Characterization of the Aerobic Anoxygenic Phototrophic Bacterium Sphingomonas sp. AAP5

. 2021 Apr 06 ; 9 (4) : . [epub] 20210406

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33917603

Grantová podpora
18-14095Y Grantová Agentura České Republiky
CZ.02.1.01/0.0/0.0/15_003/0000441 European Regional Development Fund

Odkazy

PubMed 33917603
PubMed Central PMC8067484
DOI 10.3390/microorganisms9040768
PII: microorganisms9040768
Knihovny.cz E-zdroje

An aerobic, yellow-pigmented, bacteriochlorophyll a-producing strain, designated AAP5 (=DSM 111157=CCUG 74776), was isolated from the alpine lake Gossenköllesee located in the Tyrolean Alps, Austria. Here, we report its description and polyphasic characterization. Phylogenetic analysis of the 16S rRNA gene showed that strain AAP5 belongs to the bacterial genus Sphingomonas and has the highest pairwise 16S rRNA gene sequence similarity with Sphingomonas glacialis (98.3%), Sphingomonas psychrolutea (96.8%), and Sphingomonas melonis (96.5%). Its genomic DNA G + C content is 65.9%. Further, in silico DNA-DNA hybridization and calculation of the average nucleotide identity speaks for the close phylogenetic relationship of AAP5 and Sphingomonas glacialis. The high percentage (76.2%) of shared orthologous gene clusters between strain AAP5 and Sphingomonas paucimobilis NCTC 11030T, the type species of the genus, supports the classification of the two strains into the same genus. Strain AAP5 was found to contain C18:1ω7c (64.6%) as a predominant fatty acid (>10%) and the polar lipid profile contained phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, sphingoglycolipid, six unidentified glycolipids, one unidentified phospholipid, and two unidentified lipids. The main respiratory quinone was ubiquinone-10. Strain AAP5 is a facultative photoheterotroph containing type-2 photosynthetic reaction centers and, in addition, contains a xathorhodopsin gene. No CO2-fixation pathways were found.

Zobrazit více v PubMed

Yabuuchi E., Yano I., Oyaizu H., Hashimoto Y., Ezaki T., Yamamoto H. Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb, nov., and Two Genospecies of the Genus. Sphingomonas. Microbiol. Immunol. 1990;34:99–119. doi: 10.1111/j.1348-0421.1990.tb00996.x. PubMed DOI

Takeuchi M., Sawada H., Oyaizu H., Yokota A. Phylogenetic evidence for Sphingomonas and Rhizomonas as nonphotosynthetic members of the alpha-4 subclass of the Proteobacteria. Int. J. Syst. Evol. Microbiol. 1994;44:308–314. doi: 10.1099/00207713-44-2-308. PubMed DOI

White D.C., Sutton S.D., Ringelberg D.B. The genus Sphingomonas: Physiology and ecology. Curr. Opin. Biotechnol. 1996;7:301–306. doi: 10.1016/S0958-1669(96)80034-6. PubMed DOI

Takeuchi M., Hamana K., Hiraishi A. Proposal of the genus Sphingomonas sensus stricto and three new genera, Sphingobium, Novosphingobium Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int. J. Syst. Evol. Microbiol. 2001;51:1405–1417. doi: 10.1099/00207713-51-4-1405. PubMed DOI

Hiraishi A., Kuraishi H., Kawahara K. Emendation of the description of Blastomonas natatoria (Sly 1985) Sly and Cahill 1997 as an aerobic photosynthetic bacterium and reclassification of Erythromonas ursincola Yurkov et al. 1997 as Blastomonas ursincola comb. nov. Int. J. Syst. Evol. Microbiol. 2000;50:1113–1118. doi: 10.1099/00207713-50-3-1113. PubMed DOI

Kim M.K., Schubert K., Im W.T., Kim K.H., Lee S.T., Overmann J., Affiliations V. Sphingomonas kaistensis sp. nov., a novel alphaproteobacterium containing pufLM genes. Int. J. Syst. Evol. Microbiol. 2007;57:1527–1534. doi: 10.1099/ijs.0.64579-0. PubMed DOI

Salka I., Srivastava A., Allgaier M., Grossart H.P. The draft genome sequence of Sphingomonas sp. strain FukuSWIS1, obtained from acidic Lake Grosse Fuchskuhle, indicates photoheterotrophy and a potential for humic matter degradation. Genome Announc. 2014;2:e01183-14. doi: 10.1128/genomeA.01183-14. PubMed DOI PMC

Tahon G., Willems A. Isolation and characterization of aerobic anoxygenic phototrophs from exposed soils from the Sør Rondane Mountains, East Antarctica. Syst. Appl. Microbiol. 2017;40:357–369. doi: 10.1016/j.syapm.2017.05.007. PubMed DOI

Huang H.D., Wang W., Ma T., Li G.Q., Liang F.L., Liu R.-L. Sphingomonas sanxanigenens sp. nov., isolated from soil. Int. J. Syst. Evol. Microbiol. 2009;59:719–723. doi: 10.1099/ijs.0.000257-0. PubMed DOI

Manandhar P., Zhang G., Lama A., Liu F., Hu Y. Sphingomonas montana sp. nov., isolated from a soil sample from the Tanggula Mountain in the Qinghai Tibetan Plateau. Antonie Leeuwenhoek. 2017;110:1659–1668. PubMed

Asker D., Beppu T., Ueda K. Sphingomonas jaspsi sp. nov., a novel carotenoid-producing bacterium isolated from Misasa, Tottori, Japan. Int. J. Syst. Evol. Microbiol. 2007;57:1435–1441. doi: 10.1099/ijs.0.64828-0. PubMed DOI

Čuperová Z., Holzer E., Salka I., Sommaruga R., Koblížek M. Temporal changes and altitudinal distribution of aerobic anoxygenic phototrophs in mountain lakes. Appl. Environ. Microbiol. 2013;79:6439–6446. PubMed PMC

Marizcurrena J.J., Morales D., Smircich P., Castro-Sowinski S. Draft Genome Sequence of the UV-Resistant Antarctic Bacterium Sphingomonas sp. Strain UV9. Microbiol. Resour. Announc. 2019;8:e01651-18. doi: 10.1128/MRA.01651-18. PubMed DOI PMC

Buonaurio R., Stravato V.M., Kosako Y., Fujiwara N., Naka T., Kobayashi K., Cappelli C., Yabuuchi E. Sphingomonas melonis sp. nov., a novel pathogen that causes brown spots on yellow Spanish melon fruits. Int. J. Syst. Evol. Microbiol. 2002;52:2081–2087. PubMed

Shin S.C., Ahn D.H., Lee J.K., Kim S.J., Hong S.G., Kim E.H., Park H. Genome sequence of Sphingomonas sp. strain PAMC 26605, isolated from arctic lichen (Ochrolechia sp.) J. Bacteriol. 2012;194:1607. doi: 10.1128/JB.00004-12. PubMed DOI PMC

Busse H.J., Denner E.B., Buczolits S., Salkinoja-Salonen M., Bennasar A., Kämpfer P. Sphingomonas aurantiaca sp. nov., Sphingomonas aerolata sp. nov. and Sphingomonas faeni sp. nov., air-and dustborne and Antarctic, orange-pigmented, psychrotolerant bacteria, and emended description of the genus Sphingomonas. Int. J. Syst. Evol. Microbiol. 2003;53:1253–1260. doi: 10.1099/ijs.0.02461-0. PubMed DOI

Amato P., Parazols M., Sancelme M., Laj P., Mailhot G., Delort A.-M. Microorganisms isolated from the water phase of tropospheric clouds at the Puy de Dôme: Major groups and growth abilities at low temperatures. FEMS Microbiol. Ecol. 2007;59:242–254. doi: 10.1111/j.1574-6941.2006.00199.x. PubMed DOI

Angelakis E., Roux V., Raoult D. Sphingomonas mucosissima bacteremia in patient with sickle cell disease. Emerg. Infect. Dis. 2009;15:133. PubMed PMC

Ryan M.P., Adley C.C. Sphingomonas paucimobilis: A persistent Gram-negative nosocomial infectious organism. J. Hosp. Infect. 2010;75:153–157. doi: 10.1016/j.jhin.2010.03.007. PubMed DOI

Denner E.B., Paukner S., Kämpfer P., Moore E.R., Abraham W.R., Busse H.J., Wanner G., Lubitz W. Sphingomonas pituitosa sp. nov., an exopolysaccharide-producing bacterium that secretes an unusual type of sphingan. Int. J. Syst. Evol. Microbiol. 2001;51:827–841. doi: 10.1099/00207713-51-3-827. PubMed DOI

Gai Z., Wang X., Zhang X., Su F., Tang H., Tai C., Tao F., Ma C., Xu P. Genome sequence of Sphingomonas elodea ATCC 31461, a highly productive industrial strain of gellan gum. J. Bacteriol. 2011;193:7015–7016. doi: 10.1128/JB.06307-11. PubMed DOI PMC

Kera Y., Abe K., Kasai D., Fukuda M., Takahashi S. Draft genome sequences of Sphingobium sp. strain TCM1 and Sphingomonas sp. strain TDK1, haloalkyl phosphate flame retardant-and plasticizer-degrading bacteria. Genome Announc. 2016;4:e00668-16. doi: 10.1128/genomeA.00668-16. PubMed DOI PMC

Kopejtka K., Tomasch J., Zeng Y., Selyanin V., Dachev M., Piwosz K., Tichý M., Bína D., Gardian Z., Bunk B., et al. Simultaneous presence of bacteriochlorophyll and xanthorhodopsin genes in a freshwater bacterium. mSystems. 2020;5:e01044-20. doi: 10.1128/mSystems.01044-20. PubMed DOI PMC

Shiba T., Simidu U. Erythrobacter longus gen. nov., sp. nov., an aerobic bacterium which contains bacteriochlorophyll a. Int. J. Syst. Bacteriol. 1982;32:211–217. doi: 10.1099/00207713-32-2-211. DOI

Yurkov V.V., Csotonyi J.T. New light on aerobic anoxygenic phototrophs. In: Hunter C.N., Daldal F., Thurnauer M.C., Beatty J.T., editors. The Purple Phototrophic Bacteria. Advances in Photosynthesis and Respiration. Volume 28. Springer Verlag; Dordrecht, The Netherlands: 2009. pp. 31–35.

Zeng Y., Feng F., Medová H., Dean J., Koblížek M. Functional type 2 photosynthetic reaction centers found in the rare bacterial phylum Gemmatimonadetes. Proc. Natl. Acad. Sci. USA. 2014;111:7795–7800. doi: 10.1073/pnas.1400295111. PubMed DOI PMC

Coleman A.W. Enhanced detection of bacteria in natural environments by fluorochrome staining of DNA. Limnol. Oceanogr. 1980;25:948–951. doi: 10.4319/lo.1980.25.5.0948. DOI

Fecskeová L.K., Piwosz K., Hanusová M., Nedoma J., Znachor P., Koblížek M. Diel changes and diversity of pufM expression in freshwater communities of anoxygenic phototrophic bacteria. Sci. Rep. 2019;9:1–12. doi: 10.1038/s41598-019-55210-x. PubMed DOI PMC

Sader J.E., Chon J.W., Mulvaney P. Calibration of rectangular atomic force microscope cantilevers. Rev. Sci. Instrum. 1999;70:3967–3969. doi: 10.1063/1.1150021. DOI

Hertz H. Über die Berührung fester elastischer Körper. J. Reine Angew. Math. 1882;92:156–171.

Sneddon I.N. The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 1965;3:47–57. doi: 10.1016/0020-7225(65)90019-4. DOI

Rico F., Roca-Cusachs P., Gavara N., Farré R., Rotger M., Navajas D. Probing mechanical properties of living cells by atomic force microscopy with blunted pyramidal cantilever tips. Phys. Rev. E. 2005;72:021914. doi: 10.1103/PhysRevE.72.021914. PubMed DOI

Quast C., Pruesse E., Yilmaz P., Gerken J., Schweer T., Yarza P., Peplies J., Glöckner F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2012;41:D590–D596. doi: 10.1093/nar/gks1219. PubMed DOI PMC

Thompson J.D., Higgins D.G., Gibson T.J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22:4673–4680. doi: 10.1093/nar/22.22.4673. PubMed DOI PMC

Saitou N., Nei M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987;4:406–425. PubMed

Felsenstein J. Evolutionary trees from DNA sequences: A maximum likelihood approach. J. Mol. Evol. 1981;17:368–376. doi: 10.1007/BF01734359. PubMed DOI

Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 2013;30:2725–2729. doi: 10.1093/molbev/mst197. PubMed DOI PMC

Tamura K., Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 1993;10:512–526. PubMed

Tavaré S. Some probabilistic and statistical problems in the analysis of DNA sequences. Some Mathematical Questions in Biology: DNA Sequence Analysis. In: Miura R.M., editor. Lectures on Mathematics in the Life Sciences. 2nd ed. Volume 17. The American Mathematical Society; Providence, RI, USA,: 1986. pp. 57–86.

Le S.Q., Gascuel O. An improved general amino acid replacement matrix. Mol. Biol. Evol. 2008;25:1307–1320. doi: 10.1093/molbev/msn067. PubMed DOI

Meier-Kolthoff J.P., Göker M., Spröer C., Klenk H.P. When should a DDH experiment be mandatory in microbial taxonomy? Arch. Microbiol. 2013;195:413–418. doi: 10.1007/s00203-013-0888-4. PubMed DOI

Yoon S.H., Ha S.M., Lim J., Kwon S., Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Leeuwenhoek. 2017;110:1281–1286. PubMed

Xu L., Dong Z., Fang L., Luo Y., Wei Z., Guo H., Zhang G., Gu Y.Q., Coleman-Derr D., Xia Q., et al. OrthoVenn2: A web server for whole-genome comparison and annotation of orthologous clusters across multiple species. Nucleic Acids Res. 2019;47:W52–W58. doi: 10.1093/nar/gkz333. PubMed DOI PMC

Bartling P., Brinkmann H., Bunk B., Overmann J., Göker M., Petersen J. The Composite 259-kb Plasmid of Martelella mediterranea DSM 17316T–A Natural Replicon with Functional RepABC Modules from Rhodobacteraceae and Rhizobiaceae. Front. Microbiol. 2017;8:1787. doi: 10.3389/fmicb.2017.01787. PubMed DOI PMC

Bartling P., Vollmers J., Petersen J. The first world swimming championships of roseobacters—Phylogenomic insights into an exceptional motility phenotype. Syst. Appl. Microbiol. 2018;41:544–554. doi: 10.1016/j.syapm.2018.08.012. PubMed DOI

Zeng Y., Nupur Wu N., Madsen A.M., Chen X., Gardiner A.T., Koblížek M. Gemmatimonas groenlandica sp. nov. is an aerobic anoxygenic phototroph in the phylum Gemmatimonadetes. Front. Microbiol. 2021;11:606612. doi: 10.3389/fmicb.2020.606612. PubMed DOI PMC

Zhang D.C., Busse H.J., Liu H.C., Zhou Y.G., Schinner F., Margesin R. Sphingomonas glacialis sp. nov., a psychrophilic bacterium isolated from alpine glacier cryoconite. Int. J. Syst. Evol. Microbiol. 2011;61:587–591. doi: 10.1099/ijs.0.023135-0. PubMed DOI

Liu Q., Liu H.C., Zhang J.L., Zhou Y.G., Xin Y.H. Sphingomonas psychrolutea sp. nov., a psychrotolerant bacterium isolated from glacier ice. Int. J. Syst. Evol. Microbiol. 2015;65:2955–2959. doi: 10.1099/ijs.0.000362. PubMed DOI

Holmes B., Owen R.J., Evans A., Malnick H., Willcox W.R. Pseudomonas paucimobilis, a new species isolated from human clinical specimens, the hospital environment, and other sources. Int. J. Syst. Evol. Microbiol. 1977;27:133–146. doi: 10.1099/00207713-27-2-133. DOI

Goris J., Konstantinidis K.T., Klappenbach J.A., Coenye T., Vandamme P., Tiedje J.M. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int. J. Sys. Evol. Microbiol. 2007;57:81–91. doi: 10.1099/ijs.0.64483-0. PubMed DOI

Lang A.S., Beatty J.T. Genetic analysis of a bacterial genetic exchange element: The gene transfer agent of Rhodobacter capsulatus. Proc. Nat. Acad. Sci. USA. 2000;97:859–864. doi: 10.1073/pnas.97.2.859. PubMed DOI PMC

Imhoff J.F., Rahn T., Künzel S., Neulinger S.C. Photosynthesis is widely distributed among Proteobacteria as demonstrated by the phylogeny of PufLM reaction center proteins. Front. Microbiol. 2018;8:2679. doi: 10.3389/fmicb.2017.02679. PubMed DOI PMC

Imhoff J.F., Rahn T., Künzel S., Neulinger S.C. Phylogeny of anoxygenic photosynthesis based on sequences of photosynthetic reaction center proteins and a key enzyme in bacteriochlorophyll biosynthesis, the chlorophyllide reductase. Microorganisms. 2019;7:576. doi: 10.3390/microorganisms7110576. PubMed DOI PMC

Flusberg B., Webster D., Lee J., Travers K.J., Olivares E.C., Clark T.A., Korlach J., Turner S.W. Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat. Methods. 2010;7:461–465. doi: 10.1038/nmeth.1459. PubMed DOI PMC

Blow M.J., Clark T.A., Daum C.G., Deutschbauer A.M., Fomenkov A., Fries R., Froula J., Kang D.D., Malmstrom R.R., Morgan R.D., et al. The epigenomic landscape of prokaryotes. PLoS Genet. 2016;12:e1005854. doi: 10.1371/journal.pgen.1005854. PubMed DOI PMC

Zweiger G., Marczynski G., Shapiro L. A Caulobacter DNA methyltransferase that functions only in the predivisional cell. J. Mol. Biol. 1994;235:472–485. doi: 10.1006/jmbi.1994.1007. PubMed DOI

Gonzalez D., Kozdon J.B., McAdams H.H., Shapiro L., Collier J. The functions of DNA methylation by CcrM in Caulobacter crescentus: A global approach. Nucleic Acids Res. 2014;42:3720–3735. doi: 10.1093/nar/gkt1352. PubMed DOI PMC

Domian I.J., Reisenauer A., Shapiro L. Feedback control of a master bacterial cell-cycle regulator. Proc. Nat. Acad. Sci. 1999;96:6648–6653. doi: 10.1073/pnas.96.12.6648. PubMed DOI PMC

Gonzalez D., Collier J. DNA methylation by CcrM activates the transcription of two genes required for the division of Caulobacter crescentus. Mol. Microbiol. 2013;88:203–218. doi: 10.1111/mmi.12180. PubMed DOI PMC

Loenen W.A., Dryden D.T., Raleigh E.A., Wilson G.G., Murray N.E. Highlights of the DNA cutters: A short history of the restriction enzymes. Nucleic Acids Res. 2014;42:3–19. doi: 10.1093/nar/gkt990. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...