., Najafi M. Targeting of cellular redox metabolism for mitigation of radiation injury. Life Sci. 2020;250:117570. doi: 10.1016/j.lfs.2020.117570. PubMed DOI
Gasparre G., Porcelli A.M., Lenaz G., Romeo G. Relevance of Mitochondrial Genetics and Metabolism in Cancer Development. Cold Spring Harb. Perspect. Biol. 2013;5:a011411. doi: 10.1101/cshperspect.a011411. PubMed DOI PMC
Maaliki D., A Shaito A., Pintus G., El-Yazbi A., Eid A.H. Flavonoids in hypertension: a brief review of the underlying mechanisms. Curr. Opin. Pharmacol. 2019;45:57–65. doi: 10.1016/j.coph.2019.04.014. PubMed DOI
Hoppel C.L., Tandler B., Fujioka H., Riva A. Dynamic organization of mitochondria in human heart and in myocardial disease. Int. J. Biochem. Cell Biol. 2009;41:1949–1956. doi: 10.1016/j.biocel.2009.05.004. PubMed DOI PMC
Lee S.R., Han J. Mitochondrial Mutations in Cardiac Disorders. Adv. Exp. Med. Biol. 2017;982:81–111. doi: 10.1007/978-3-319-55330-6_5. PubMed DOI
Pecoraro M., Pinto A., Popolo A. Mitochondria and Cardiovascular Disease: A Brief Account. Crit. Rev. Eukaryot. Gene Expr. 2019;29:295–304. doi: 10.1615/CritRevEukaryotGeneExpr.2019028579. PubMed DOI
Vásquez-Trincado C., García-Carvajal I., Pennanen C., Parra V., Hill J.A., Rothermel B.A., Lavandero S. Mitochondrial dynamics, mitophagy and cardiovascular disease. J. Physiol. 2016;594:509–525. doi: 10.1113/JP271301. PubMed DOI PMC
Tyynismaa H., Suomalainen-Wartiovaara A. Mouse models of mitochondrial DNA defects and their relevance for human disease. EMBO Rep. 2009;10:137–143. doi: 10.1038/embor.2008.242. PubMed DOI PMC
Umbria M., Ramos A., Aluja M.P., Santos C. The role of control region mitochondrial DNA mutations in cardiovascular disease: stroke and myocardial infarction. Sci. Rep. 2020;10:1–10. doi: 10.1038/s41598-020-59631-x. PubMed DOI PMC
Jin H.-J., Li C.G. Tanshinone IIA and Cryptotanshinone Prevent Mitochondrial Dysfunction in Hypoxia-Induced H9c2 Cells: Association to Mitochondrial ROS, Intracellular Nitric Oxide, and Calcium Levels. Evid. Based Complement. Altern. Med. 2013;2013:1–11. doi: 10.1155/2013/610694. PubMed DOI PMC
Kattoor A.J., Pothineni N.V.K., Palagiri D., Mehta J.L. Oxidative Stress in Atherosclerosis. Curr. Atheroscler. Rep. 2017;19:42. doi: 10.1007/s11883-017-0678-6. PubMed DOI
Figueira T.R., Barros M., Camargo A.A., Castilho R.F., Ferreira J.C.B., Kowaltowski A.J., Sluse F.E., Souza-Pinto N., Vercesi A.E. Mitochondria as a Source of Reactive Oxygen and Nitrogen Species: From Molecular Mechanisms to Human Health. Antioxidants Redox Signal. 2013;18:2029–2074. doi: 10.1089/ars.2012.4729. PubMed DOI
Seddon M., Looi Y.H., Shah A.M. Oxidative stress and redox signalling in cardiac hypertrophy and heart failure. Heart. 2007;93:903–907. doi: 10.1136/hrt.2005.068270. PubMed DOI PMC
Zhang D., Li Y., Heims-Waldron D., Bezzerides V., Guatimosim S., Guo Y., Gu F., Zhou P., Lin Z., Ma Q., et al. Mitochondrial Cardiomyopathy Caused by Elevated Reactive Oxygen Species and Impaired Cardiomyocyte Proliferation. Circ. Res. 2018;122:74–87. doi: 10.1161/CIRCRESAHA.117.311349. PubMed DOI PMC
Imai-Okazaki A., Kishita Y., Kohda M., Mizuno Y., Fushimi T., Matsunaga A., Yatsuka Y., Hirata T., Harashima H., Takeda A., et al. Cardiomyopathy in children with mitochondrial disease: Prognosis and genetic background. Int. J. Cardiol. 2019;279:115–121. doi: 10.1016/j.ijcard.2019.01.017. PubMed DOI
Kiyuna L.A., Albuquerque R., Chen C.-H., Mochly-Rosen D., Ferreira J.C.B. Targeting mitochondrial dysfunction and oxidative stress in heart failure: Challenges and opportunities. Free. Radic. Biol. Med. 2018;129:155–168. doi: 10.1016/j.freeradbiomed.2018.09.019. PubMed DOI PMC
Santulli G., Xie W., Reiken S.R., Marks A.R. Mitochondrial calcium overload is a key determinant in heart failure. Proc. Natl. Acad. Sci. USA. 2015;112:11389–11394. doi: 10.1073/pnas.1513047112. PubMed DOI PMC
Palaniyandi S.S., Qi X., Yogalingam G., Ferreira J.C.B., Mochly-Rosen D. Regulation of mitochondrial processes: A target for heart failure. Drug Discov. Today: Dis. Mech. 2010;7:e95–e102. doi: 10.1016/j.ddmec.2010.07.002. PubMed DOI PMC
Dolinsky V.W., Cole L.K., Sparagna G.C., Hatch G.M. Cardiac mitochondrial energy metabolism in heart failure: Role of cardiolipin and sirtuins. Biochim. Biophys. Acta (BBA) Mol. Cell Biol. Lipids. 2016;1861:1544–1554. doi: 10.1016/j.bbalip.2016.03.008. PubMed DOI
Hollenbeck P.J., Saxton W.M. The axonal transport of mitochondria. J. Cell Sci. 2005;118:5411–5419. doi: 10.1242/jcs.02745. PubMed DOI PMC
Samarghandian S., Farkhondeh T., Pourbagher-Shahri A.M., Ashrafizadeh M., Folgado S.L., Rajabpour-Sanati A., Khazdair M.R. Green tea catechins inhibit microglial activation which prevents the development of neurological disorders. Neural Regen. Res. 2020;15:1792–1798. doi: 10.4103/1673-5374.280300. PubMed DOI PMC
Chaturvedi R.K., Beal M.F. Mitochondrial Diseases of the Brain. Free. Radic. Biol. Med. 2013;63:1–29. doi: 10.1016/j.freeradbiomed.2013.03.018. PubMed DOI
Rose J., Brian C., Woods J., Pappa A., Panayiotidis M.I., Powers R., Franco R. Mitochondrial dysfunction in glial cells: Implications for neuronal homeostasis and survival. Toxicology. 2017;391:109–115. doi: 10.1016/j.tox.2017.06.011. PubMed DOI PMC
Yan M.H., Wang X., Zhu X. Mitochondrial defects and oxidative stress in Alzheimer disease and Parkinson disease. Free Radic. Biol. Med. 2013;62:90–101. doi: 10.1016/j.freeradbiomed.2012.11.014. PubMed DOI PMC
Liskova A., Samec M., Koklesova L., Kudela E., Kubatka P., Golubnitschaja O. Mitochondriopathies as a Clue to Systemic Disorders—Analytical Tools and Mitigating Measures in Context of Predictive, Preventive, and Personalized (3P) Medicine. Int. J. Mol. Sci. 2021;22:2007. doi: 10.3390/ijms22042007. PubMed DOI PMC
Jeong S. Molecular and Cellular Basis of Neurodegeneration in Alzheimer’s Disease. Mol. Cells. 2017;40:613–620. doi: 10.14348/molcells.2017.0096. PubMed DOI PMC
Cheng Y., Bai F. The Association of Tau With Mitochondrial Dysfunction in Alzheimer’s Disease. Front. Neurosci. 2018;12:163. doi: 10.3389/fnins.2018.00163. PubMed DOI PMC
Goedert M., Spillantini M.G. A Century of Alzheimer’s Disease. Science. 2006;314:777–781. doi: 10.1126/science.1132814. PubMed DOI
Kosik K.S., Joachim C.L., Selkoe D.J. Microtubule-associated protein tau (tau) is a major antigenic component of paired helical filaments in Alzheimer disease. Proc. Natl. Acad. Sci. USA. 1986;83:4044–4048. doi: 10.1073/pnas.83.11.4044. PubMed DOI PMC
Masters C.L., Simms G., Weinman N.A., Multhaup G., McDonald B.L., Beyreuther K. Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc. Natl. Acad. Sci. USA. 1985;82:4245–4249. doi: 10.1073/pnas.82.12.4245. PubMed DOI PMC
Tanzi R.E. The Genetics of Alzheimer Disease. Cold Spring Harb. Perspect. Med. 2012;2:a006296. doi: 10.1101/cshperspect.a006296. PubMed DOI PMC
Bu G. Apolipoprotein E and its receptors in Alzheimer’s disease: pathways, pathogenesis and therapy. Nat. Rev. Neurosci. 2009;10:333–344. doi: 10.1038/nrn2620. PubMed DOI PMC
Balestrino R., Schapira A.H. Parkinson disease. Eur. J. Neurol. 2020;27:27–42. doi: 10.1111/ene.14108. PubMed DOI
Bose A., Beal M.F. Mitochondrial dysfunction in Parkinson’s disease. J. Neurochem. 2016;139:216–231. doi: 10.1111/jnc.13731. PubMed DOI
Kumar S., Pandey A.K. Chemistry and Biological Activities of Flavonoids: An Overview. Sci. World J. 2013;2013:1–16. doi: 10.1155/2013/162750. PubMed DOI PMC
Kopustinskiene D.M., Jakstas V., Savickas A., Bernatoniene J. Flavonoids as anticancer agents. Nutrients. 2020;12:457. doi: 10.3390/nu12020457. PubMed DOI PMC
Panche A.N., Diwan A.D., Chandra S.R. Flavonoids: an overview. J. Nutr. Sci. 2016;5:e47. doi: 10.1017/jns.2016.41. PubMed DOI PMC
Ninomiya M., Koketsu M. Minor Flavonoids (Chalcones, Flavanones, Dihydrochalcones, and Aurones) Nat. Prod. 2013:1867–1900.
Liskova A., Koklesova L., Samec M., Smejkal K., Samuel S.M., Varghese E., Abotaleb M., Biringer K., Kudela E., Danko J., et al. Flavonoids in Cancer Metastasis. Cancers. 2020;12:1498. doi: 10.3390/cancers12061498. PubMed DOI PMC
Ciumărnean L., Milaciu M.V., Runcan O., Vesa S.C., Răchișan A.L., Negrean V., Perné M.-G., Donca V.I., Alexescu T.-G., Para I., et al. The effects of favonoids in cardiovascular diseases. Molecules. 2020;25:4320. doi: 10.3390/molecules25184320. PubMed DOI PMC
Abotaleb M., Samuel S.M., Varghese E., Varghese S., Kubatka P., Líšková A., Büsselberg D. Flavonoids in Cancer and Apoptosis. Cancers. 2018;11:28. doi: 10.3390/cancers11010028. PubMed DOI PMC
Yahfoufi N., Alsadi N., Jambi M., Matar C. The Immunomodulatory and Anti-Inflammatory Role of Polyphenols. Nutrients. 2018;10:1618. doi: 10.3390/nu10111618. PubMed DOI PMC
Guan L.-P., Liu B.-Y. Antidepressant-like effects and mechanisms of flavonoids and related analogues. Eur. J. Med. Chem. 2016;121:47–57. doi: 10.1016/j.ejmech.2016.05.026. PubMed DOI
Mirossay L., Varinská L., Mojžiš J. Antiangiogenic Effect of Flavonoids and Chalcones: An Update. Int. J. Mol. Sci. 2017;19:27. doi: 10.3390/ijms19010027. PubMed DOI PMC
Manish P., Wei Ling L., Seong Lin T., Mohamad Fairuz Y. Flavonoids and its Neuroprotective Effects on Brain Ischemia and Neurodegenerative Diseases. Curr. Drug Targets. 2018;19:1710–1720. doi: 10.2174/1389450119666180326125252. PubMed DOI
Kozłowska A., Szostak-Wegierek D. Flavonoids--food sources and health benefits. Rocz. Państw. Zakł. Hig. 2014;65:79–85. PubMed
Prochazkova D., Boušová I., Wilhelmová N. Fitoterapia. Elsevier; Amsterdam, The Netherlands: 2011. Antioxidant and prooxidant properties of flavonoids. PubMed DOI
Airoldi C., La Ferla B., D’Orazio G., Ciaramelli C., Palmioli A. Flavonoids in the Treatment of Alzheimer’s and Other Neurodegenerative Diseases. Curr. Med. Chem. 2018;25:3228–3246. doi: 10.2174/0929867325666180209132125. PubMed DOI
Lin Y., Shi R., Wang X., Shen H.-M. Luteolin, a Flavonoid with Potential for Cancer Prevention and Therapy. Curr. Cancer Drug Targets. 2008;8:634–646. doi: 10.2174/156800908786241050. PubMed DOI PMC
Constantin R.P., Constantin J., Pagadigorria C.L.S., Ishii-Iwamoto E.L., Bracht A., De Castro C.V., Yamamoto N.S. Prooxidant activity of fisetin: Effects on energy metabolism in the rat liver. J. Biochem. Mol. Toxicol. 2010;25:117–126. doi: 10.1002/jbt.20367. PubMed DOI
Rahal A., Kumar A., Singh V., Yadav B., Tiwari R., Chakraborty S., Dhama K. Oxidative Stress, Prooxidants, and Antioxidants: The Interplay. BioMed Res. Int. 2014;2014:1–19. doi: 10.1155/2014/761264. PubMed DOI PMC
Lee-Hilz Y.Y., Boerboom A.-M.J.F., Westphal A.H., Van Berkel W.J.H., Aarts J.M.M.J.G., Rietjens I.M.C.M. Pro-Oxidant Activity of Flavonoids Induces EpRE-Mediated Gene Expression. Chem. Res. Toxicol. 2006;19:1499–1505. doi: 10.1021/tx060157q. PubMed DOI
Eren-Guzelgun B., Ince E., Gurer-Orhan H. In vitro antioxidant/prooxidant effects of combined use of flavonoids. Nat. Prod. Res. 2017;32:1446–1450. doi: 10.1080/14786419.2017.1346637. PubMed DOI
Cassidy A., Minihane A.M. The role of metabolism (and the microbiome) in defining the clinical efficacy of dietary flavonoids. Am. J. Clin. Nutr. 2017;105:10–22. doi: 10.3945/ajcn.116.136051. PubMed DOI PMC
Rodríguez-García C., Sánchez-Quesada C., Gaforio J.J. Dietary Flavonoids as Cancer Chemopreventive Agents: An Updated Review of Human Studies. Antioxidants. 2019;8:137. doi: 10.3390/antiox8050137. PubMed DOI PMC
Koes R., Verweij W., Quattrocchio F.M. Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends Plant. Sci. 2005;10:236–242. doi: 10.1016/j.tplants.2005.03.002. PubMed DOI
Rees A., Dodd G.F., Spencer J.P.E. The Effects of Flavonoids on Cardiovascular Health: A Review of Human Intervention Trials and Implications for Cerebrovascular Function. Nutrients. 2018;10:1852. doi: 10.3390/nu10121852. PubMed DOI PMC
Shan S., Shi J., Yang P., Jia B., Wu H., Zhang X., Li Z. Apigenin Restrains Colon Cancer Cell Proliferation via Targeted Blocking of Pyruvate Kinase M2-Dependent Glycolysis. J. Agric. Food Chem. 2017;65:8136–8144. doi: 10.1021/acs.jafc.7b02757. PubMed DOI
Jia L., Huang S., Yin X., Zan Y., Guo Y., Han L. Quercetin suppresses the mobility of breast cancer by suppressing glycolysis through Akt-mTOR pathway mediated autophagy induction. Life Sci. 2018;208:123–130. doi: 10.1016/j.lfs.2018.07.027. PubMed DOI
Zhao X., Zhu Y., Hu J., Jiang L., Li L., Jia S., Zen K. Shikonin Inhibits Tumor Growth in Mice by Suppressing Pyruvate Kinase M2-mediated Aerobic Glycolysis. Sci. Rep. 2018;8:1–8. doi: 10.1038/s41598-018-31615-y. PubMed DOI PMC
Siu M.K.Y., Jiang Y.-X., Wang J.-J., Leung T.H.Y., Han C.Y., Tsang B.K., Cheung A.N.Y., Ngan H.Y.S., Chan K.K.L. Hexokinase 2 Regulates Ovarian Cancer Cell Migration, Invasion and Stemness via FAK/ERK1/2/MMP9/NANOG/SOX9 Signaling Cascades. Cancers. 2019;11:813. doi: 10.3390/cancers11060813. PubMed DOI PMC
Pedersen P.L. Warburg, me and Hexokinase 2: Multiple discoveries of key molecular events underlying one of cancers’ most common phenotypes, the “Warburg Effect”, i.e., elevated glycolysis in the presence of oxygen. J. Bioenerg. Biomembr. 2007;39:211–222. doi: 10.1007/s10863-007-9094-x. PubMed DOI
Luo Q., Wu X., Zhao P., Nan Y., Chang W., Zhu X., Su D., Liu Z. OTUD1 Activates Caspase-Independent and Caspase-Dependent Apoptosis by Promoting AIF Nuclear Translocation and MCL1 Degradation. Adv. Sci. 2021;8:2002874. doi: 10.1002/advs.202002874. PubMed DOI PMC
Hou S., Song Y., Sun D., Zhu S., Wang Z. Xanthohumol-Induced Rat Glioma C6 Cells Death by Triggering Mitochondrial Stress. Int. J. Mol. Sci. 2021;22:4506. doi: 10.3390/ijms22094506. PubMed DOI PMC
Deng X., Wang Q., Cheng M., Chen Y., Yan X., Guo R., Sun L., Li Y., Liu Y. Pyruvate dehydrogenase kinase 1 interferes with glucose metabolism reprogramming and mitochondrial quality control to aggravate stress damage in cancer. J. Cancer. 2020;11:962–973. doi: 10.7150/jca.34330. PubMed DOI PMC
Park M.K., Ji J., Haam K., Han T.-H., Lim S., Kang M.-J., Lim S.S., Ban H.S. Licochalcone A inhibits hypoxia-inducible factor-1α accumulation by suppressing mitochondrial respiration in hypoxic cancer cells. Biomed. Pharmacother. 2021;133:111082. doi: 10.1016/j.biopha.2020.111082. PubMed DOI
Phan T.N., Kim O., Ha M.T., Hwangbo C., Min B.-S., Lee J.-H. Albanol B from Mulberries Exerts Anti-Cancer Effect through Mitochondria ROS Production in Lung Cancer Cells and Suppresses In Vivo Tumor Growth. Int. J. Mol. Sci. 2020;21:9502. doi: 10.3390/ijms21249502. PubMed DOI PMC
Yang A., Zhang P., Sun Z., Liu X., Zhang X., Liu X., Wang D., Meng Z. Lysionotin induces apoptosis of hepatocellular carcinoma cells via caspase-3 mediated mitochondrial pathway. Chem. Interact. 2021;344:109500. doi: 10.1016/j.cbi.2021.109500. PubMed DOI
Maués L., Alves G., Couto N., Da Silva B., Arruda M., Macchi B., Sena C., Prado A., Crespo-Lopez M., Silva E., et al. Flavonoids from the Amazon plant Brosimum acutifolium induce C6 glioma cell line apoptosis by disrupting mitochondrial membrane potential and reducing AKT phosphorylation. Biomed. Pharmacother. 2019;113:108728. doi: 10.1016/j.biopha.2019.108728. PubMed DOI
Won Y.-S., Kim J.-H., Lizardo R.C.M., Min H.-J., Cho H.-D., Hong S.-M., Seo K.-I. The Flavonol Isoquercitrin Promotes Mitochondrial-Dependent Apoptosis in SK-Mel-2 Melanoma Cell via the PI3K/AKT/mTOR Pathway. Nutrients. 2020;12:3683. doi: 10.3390/nu12123683. PubMed DOI PMC
Rajendran P., Maheshwari U., Muthukrishnan A., Muthuswamy R., Anand K., Ravindran B., Dhanaraj P., Balamuralikrishnan B., Chang S.W., Chung W.J. Myricetin: versatile plant based flavonoid for cancer treatment by inducing cell cycle arrest and ROS–reliant mitochondria-facilitated apoptosis in A549 lung cancer cells and in silico prediction. Mol. Cell. Biochem. 2021;476:57–68. doi: 10.1007/s11010-020-03885-6. PubMed DOI
Iyangar R.M., Devaraj E. Silibinin Triggers the Mitochondrial Pathway of Apoptosis in Human Oral Squamous Carcinoma Cells. Asian Pac. J. Cancer Prev. 2020;21:1877–1882. doi: 10.31557/APJCP.2020.21.7.1877. PubMed DOI PMC
Ivanova I.G., Perkins N.D. Hypoxia induces rapid, STAT3 and ROS dependent, mitochondrial translocation of RelA(p65) and IκBα. Biosci. Rep. 2019;39 doi: 10.1042/BSR20192101. PubMed DOI PMC
Zapolska-Downar D., Bryk D., Małecki M., Hajdukiewicz K., Sitkiewicz D. Aronia melanocarpa fruit extract exhibits anti-inflammatory activity in human aortic endothelial cells. Eur. J. Nutr. 2012;51:563–572. doi: 10.1007/s00394-011-0240-1. PubMed DOI PMC
Corona J.C., Duchen M.R. PPARγ as a therapeutic target to rescue mitochondrial function in neurological disease. Free. Radic. Biol. Med. 2016;100:153–163. doi: 10.1016/j.freeradbiomed.2016.06.023. PubMed DOI PMC
Sozański T., Kucharska A., Szumny A., Magdalan J., Bielska K., Merwid-Ląd A., Woźniak-Biel A., Dzimira S., Piórecki N., Trocha M. The protective effect of the Cornus mas fruits (cornelian cherry) on hypertriglyceridemia and atherosclerosis through PPARα activation in hypercholesterolemic rabbits. Phytomedicine. 2014;21:1774–1784. doi: 10.1016/j.phymed.2014.09.005. PubMed DOI
Park J.H., Ku H.J., Kim J.K., Park J.-W., Lee J.H. Amelioration of High Fructose-Induced Cardiac Hypertrophy by Naringin. Sci. Rep. 2018;8:1–11. doi: 10.1038/s41598-018-27788-1. PubMed DOI PMC
Zhang Y., Wang Y., Xu J., Tian F., Hu S., Chen Y., Fu Z. Melatonin attenuates myocardial ischemia-reperfusion injury via improving mitochondrial fusion/mitophagy and activating the AMPK-OPA1 signaling pathways. J. Pineal Res. 2019;66:e12542. doi: 10.1111/jpi.12542. PubMed DOI
Wang Z., Wang S.-P., Shao Q., Li P.-F., Sun Y., Luo L.-Z., Yan X.-Q., Fan Z.-Y., Hu J., Zhao J., et al. Brain-derived neurotrophic factor mimetic, 7,8-dihydroxyflavone, protects against myocardial ischemia by rebalancing optic atrophy 1 processing. Free. Radic. Biol. Med. 2019;145:187–197. doi: 10.1016/j.freeradbiomed.2019.09.033. PubMed DOI
Zhao J., Du J., Pan Y., Chen T., Zhao L., Zhu Y., Chen Y., Zheng Y., Liu Y., Sun L., et al. Activation of cardiac TrkB receptor by its small molecular agonist 7,8-dihydroxyflavone inhibits doxorubicin-induced cardiotoxicity via enhancing mitochondrial oxidative phosphorylation. Free. Radic. Biol. Med. 2019;130:557–567. doi: 10.1016/j.freeradbiomed.2018.11.024. PubMed DOI
Wu B., Lin J., Luo J., Han D., Fan M., Guo T., Tao L., Yuan M., Yi F. Dihydromyricetin Protects against Diabetic Cardiomyopathy in Streptozotocin-Induced Diabetic Mice. BioMed Res. Int. 2017;2017:1–13. doi: 10.1155/2017/3764370. PubMed DOI PMC
Alexandre J.V.D.L., Viana Y.I.P., David C.E.B., Cunha P.L.O., Albuquerque A.C., Varela A.L.N., Kowaltowski A.J., Facundo H.T. Quercetin treatment increases H2O2 removal by restoration of endogenous antioxidant activity and blocks isoproterenol-induced cardiac hypertrophy. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2021;394:217–226. doi: 10.1007/s00210-020-01953-8. PubMed DOI
Song Y.-H., Cai H., Zhao Z.-M., Chang W.-J., Gu N., Cao S.-P., Wu M.-L. Icariin attenuated oxidative stress induced-cardiac apoptosis by mitochondria protection and ERK activation. Biomed. Pharmacother. 2016;83:1089–1094. doi: 10.1016/j.biopha.2016.08.016. PubMed DOI
Li F., Lang F., Wang Y., Zhai C., Zhang C., Zhang L., Hao E. Cyanidin ameliorates endotoxin-induced myocardial toxicity by modulating inflammation and oxidative stress through mitochondria and other factors. Food Chem. Toxicol. 2018;120:104–111. doi: 10.1016/j.fct.2018.05.053. PubMed DOI
Jiang H., Xing J., Fang J., Wang L., Wang Y., Zeng L., Li Z., Liu R. Tilianin Protects against Ischemia/Reperfusion-Induced Myocardial Injury through the Inhibition of the Ca2+/Calmodulin-Dependent Protein Kinase II-Dependent Apoptotic and Inflammatory Signaling Pathways. BioMed Res. Int. 2020;2020:1–18. doi: 10.1155/2020/5939715. PubMed DOI PMC
Shanmugam K., Ravindran S., Kurian G.A., Rajesh M. Fisetin Confers Cardioprotection against Myocardial Ischemia Reperfusion Injury by Suppressing Mitochondrial Oxidative Stress and Mitochondrial Dysfunction and Inhibiting Glycogen Synthase Kinase 3β Activity. Oxidative Med. Cell. Longev. 2018;2018:1–16. doi: 10.1155/2018/9173436. PubMed DOI PMC
Shanmugam K., Boovarahan S.R., Prem P., Sivakumar B., A Kurian G. Fisetin Attenuates Myocardial Ischemia-Reperfusion Injury by Activating the Reperfusion Injury Salvage Kinase (RISK) Signaling Pathway. Front. Pharmacol. 2021;12:566470. doi: 10.3389/fphar.2021.566470. PubMed DOI PMC
Wu J., Chen H., Qin J., Chen N., Lu S., Jin J., Li Y. Baicalin Improves Cardiac Outcome and Survival by Suppressing Drp1-Mediated Mitochondrial Fission after Cardiac Arrest-Induced Myocardial Damage. Oxidative Med. Cell. Longev. 2021;2021:1–14. doi: 10.1155/2021/8865762. PubMed DOI PMC
Bondy S.C. The neurotoxicity of environmental aluminum is still an issue. NeuroToxicology. 2010;31:575–581. doi: 10.1016/j.neuro.2010.05.009. PubMed DOI PMC
Prakash A., Shur B., Kumar A. Naringin protects memory impairment and mitochondrial oxidative damage against aluminum-induced neurotoxicity in rats. Int. J. Neurosci. 2013;123:636–645. doi: 10.3109/00207454.2013.785542. PubMed DOI
Wilkins H.M., Swerdlow R.H. Amyloid precursor protein processing and bioenergetics. Brain Res. Bull. 2017;133:71–79. doi: 10.1016/j.brainresbull.2016.08.009. PubMed DOI PMC
Sabogal-Guáqueta A.M., Manco J.I.M., Ramírez-Pineda J.R., Lamprea-Rodriguez M., Osorio E., Cardona-Gómez G.P. The flavonoid quercetin ameliorates Alzheimer’s disease pathology and protects cognitive and emotional function in aged triple transgenic Alzheimer’s disease model mice. Neuropharmacol. 2015;93:134–145. doi: 10.1016/j.neuropharm.2015.01.027. PubMed DOI PMC
A Godoy J., Lindsay C.B., Quintanilla R.A., Carvajal F.J., Cerpa W., Inestrosa N.C. Quercetin Exerts Differential Neuroprotective Effects Against H2O2 and Aβ Aggregates in Hippocampal Neurons: the Role of Mitochondria. Mol. Neurobiol. 2017;54:7116–7128. doi: 10.1007/s12035-016-0203-x. PubMed DOI
Markham A., Bains R., Franklin P., Spedding M. Changes in mitochondrial function are pivotal in neurodegenerative and psychiatric disorders: How important is BDNF? Br. J. Pharmacol. 2014;171:2206–2229. doi: 10.1111/bph.12531. PubMed DOI PMC
Arnould T., Vankoningsloo S., Renard P., Houbion A., Ninane N., Demazy C., Remacle J., Raes M. CREB activation induced by mitochondrial dysfunction is a new signaling pathway that impairs cell proliferation. EMBO J. 2002;21:53–63. doi: 10.1093/emboj/21.1.53. PubMed DOI PMC
Ay M., Luo J., Langley M., Jin H., Anantharam V., Kanthasamy A., Kanthasamy A.G. Molecular mechanisms underlying protective effects of quercetin against mitochondrial dysfunction and progressive dopaminergic neurodegeneration in cell culture and MitoPark transgenic mouse models of Parkinson’s Disease. J. Neurochem. 2017;141:766–782. doi: 10.1111/jnc.14033. PubMed DOI PMC
Kim E., Park M., Jeong J., Kim H., Lee S.K., Lee E., Oh B.H., Namkoong K. Cholinesterase Inhibitor Donepezil Increases Mitochondrial Biogenesis through AMP-Activated Protein Kinase in the Hippocampus. Neuropsychobiology. 2016;73:81–91. doi: 10.1159/000441522. PubMed DOI
Pavlov P.F., Wiehager B., Sakai J., Frykman S., Behbahani H., Winblad B., Ankarcrona M. Mitochondrial γ-secretase participates in the metabolism of mitochondria-associated amyloid precursor protein. FASEB J. 2011;25:78–88. doi: 10.1096/fj.10-157230. PubMed DOI
Zhang S., Zhu Q., Chen J.-Y., OuYang D., Lu J.-H. The pharmacological activity of epigallocatechin-3-gallate (EGCG) on Alzheimer’s disease animal model: A systematic review. Phytomedicine. 2020;79:153316. doi: 10.1016/j.phymed.2020.153316. PubMed DOI
Alberdi E., Gomez M.V.S., Ruiz A., Cavaliere F., Ortiz-Sanz C., Quintela T., Capetillo-Zarate E., Solé-Domènech S., Matute C. Mangiferin and Morin Attenuate Oxidative Stress, Mitochondrial Dysfunction, and Neurocytotoxicity, Induced by Amyloid Beta Oligomers. Oxidative Med. Cell. Longev. 2018;2018:1–13. doi: 10.1155/2018/2856063. PubMed DOI PMC
Wang W.-W., Han R., He H.-J., Li J., Chen S.-Y., Gu Y., Xie C. Administration of quercetin improves mitochondria quality control and protects the neurons in 6-OHDA-lesioned Parkinson’s disease models. Aging. 2021;13:11738–11751. doi: 10.18632/aging.202868. PubMed DOI PMC
Wang Y.-H., Xuan Z.-H., Tian S., He G.-R., Du G.-H. Myricitrin attenuates 6-hydroxydopamine-induced mitochondrial damage and apoptosis in PC12 cells via inhibition of mitochondrial oxidation. J. Funct. Foods. 2013;5:337–345. doi: 10.1016/j.jff.2012.11.004. DOI
Cai Z., Zeng W., Tao K., Lu F., Gao G., Yang Q. Myricitrin alleviates MPP+-induced mitochondrial dysfunction in a DJ-1-dependent manner in SN4741 cells. Biochem. Biophys. Res. Commun. 2015;458:227–233. doi: 10.1016/j.bbrc.2015.01.060. PubMed DOI
Tamilselvam K., Braidy N., Manivasagam T., Essa M.M., Prasad R., Karthikeyan S., Thenmozhi A.J., Selvaraju S., Guillemin G.J. Neuroprotective Effects of Hesperidin, a Plant Flavanone, on Rotenone-Induced Oxidative Stress and Apoptosis in a Cellular Model for Parkinson’s Disease. Oxidative Med. Cell. Longev. 2013;2013:1–11. doi: 10.1155/2013/102741. PubMed DOI PMC
Jiang H., Fang J., Xing J., Wang L., Wang Q., Wang Y., Li Z., Liu R. Tilianin mediates neuroprotection against ischemic injury by attenuating CaMKII-dependent mitochondrion-mediated apoptosis and MAPK/NF-κB signaling. Life Sci. 2018;216:233–245. doi: 10.1016/j.lfs.2018.11.035. PubMed DOI
Chen S., Sun M., Zhao X., Yang Z., Liu W., Cao J., Qiao Y., Luo X., Wen A. Neuroprotection of hydroxysafflor yellow A in experimental cerebral ischemia/reperfusion injury via metabolic inhibition of phenylalanine and mitochondrial biogenesis. Mol. Med. Rep. 2019;19:3009–3020. doi: 10.3892/mmr.2019.9959. PubMed DOI PMC
Huang P., Wu S.-P., Wang N., Seto S., Chang D. Hydroxysafflor yellow A alleviates cerebral ischemia reperfusion injury by suppressing apoptosis via mitochondrial permeability transition pore. Phytomedicine. 2021;85:153532. doi: 10.1016/j.phymed.2021.153532. PubMed DOI
Amarsanaa K., Kim H.-J., Ko E.-A., Jo J., Jung J.J.A.S.-C. Nobiletin Exhibits Neuroprotective Effects against Mitochondrial Complex I Inhibition via Regulating Apoptotic Signaling. Exp. Neurobiol. 2021;30:73–86. doi: 10.5607/en20051. PubMed DOI PMC
Senyilmaz D., Teleman A.A. Chicken or the egg: Warburg effect and mitochondrial dysfunction. F1000Prime Rep. 2015;7:41. doi: 10.12703/P7-41. PubMed DOI PMC
Samec M., Liskova A., Koklesova L., Samuel S.M., Zhai K., Buhrmann C., Varghese E., Abotaleb M., Qaradakhi T., Zulli A., et al. Flavonoids against the Warburg phenotype—concepts of predictive, preventive and personalised medicine to cut the Gordian knot of cancer cell metabolism. EPMA J. 2020;11:377–398. doi: 10.1007/s13167-020-00217-y. PubMed DOI PMC
Hurley D.M., Williams E.R., Cross J.M., Riedinger B.R., Meyer R.A., Abela G.S., Slade J.M. Aerobic Exercise Improves Microvascular Function in Older Adults. Med. Sci. Sports Exerc. 2019;51:773–781. doi: 10.1249/MSS.0000000000001854. PubMed DOI PMC
Quail D.F., Dannenberg A.J. The obese adipose tissue microenvironment in cancer development and progression. Nat. Rev. Endocrinol. 2019;15:139–154. doi: 10.1038/s41574-018-0126-x. PubMed DOI PMC
Yang T., Qiao Y., Xiang S., Li W., Gan Y., Chen Y. Work stress and the risk of cancer: A meta-analysis of observational studies. Int. J. Cancer. 2019;144:2390–2400. doi: 10.1002/ijc.31955. PubMed DOI
Kunin A., Polivka J., Moiseeva N., Golubnitschaja O. “Dry mouth” and “Flammer” syndromes—neglected risks in adolescents and new concepts by predictive, preventive and personalised approach. EPMA J. 2018;9:307–317. doi: 10.1007/s13167-018-0145-7. PubMed DOI PMC
Tidwell T.R., Søreide K., Hagland H.R. Aging, Metabolism, and Cancer Development: from Peto’s Paradox to the Warburg Effect. Aging Dis. 2017;8:662–676. doi: 10.14336/AD.2017.0713. PubMed DOI PMC
Murata M. Inflammation and cancer. Environ. Heal. Prev. Med. 2018;23:1–8. doi: 10.1186/s12199-018-0740-1. PubMed DOI PMC
Perrino M., Cooke-Barber J., Dasgupta R., Geller J.I. Genetic predisposition to cancer: Surveillance and intervention. Semin. Pediatr. Surg. 2019;28:150858. doi: 10.1016/j.sempedsurg.2019.150858. PubMed DOI
Winnard P.T., Pathak A.P., Dhara S., Cho S.Y., Raman V., Pomper M.G. Molecular Imaging of Metastatic Potential. J. Nucl. Med. 2008;49:96S–112S. doi: 10.2967/jnumed.107.045948. PubMed DOI PMC
Golubnitschaja O., Flammer J. Individualised patient profile: clinical utility of Flammer syndrome phenotype and general lessons for predictive, preventive and personalised medicine. EPMA J. 2018;9:15–20. doi: 10.1007/s13167-018-0127-9. PubMed DOI PMC
Grech G., Zhan X., Yoo B.C., Bubnov R., Hagan S., Danesi R., Vittadini G., Desiderio D.M. EPMA position paper in cancer: current overview and future perspectives. EPMA J. 2015;6:1–31. doi: 10.1186/s13167-015-0030-6. PubMed DOI PMC
Li N., Zhan X. Signaling pathway network alterations in human ovarian cancers identified with quantitative mitochondrial proteomics. EPMA J. 2019;10:153–172. doi: 10.1007/s13167-019-00170-5. PubMed DOI PMC
Li N., Li H., Wang Y., Cao L., Zhan X. Quantitative proteomics revealed energy metabolism pathway alterations in human epithelial ovarian carcinoma and their regulation by the antiparasite drug ivermectin: data interpretation in the context of 3P medicine. EPMA J. 2020;11:661–694. doi: 10.1007/s13167-020-00224-z. PubMed DOI PMC
Chan Y.-H., Lau K.-K., Yiu K.-H., Li S.-W., Chan H.-T., Fong D., Tam S., Lau C.-P., Tse H.-F. Reduction of C-reactive protein with isoflavone supplement reverses endothelial dysfunction in patients with ischaemic stroke. Eur. Hear. J. 2008;29:2800–2807. doi: 10.1093/eurheartj/ehn409. PubMed DOI
Grosso G., Micek A., Godos J., Pajak A., Sciacca S., Galvano F., Giovannucci E.L. Dietary Flavonoid and Lignan Intake and Mortality in Prospective Cohort Studies: Systematic Review and Dose-Response Meta-Analysis. Am. J. Epidemiol. 2017;185:1304–1316. doi: 10.1093/aje/kww207. PubMed DOI
Peters U., Poole C., Arab L. Does Tea Affect Cardiovascular Disease? A Meta-Analysis. Am. J. Epidemiol. 2001;154:495–503. doi: 10.1093/aje/154.6.495. PubMed DOI
Björkenheim A., Szabó B., Áron J., Sztaniszláv Hereditary transthyretin amyloidosis caused by the rare Phe33Leu mutation. BMJ Case Rep. 2020;13:e232756. doi: 10.1136/bcr-2019-232756. PubMed DOI PMC
Kristen A.V., Lehrke S., Buss S., Mereles D., Steen H., Ehlermann P., Hardt S., Giannitsis E., Schreiner R., Haberkorn U., et al. Green tea halts progression of cardiac transthyretin amyloidosis: an observational report. Clin. Res. Cardiol. 2012;101:805–813. doi: 10.1007/s00392-012-0463-z. PubMed DOI PMC
Stone N., Robinson J.G., Lichtenstein A.H., Merz C.N.B., Blum C.B., Eckel R.H., Goldberg A.C., Gordon D., Levy D., Lloyd-Jones D., et al. 2013 ACC/AHA Guideline on the Treatment of Blood Cholesterol to Reduce Atherosclerotic Cardiovascular Risk in Adults. Circulation. 2014;129:S1–S45. doi: 10.1161/01.cir.0000437738.63853.7a. PubMed DOI
Oliveira P.J., Carvalho R.A., Portincasa P., Bonfrate L., Sardao V.A. Fatty Acid Oxidation and Cardiovascular Risk during Menopause: A Mitochondrial Connection? J. Lipids. 2012;2012:1–12. doi: 10.1155/2012/365798. PubMed DOI PMC
Sathyapalan T., Aye M., Rigby A., Thatcher N., Dargham S., Kilpatrick E., Atkin S. Soy isoflavones improve cardiovascular disease risk markers in women during the early menopause. Nutr. Metab. Cardiovasc. Dis. 2018;28:691–697. doi: 10.1016/j.numecd.2018.03.007. PubMed DOI
Cardinali D.P., Vigo D.E. Melatonin, mitochondria, and the metabolic syndrome. Cell. Mol. Life Sci. 2017;74:3941–3954. doi: 10.1007/s00018-017-2611-0. PubMed DOI PMC
Basu A., Du M., Leyva M.J., Sanchez K., Betts N.M., Wu M., Aston C.E., Lyons T.J. Blueberries Decrease Cardiovascular Risk Factors in Obese Men and Women with Metabolic Syndrome. J. Nutr. 2010;140:1582–1587. doi: 10.3945/jn.110.124701. PubMed DOI PMC
Basu A., Betts N.M., Ortiz J., Simmons B., Wu M., Lyons T.J. Low-energy cranberry juice decreases lipid oxidation and increases plasma antioxidant capacity in women with metabolic syndrome. Nutr. Res. 2011;31:190–196. doi: 10.1016/j.nutres.2011.02.003. PubMed DOI PMC
Cassidy A., Bertoia M., Chiuve S., Flint A., Forman J., Rimm E.B. Habitual intake of anthocyanins and flavanones and risk of cardiovascular disease in men. Am. J. Clin. Nutr. 2016;104:587–594. doi: 10.3945/ajcn.116.133132. PubMed DOI PMC
Naruszewicz M., Łaniewska I., Millo B., Dłużniewski M. Combination therapy of statin with flavonoids rich extract from chokeberry fruits enhanced reduction in cardiovascular risk markers in patients after myocardial infraction (MI) Atherosclerosis. 2007;194:e179–e184. doi: 10.1016/j.atherosclerosis.2006.12.032. PubMed DOI
Lin K.-J., Chen S.-D., Liou C.-W., Chuang Y.-C., Lin H.-Y., Lin T.-K. The Overcrowded Crossroads: Mitochondria, Alpha-Synuclein, and the Endo-Lysosomal System Interaction in Parkinson’s Disease. Int. J. Mol. Sci. 2019;20:5312. doi: 10.3390/ijms20215312. PubMed DOI PMC
Dhouafli Z., Cuanalo-Contreras K., Hayouni E.A., Mays C.E., Soto C., Moreno-Gonzalez I. Inhibition of protein misfolding and aggregation by natural phenolic compounds. Cell. Mol. Life Sci. 2018;75:3521–3538. doi: 10.1007/s00018-018-2872-2. PubMed DOI PMC
Levin J., The PROMESA study group. Maaß S., Schuberth M., Giese A., Oertel W.H., Poewe W., Trenkwalder C., Wenning G.K., Mansmann U., et al. Safety and efficacy of epigallocatechin gallate in multiple system atrophy (PROMESA): A randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2019;18:724–735. doi: 10.1016/S1474-4422(19)30141-3. PubMed DOI
Ostrakhovitch E., Tabibzadeh S. Homocysteine and age-associated disorders. Ageing Res. Rev. 2019;49:144–164. doi: 10.1016/j.arr.2018.10.010. PubMed DOI
Morillas-Ruiz J., Rubio-Perez J.M., Albaladejo M., Zafrilla P., Parra S., Vidal-Guevara M. Effect of an antioxidant drink on homocysteine levels in Alzheimer’s patients. J. Neurol. Sci. 2010;299:175–178. doi: 10.1016/j.jns.2010.08.050. PubMed DOI
Le Bars P.L., Kieser M., Itil K.Z. A 26-Week Analysis of a Double-Blind, Placebo-Controlled Trial of the Ginkgo biloba Extract EGb 761® in Dementia. Dement. Geriatr. Cogn. Disord. 2000;11:230–237. doi: 10.1159/000017242. PubMed DOI
Levin J., Maaß S., Schuberth M., Respondek G., Paul F., Mansmann U., Oertel W.H., Lorenzl S., Krismer F., et al. The PROMESA study group The PROMESA-protocol: progression rate of multiple system atrophy under EGCG supplementation as anti-aggregation-approach. J. Neural Transm. 2016;123:439–445. doi: 10.1007/s00702-016-1507-8. PubMed DOI
Borsche M., Pereira S.L., Klein C., Grünewald A. Mitochondria and Parkinson’s Disease: Clinical, Molecular, and Translational Aspects. J. Park. Dis. 2021;11:45–60. doi: 10.3233/JPD-201981. PubMed DOI PMC
Francula-Zaninovic S., Nola S.F.Z.A.I.A. Management of Measurable Variable Cardiovascular Disease’ Risk Factors. Curr. Cardiol. Rev. 2018;14:153–163. doi: 10.2174/1573403X14666180222102312. PubMed DOI PMC
Laconi E., Marongiu F., DeGregori J. Cancer as a disease of old age: changing mutational and microenvironmental landscapes. Br. J. Cancer. 2020;122:943–952. doi: 10.1038/s41416-019-0721-1. PubMed DOI PMC
Evans M.A., Sano S., Walsh K. Cardiovascular Disease, Aging, and Clonal Hematopoiesis. Annu. Rev. Pathol. Mech. Dis. 2020;15:419–438. doi: 10.1146/annurev-pathmechdis-012419-032544. PubMed DOI PMC
Hou Y., Dan X., Babbar M., Wei Y., Hasselbalch S.G., Croteau D.L., Bohr V.A. Ageing as a risk factor for neurodegenerative disease. Nat. Rev. Neurol. 2019;15:565–581. doi: 10.1038/s41582-019-0244-7. PubMed DOI
Fraga C.G., Croft K.D., Kennedy D., Tomás-Barberán F.A. The effects of polyphenols and other bioactives on human health. Food Funct. 2019;10:514–528. doi: 10.1039/C8FO01997E. PubMed DOI
Fusi F., Trezza A., Tramaglino M., Sgaragli G., Saponara S., Spiga O. The beneficial health effects of flavonoids on the cardiovascular system: Focus on K+ channels. Pharmacol. Res. 2020;152:104625. doi: 10.1016/j.phrs.2019.104625. PubMed DOI
Maher P. The Potential of Flavonoids for the Treatment of Neurodegenerative Diseases. Int. J. Mol. Sci. 2019;20:3056. doi: 10.3390/ijms20123056. PubMed DOI PMC
Ashrafizadeh M., Ahmadi Z., Mohammadinejad R., Afshar E.G. Tangeretin: a mechanistic review of its pharmacological and therapeutic effects. J. Basic Clin. Physiol. Pharmacol. 2020;31 doi: 10.1515/jbcpp-2019-0191. PubMed DOI
Koklesova L., Liskova A., Samec M., Qaradakhi T., Zulli A., Smejkal K., Kajo K., Jakubikova J., Behzadi P., Pec M., et al. Genoprotective activities of plant natural substances in cancer and chemopreventive strategies in the context of 3P medicine. EPMA J. 2020;11:261–287. doi: 10.1007/s13167-020-00210-5. PubMed DOI PMC
Sabel B.A., Wang J., Fähse S., Cárdenas-Morales L., Antal A. Personality and stress influence vision restoration and recovery in glaucoma and optic neuropathy following alternating current stimulation: implications for personalized neuromodulation and rehabilitation. EPMA J. 2020;11:177–196. doi: 10.1007/s13167-020-00204-3. PubMed DOI PMC
Polivka J., Pesta M., Rohan V., Celedova L., Mahajani S., Topolcan O., Golubnitschaja O. Risks associated with the stroke predisposition at young age: facts and hypotheses in light of individualized predictive and preventive approach. EPMA J. 2019;10:81–99. doi: 10.1007/s13167-019-00162-5. PubMed DOI PMC