A kaleidoscope of photosynthetic antenna proteins and their emerging roles
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35512089
PubMed Central
PMC9237682
DOI
10.1093/plphys/kiac175
PII: 6571824
Knihovny.cz E-zdroje
- MeSH
- fotosyntéza * fyziologie MeSH
- fyziologická adaptace MeSH
- rostliny metabolismus MeSH
- světlosběrné proteinové komplexy * metabolismus MeSH
- tylakoidy metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- světlosběrné proteinové komplexy * MeSH
Photosynthetic light-harvesting antennae are pigment-binding proteins that perform one of the most fundamental tasks on Earth, capturing light and transferring energy that enables life in our biosphere. Adaptation to different light environments led to the evolution of an astonishing diversity of light-harvesting systems. At the same time, several strategies have been developed to optimize the light energy input into photosynthetic membranes in response to fluctuating conditions. The basic feature of these prompt responses is the dynamic nature of antenna complexes, whose function readily adapts to the light available. High-resolution microscopy and spectroscopic studies on membrane dynamics demonstrate the crosstalk between antennae and other thylakoid membrane components. With the increased understanding of light-harvesting mechanisms and their regulation, efforts are focusing on the development of sustainable processes for effective conversion of sunlight into functional bio-products. The major challenge in this approach lies in the application of fundamental discoveries in light-harvesting systems for the improvement of plant or algal photosynthesis. Here, we underline some of the latest fundamental discoveries on the molecular mechanisms and regulation of light harvesting that can potentially be exploited for the optimization of photosynthesis.
Department of Agricultural Sciences University of Naples Federico 2 Naples 80138 Italy
Department of Botany Jagannath University Dhaka 1100 Bangladesh
Department of Life Technologies MolecularPlant Biology University of Turku Turku FI 20520 Finland
Department of Plant Physiology Umeå Plant Science Centre Umeå University Umeå 901 87 Sweden
Dipartimento di Biotecnologie Università di Verona Verona Italy
Institute for Molecular Biosciences Goethe University of Frankfurt Frankfurt 60438 Germany
Laboratory of Biophysics Wageningen University Wageningen the Netherlands
Photon Systems Instruments spol s r o Drásov Czech Republic
School of Biological and Behavioural Sciences Queen Mary University of London London UK
Université de Paris Faculté de Pharmacie de Paris CiTCoM UMR 8038 CNRS Paris 75006 France
Zobrazit více v PubMed
Acuña AM, Lemaire C, van Grondelle R, Robert B, van Stokkum IHM (2018) Energy transfer and trapping in Synechococcus WH 7803. Photosynth Res 135: 115–124 PubMed PMC
Adir N (2005) Elucidation of the molecular structures of components of the phycobilisome: reconstructing a giant. Photosynth Res 85: 15–32 PubMed
Adir N, Bar-Zvi S, Harris D (2020) The amazing phycobilisome. Biochim Biophys Acta - Bioenerg 1861: 148047. PubMed
Ahn TK, Avenson TJ, Ballottari M, Cheng YC, Niyogi KK, Bassi R, Fleming GR (2008) Architecture of a charge-transfer state regulating light harvesting in a plant antenna protein. Science 320: 794–797 PubMed
Akhtar P, Biswas A, Petrova N, Zakar T, van Stokkum IHM, Lambrev PH (2020) Time-resolved fluorescence study of excitation energy transfer in the cyanobacterium Anabaena PCC 7120. Photosynth Res 144: 247–259 PubMed PMC
Allen JF (2017) Why we need to know the structure of phosphorylated chloroplast light-harvesting complex II. Physiol Plant 161: 28–44 PubMed
Allen JF (1992) Protein phosphorylation in regulation of photosynthesis. Biochim Biophys Acta - Bioenerg 1098: 275–335 PubMed
Allen JF, Bennett J, Steinback KE, Arntzen CJ (1981) Chloroplast protein phosphorylation couples plastoquinone redox state to distribution of excitation energy between photosystems. Nature 291: 25–29
Allorent G, Tokutsu R, Roach T, Peers G, Cardol P, Girard-Bascou J, Seigneurin-Berny D, Petroutsos D, Kuntz M, Breyton C, et al. (2013) Dual strategy to cope with high light in Chlamydomonas reinhardtii. Plant Cell 25: 545–557 PubMed PMC
Anderson JM (1986) Photoregulation of the composition, function, and structure of thylakoid membranes. Annu Rev Plant Physiol 37: 93–136
Andersson J, Wentworth M, Walters RG, Howard CA, Ruban A V., Horton P, Jansson S (2003) Absence of the Lhcb1 and Lhcb2 proteins of the light-harvesting complex of photosystem II - Effects on photosynthesis, grana stacking and fitness. Plant J 35: 350–361 PubMed
Arshad R, Calvaruso C, Boekema EJ, Büchel C, Kouřil R (2021) Revealing the architecture of the photosynthetic apparatus in the diatom Thalassiosira pseudonana. Plant Physiol 186: 2124–2136 PubMed PMC
Bag P, Chukhutsina V, Zhang Z, Paul S, Ivanov AG, Shutova T, Croce R, Holzwarth AR, Jansson S (2020) Direct energy transfer from photosystem II to photosystem I confers winter sustainability in Scots Pine. Nat Commun 11: 6388. PubMed PMC
Bailleul B, Rogato A, De Martino A, Coesel S, Cardol P, Bowler C, Falciatore A, Finazzi G (2010) An atypical member of the light-harvesting complex stress-related protein family modulates diatom responses to light. Proc Natl Acad Sci USA 107: 18214–18219 PubMed PMC
Bao H, Melnicki MR, Pawlowski EG, Sutter M, Agostoni M, Lechno-Yossef S, Cai F, Montgomery BL, Kerfeld CA (2017) Additional families of orange carotenoid proteins in the photoprotective system of cyanobacteria. Nat Plants 3: 1–11 PubMed
Bassi R, Dall’Osto L (2021) Dissipation of light energy absorbed in excess: the molecular mechanisms. Annu Rev Plant Biol 72: 47–76 PubMed
Bellafiore S, Barneche F, Peltier G, Rochaix J-D (2005) State transitions and light adaptation require chloroplast thylakoid protein kinase STN7. Nature 433: 892–895 PubMed
Bennett DIG, Amarnath K, Park S, Steen CJ, Morris JM, Fleming GR (2019) Models and mechanisms of the rapidly reversible regulation of photosynthetic light harvesting. Open Biol 9: 190043. PubMed PMC
Ben-Shem A, Frolow F, Nelson N (2003) Crystal structure of plant photosystem I. Nature 426: 630–635 PubMed
Benson SL, Maheswaran P, Ware MA, Hunter CN, Horton P, Jansson S, Ruban AV., Johnson MP (2015) An intact light harvesting complex i antenna system is required for complete state transitions in Arabidopsis. Nat Plants 1: 1–9 PubMed
Bhatti AF, Choubeh RR, Kirilovsky D, Wientjes E, van Amerongen H (2020) State transitions in cyanobacteria studied with picosecond fluorescence at room temperature. Biochim Biophys Acta - Bioenerg 1861: 148255. PubMed
Bhatti AF, Kirilovsky D, van Amerongen H, Wientjes E (2021) State transitions and photosystems spatially resolved in individual cells of the cyanobacterium Synechococcus elongatus. Plant Physiol 186: 569–580 PubMed PMC
Biswas A, Huang X, Lambrev PH, van Stokkum IHM (2020) Modelling excitation energy transfer and trapping in the filamentous cyanobacterium Anabaena variabilis PCC 7120. Photosynth Res 144: 261–272 PubMed PMC
Blankenship RE, Tiede DM, Barber J, Brudvig GW, Fleming G, Ghirardi M, Gunner MR, Junge W, Kramer DM, Melis A, et al. (2011) Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 332: 805–809 PubMed
Bonente G, Ballottari M, Truong TB, Morosinotto T, Ahn TK, Fleming GR, Niyogi KK, Bassi R (2011) Analysis of LHcSR3, a protein essential for feedback de-excitation in the green alga Chlamydomonas reinhardtii. PLoS Biol 9: e1000577. PubMed PMC
Bos P, Oosterwijk A, Koehorst R, Bader A, Philippi J, van Amerongen H, Wientjes E (2019) Digitonin-sensitive LHCII enlarges the antenna of Photosystem I in stroma lamellae of Arabidopsis thaliana after far-red and blue-light treatment. Biochim Biophys Acta - Bioenerg 1860: 651–658 PubMed
Büchel C (2003) Fucoxanthin-chlorophyll proteins in diatoms: 18 and 19 kDa subunits assemble into different oligomeric states. Biochemistry 42: 13027–13034 PubMed
Büchel C (2015) Evolution and function of light harvesting proteins. J Plant Physiol 172: 62–75 PubMed
Buck JM, Sherman J, Bártulos CR, Serif M, Halder M, Henkel J, Falciatore A, Lavaud J, Gorbunov MY, Kroth PG, et al. (2019) Lhcx proteins provide photoprotection via thermal dissipation of absorbed light in the diatom Phaeodactylum tricornutum. Nat Commun 10: 4167. PubMed PMC
De Bianchi S, Dall’osto L, Tognon G, Morosinotto T, Bassi R (. 2008) Minor antenna proteins CP24 and CP26 affect the interactions between photosystem II subunits and the electron transport rate in grana membranes of Arabidopsis. Plant Cell 20: 1012–1028 PubMed PMC
Caffarri S, Broess K, Croce R, van Amerongen H (2011) Excitation energy transfer and trapping in higher plant photosystem II complexes with different antenna sizes. Biophys J 100: 2094–2103 PubMed PMC
Caffarri S, Croce R, Cattivelli L, Bassi R (2004) A look within LHCII: Differential analysis of the Lhcb1-3 complexes building the major trimeric antenna complex of higher-plant photosynthesis. Biochemistry 43: 9467–9476 PubMed
Calvaruso C, Rokka A, Aro EM, Büchela C (2020) Specific Lhc proteins are bound to PSI or PSII supercomplexes in the diatom Thalassiosira pseudonana. Plant Physiol 183: 67–79 PubMed PMC
Calzadi PI, Zhan J, Sétif P, Lemaire C, Solymosi D, Battchikova N, Wang Q, Kirilovskya D (2019) The cytochrome b6f complex is not involved in cyanobacterial state transitions. Plant Cell 31: 911–931 PubMed PMC
Cardona T (2017) Photosystem II is a chimera of reaction centers. J Mol Evol 84: 149–151 PubMed
Cariti F, Chazaux M, Lefebvre-Legendre L, Longoni P, Ghysels B, Johnson X, Goldschmidt-Clermont M (2020) Regulation of light harvesting in Chlamydomonas reinhardtii; two protein phosphatases are involved in state transitions. Plant Physiol 183: 1749–1764 PubMed PMC
Cazzaniga S, Dall’Osto L, Szaub J, Scibilia L, Ballottari M, Purton S, Bassi R (2014) Domestication of the green alga Chlorella sorokiniana: reduction of antenna size improves light-use efficiency in a photobioreactor. Biotechnol Biofuels 7: 157. PubMed PMC
Chen JH, Chen ST, He NY, Wang QL, Zhao Y, Gao W, Guo FQ (2020) Nuclear-encoded synthesis of the D1 subunit of photosystem II increases photosynthetic efficiency and crop yield. Nat Plants 6: 570–580 PubMed
Chukhutsina V, Bersanini L, Aro EM, Van Amerongen H (2015) Cyanobacterial light-harvesting phycobilisomes uncouple from photosystem I during dark-to-light transitions. Sci Rep 5: 14193. PubMed PMC
Chukhutsina VU, Büchel C, Van Amerongen H (2014) Disentangling two non-photochemical quenching processes in Cyclotella meneghiniana by spectrally-resolved picosecond fluorescence at 77 K. Biochim Biophys Acta - Bioenerg 1837: 899–907 PubMed
Chukhutsina VU, Liu X, Xu P, Croce R (2020) Light-harvesting complex II is an antenna of photosystem I in dark-adapted plants. Nat Plants 6: 860–868 PubMed
Correa-Galvis V, Poschmann G, Melzer M, Stühler K, Jahns P (2016) PsbS interactions involved in the activation of energy dissipation in Arabidopsis. Nat Plants 2: 1–8 PubMed
Croce R, van Amerongen H (2020) Light harvesting in oxygenic photosynthesis: Structural biology meets spectroscopy. Science 369: eaay2058. PubMed
Croce R, van Amerongen H (2013) Light-harvesting in photosystem I. Photosynth Res 116: 153–166 PubMed PMC
Croce R, van Grondelle R, van Amerongen H, van Stokkum I (2018) Light Harvesting in Photosynthesis. CRC Press, Boca Raton, FL, pp 1–598
Dall’Osto L, Caner Ü, Cazzaniga S, Van Amerongen H (2014) Disturbed excitation energy transfer in Arabidopsis thaliana mutants lacking minor antenna complexes of photosystem II. Biochim Biophys Acta - Bioenerg 1837: 1981–1988 PubMed
Dall’Osto L, Cazzaniga S, Bressan M, Paleček D, Židek K, Niyogi KK, Fleming GR, Zigmantas D, Bassi R (2017) Two mechanisms for dissipation of excess light in monomeric and trimeric light-harvesting complexes. Nat Plants 3: 17033. PubMed
Dall’Osto L, Cazzaniga S, Zappone D, Bassi R (2020) Monomeric light harvesting complexes enhance excitation energy transfer from LHCII to PSII and control their lateral spacing in thylakoids. Biochim Biophys Acta - Bioenerg 1861: 148035. PubMed
Daskalakis V, Papadatos S, Kleinekathöfer U (2019) Fine tuning of the photosystem II major antenna mobility within the thylakoid membrane of higher plants. Biochim Biophys Acta - Biomembr 1861: 183059. PubMed
Daum B, Nicastro D, Austin J, Richard McIntosh J, Kühlbrandt W (2010) Arrangement of photosystem II and ATP synthase in chloroplast membranes of spinach and pea. Plant Cell 22: 1299–1312 PubMed PMC
Dekker JP, Boekema EJ (2005) Supramolecular organization of thylakoid membrane proteins in green plants. Biochim Biophys Acta-Bioenerg 1706: 12–39 PubMed
Delosme R, Olive J, Wollman FA (1996) Changes in light energy distribution upon state transitions: an in vivo photoacoustic study of the wild type and photosynthesis mutants from Chlamydomonas reinhardtii. Biochim Biophys Acta-Bioenerg 1273: 150–158
Demmig-Adams B, Garab G, Adams WW, Govindjee (2014) Non-Photochemical Quenching and Energy Dissipation in Plants, Algae and Cyanobacteria. Advances in Photosynthesis and Respiration. Springer US, Berlin, Germany
Dinc E, Tian L, Roy LM, Roth R, Goodenough U, Croce R (2016) LHCSR1 induces a fast and reversible pH-dependent fluorescence quenching in LHCII in Chlamydomonas reinhardtii cells. Proc Natl Acad Sci USA 113: 7673–7678 PubMed PMC
Dominici P, Caffarri S, Armenante F, Ceoldo S, Crimi M, Bassi R (2002) Biochemical properties of the PsbS subunit of photosystem II either purified from chloroplast or recombinant. J Biol Chem 277: 22750–22758 PubMed
Drop B, Webber-Birungi M, Yadav SKN, Filipowicz-Szymanska A, Fusetti F, Boekema EJ, Croce R (2014) Light-harvesting complex II (LHCII) and its supramolecular organization in Chlamydomonas reinhardtii. Biochim Biophys Acta-Bioenerg 1837: 63–72 PubMed
Elnour HMAM, Dietzel L, Ramanan C, Büchel C, van Grondelle R, Krüger TPJ (2018) Energy dissipation mechanisms in the FCPb light-harvesting complex of the diatom Cyclotella meneghiniana. Biochim Biophys Acta-Bioenerg 10: 1151–1160 PubMed
Engel BD, Schaffer M, Cuellar LK, Villa E, Plitzko JM, Baumeister W (2015) Native architecture of the Chlamydomonas chloroplast revealed by in situ cryo-electron tomography. eLife 2015: 1–29 PubMed PMC
Fan M, Li M, Liu Z, Cao P, Pan X, Zhang H, Zhao X, Zhang J, Chang W (2015) Crystal structures of the PsbS protein essential for photoprotection in plants. Nat Struct Mol Biol 22: 729–35 PubMed
Field CB, Behrenfeld MJ, Randerson JT, Falkowski P (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281: 237–240 PubMed
Flori S, Jouneau PH, Bailleul B, Gallet B, Estrozi LF, Moriscot C, Bastien O, Eicke S, Schober A, Bártulos CR, et al. (2017) Plastid thylakoid architecture optimizes photosynthesis in diatoms. Nat Commun 8: 15885. PubMed PMC
Giovagnetti V, Ruban AV. (2018) The evolution of the photoprotective antenna proteins in oxygenic photosynthetic eukaryotes. Biochem Soc Trans 46: 1263–1277 PubMed
Glauser M, Bryant DA, Frank G, Wehrli E, Rusconi SS, Sidler W, Zuber H (1992) Phycobilisome structure in the cyanobacteria Mastigocladus laminosus and Anabaena sp. PCC 7120. Eur J Biochem 205: 907–915 PubMed
Głowacka K, Kromdijk J, Kucera K, Xie J, Cavanagh AP, Leonelli L, Leakey ADB, Ort DR, Niyogi KK, Long SP (2018) Photosystem II subunit S overexpression increases the efficiency of water use in a field-grown crop. Nat Commun 9: 868. PubMed PMC
Goss R, Lepetit B (2015) Biodiversity of NPQ. J Plant Physiol 172: 13–32 PubMed
Grebe S, Trotta A, Bajwa AA, Mancini I, Bag P, Jansson S, Tikkanen M, Aro E-M (2020) Specific thylakoid protein phosphorylations are prerequisites for overwintering of Norway spruce (Picea abies) photosynthesis. Proc Natl Acad Sci USA 117: 17499–17509 PubMed PMC
Grebe S, Trotta A, Bajwa AA, Suorsa M, Gollan PJ, Jansson S, Tikkanen M, Aro EM (2019) The unique photosynthetic apparatus of pinaceae: analysis of photosynthetic complexes in Picea abies. J Exp Bot 70: 3211–3226 PubMed PMC
Guardini Z, Bressan M, Caferri R, Bassi R, Dall’Osto L (2020) Identification of a pigment cluster catalysing fast photoprotective quenching response in CP29. Nat Plants 6: 303–313 PubMed
Gundermann K, Schmidt M, Weisheit W, Mittag M, Büchel C (2013) Identification of several sub-populations in the pool of light harvesting proteins in the pennate diatom Phaeodactylum tricornutum. Biochim Biophys Acta - Bioenerg 1827: 303–310 PubMed
Harris D, Tal O, Jallet D, Wilson A, Kirilovsky D, Adir N (2016) Orange carotenoid protein burrows into the phycobilisome to provide photoprotection. Proc Natl Acad Sci USA 113: E1655–E1662 PubMed PMC
Harris D, Wilson A, Muzzopappa F, Sluchanko NN, Friedrich T, Maksimov EG, Kirilovsky D, Adir N (2018) Structural rearrangements in the C-terminal domain homolog of Orange Carotenoid Protein are crucial for carotenoid transfer. Commun Biol 1: 125. PubMed PMC
Havaux M (1998) Carotenoids as membrane stabilizers in chloroplasts. Trends Plant Sci 3: 147–151
Holt NE, Zigmantas D, Valkunas L, Li XP, Niyogi KK, Fleming GR (2005) Carotenoid cation formation and the regulation of photosynthetic light harvesting. Science 307: 433–436 PubMed
Hubbart S, Smillie IRA, Heatley M, Swarup R, Foo CC, Zhao L, Murchie EH (2018) Enhanced thylakoid photoprotection can increase yield and canopy radiation use efficiency in rice. Commun Biol 1: 1–12 PubMed PMC
Iermak I, Vink J, Bader AN, Wientjes E, Van Amerongen H (2016) Visualizing heterogeneity of photosynthetic properties of plant leaves with two-photon fluorescence lifetime imaging microscopy. Biochim Biophys ActaBioenerg 1857: 1473–1478 PubMed
Jansson S (1999) A guide to the Lhc genes and their relatives in Arabidopsis. Trends Plant Sci 4: 236–240 PubMed
Jansson S, Stefánsson H, Nyström U, Gustafsson P, Albertsson PÅ (1997) Antenna protein composition of PS I and PS II in thylakoid sub-domains. Biochim Biophys Acta-Bioenerg 1320: 297–309
Johnson MP, Wientjes E (2019) The relevance of dynamic thylakoid organisation to photosynthetic regulation. Biochim Biophys Acta–Bioenerg 1861: 148039. PubMed
Johnson MP, Zia A, Ruban AV (2012) Elevated ΔpH restores rapidly reversible photoprotective energy dissipation in Arabidopsis chloroplasts deficient in lutein and xanthophyll cycle activity. Planta 235: 193–204 PubMed
Jordan P, Fromme P, Witt HT, Klukas O, Saenger W, Krauß N (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature 411: 909. PubMed
Kerfeld CA, Melnicki MR, Sutter M, Dominguez-Martin MA (2017) Structure, function and evolution of the cyanobacterial orange carotenoid protein and its homologs. New Phytol 215: 937–951 PubMed
Kirst H, Shen Y, Vamvaka E, Betterle N, Xu D, Warek U, Strickland JA, Melis A (2018) Downregulation of the CpSRP43 gene expression confers a truncated light-harvesting antenna (TLA) and enhances biomass and leaf-to-stem ratio in Nicotiana tabacum canopies. Planta 248: 139–154 PubMed
Kouřil R, Nosek L, Bartoš J, Boekema EJ, Ilík P (2016) Evolutionary loss of light‐harvesting proteins Lhcb6 and Lhcb3 in major land plant groups – break‐up of current dogma. New Phytol 210: 808–814 PubMed
Kouřil R, Nosek L, Opatíková M, Arshad R, Semchonok DA, Chamrád I, Lenobel R, Boekema EJ, Ilík P (2020) Unique organization of photosystem II supercomplexes and megacomplexes in Norway spruce. Plant J 104: 215–225 PubMed PMC
Kouřil R, Nosek L, Semchonok D, Boekema EJ, Ilík P (2018) Organization of plant photosystem II and photosystem I supercomplexes. Subcell Biochem 87: 259–286 PubMed
Kouřil R, Oostergetel GT, Boekema EJ (2011) Fine structure of granal thylakoid membrane organization using cryo electron tomography. Biochim Biophys Acta-Bioenerg 1807: 368–374 PubMed
Kouřil R, Zygadlo A, Arteni AA, De Wit CD, Dekker JP, Jensen PE, Scheller HV, Boekema EJ (2005) Structural characterization of a complex of photosystem I and light-harvesting complex II of Arabidopsis thaliana. Biochemistry 44: 10935–10940 PubMed
Krishnan-Schmieden M, Konold PE, Kennis JTM, Pandit A (2021) The molecular pH-response mechanism of the plant light-stress sensor PsbS. Nat Commun 12: 2291. PubMed PMC
Kromdijk J, Głowacka K, Leonelli L, Gabilly ST, Iwai M, Niyogi KK, Long SP (2016) Improving photosynthesis and crop productivity by accelerating recovery from photoprotection. Science 354: 857–861 PubMed
Lambrev PH, Akhtar P (2019) Macroorganisation and flexibility of thylakoid membranes. Biochem J 476: 2981–3018 PubMed
Leoni C, Pietrzykowska M, Kiss AZ, Suorsa M, Ceci LR, Aro EM, Jansson S (2013) Very rapid phosphorylation kinetics suggest a unique role for Lhcb2 during state transitions in Arabidopsis. Plant J 76: 236–246 PubMed PMC
Lepetit B, Gélin G, Lepetit M, Sturm S, Vugrinec S, Rogato A, Kroth PG, Falciatore A, Lavaud J (2017) The diatom Phaeodactylum tricornutum adjusts nonphotochemical fluorescence quenching capacity in response to dynamic light via fine-tuned Lhcx and xanthophyll cycle pigment synthesis. New Phytol 214: 205–218 PubMed
Levitan O, Chen M, Kuang X, Cheong KY, Jiang J, Banal M, Nambiar N, Gorbunov MY, Ludtke SJ, Falkowski PG, et al. (2019) Structural and functional analyses of photosystem II in the marine diatom Phaeodactylum tricornutum. Proc Natl Acad Sci USA 116: 17316–17322 PubMed PMC
Li XP, Gilmore AM, Caffarri S, Bassi R, Golan T, Kramer D, Niyogi KK (2004) Regulation of photosynthetic light harvesting involves intrathylakoid lumen pH sensing by the PsbS protein. J Biol Chem 279: 22866–22874 PubMed
Li Z, Ahn TK, Avenson TJ, Ballottari M, Cruz JA, Kramer DM, Bassi R, Fleming GR, Keasling JD, Niyogi KK (2009) Lutein accumulation in the absence of zeaxanthin restores nonphotochemical quenching in the Arabidopsis thaliana npq1 mutant. Plant Cell 21: 1798–1812 PubMed PMC
Liguori N, Campos SRR, Baptista AM, Croce R (2019) Molecular anatomy of plant photoprotective switches: the sensitivity of PsbS to the environment, residue by residue. J Phys Chem Lett 10: 1737–1742 PubMed PMC
Liguori N, Roy LM, Opacic M, Durand G, Croce R (2013) Regulation of light harvesting in the green alga Chlamydomonas reinhardtii: the c-terminus of lhcsr is the knob of a dimmer switch. J Am Chem Soc 135: 18339–18342 PubMed
Liu H, Zhang MM, Weisz DA, Cheng M, Pakrasi HB, Blankenship RE (2021) Structure of cyanobacterial phycobilisome core revealed by structural modeling and chemical cross-linking. Sci Adv 7: 1–11 PubMed PMC
López-Igual R, Wilson A, Leverenz RL, Melnicki MR, de Carbon CB, Sutter M, Turmo A, Perreau F, Kerfeld CA, Kirilovsky D (2016) Different functions of the paralogs to the N-terminal domain of the orange carotenoid protein in the cyanobacterium Anabaena sp. PCC 7120. Plant Physiol 171: 1852–1866 PubMed PMC
Ma J, You X, Sun S, Wang X, Qin S, Sui SF (2020) Structural basis of energy transfer in Porphyridium purpureum phycobilisome. Nature 579: 146–151 PubMed
Mahbub M, Hemm L, Yang Y, Kaur R, Carmen H, Engl C, Huokko T, Riediger M, Watanabe S, Liu LN, et al. (2020) mRNA localization, reaction centre biogenesis and thylakoid membrane targeting in cyanobacteria. Nat Plants 6: 1179–1191 PubMed
Mascoli V, Gelzinis A, Chmeliov J, Valkunas L, Croce R (2020a) Light-harvesting complexes access analogue emissive states in different environments. Chem Sci 11: 5697–5709 PubMed PMC
Mascoli V, Liguori N, Xu P, Roy LM, van Stokkum IHM, Croce R (2019) Capturing the quenching mechanism of light-harvesting complexes of plants by zooming in on the ensemble. Chem 5: 2900–2912
Mascoli V, Novoderezhkin V, Liguori N, Xu P, Croce R (2020b) Design principles of solar light harvesting in plants: functional architecture of the monomeric antenna CP29. Biochim Biophys Acta-Bioenerg 1861: 148156. PubMed
Mazor Y, Borovikova A, Caspy I, Nelson N (2017) Structure of the plant photosystem i supercomplex at 2.6 Å resolution. Nat Plants 3: 1–9 PubMed
Van De Meene AML, Hohmann-Marriott MF, Vermaas WFJ, Roberson RW (2006) The three-dimensional structure of the cyanobacterium Synechocystis sp. PCC 6803. Arch Microbiol 184: 259–270 PubMed
Melnicki MR, Leverenz RL, Sutter M, López-Igual R, Wilson A, Pawlowski EG, Perreau F, Kirilovsky D, Kerfeld CA (2016) Structure, diversity, and evolution of a new family of soluble carotenoid-binding proteins in cyanobacteria. Mol Plant 9: 1379–1394 PubMed
Moya I, Silvestri M, Vallon O, Cinque G, Bassi R (2001) Time-resolved fluorescence analysis of the photosystem II antenna proteins in detergent micelles and liposomes. Biochemistry 40: 12552–12561 PubMed
Mullineaux CW (2014) Electron transport and light-harvesting switches in cyanobacteria. Front Plant Sci 5: 1–6 PubMed PMC
Mullineaux CW, Sarcina M (2002) Probing the dynamics of photosynthetic membranes with fluorescence recovery after photobleaching. Trends Plant Sci 7: 237–240 PubMed
Muzzopappa F, Kirilovsky D (2020) Changing color for photoprotection: the orange carotenoid protein. Trends Plant Sci 25: 92–104 PubMed
Muzzopappa F, Wilson A, Kirilovsky D (2019) Interdomain interactions reveal the molecular evolution of the orange carotenoid protein. Nat Plants 5: 1076–1086 PubMed
Muzzopappa F, Wilson A, Yogarajah V, Cot S, Perreau F, Montigny C, de Carbon CB, Kirilovsky D (2017) Paralogs of the C-terminal domain of the cyanobacterial orange carotenoid protein are carotenoid donors to helical carotenoid proteins. Plant Physiol 175: 1283–1303 PubMed PMC
Nagao R, Kato K, Ifuku K, Suzuki T, Kumazawa M, Uchiyama I, Kashino Y, Dohmae N, Akimoto S, Shen JR, et al. (2020) Structural basis for assembly and function of a diatom photosystem I-light-harvesting supercomplex. Nat Commun 11: 2481 . PubMed PMC
Nagao R, Kato K, Suzuki T, Ifuku K, Uchiyama I, Kashino Y, Dohmae N, Akimoto S, Shen JR, Miyazaki N, et al. (2019) Structural basis for energy harvesting and dissipation in a diatom PSII–FCPII supercomplex. Nat Plants 5: 890–901 PubMed
Nelson N (2009) Plant photosystem I – the most efficient nano-photochemical machine. J Nanosci Nanotechnol 9: 1709–1713 PubMed
Nickelsen J, Rengstl B (2013) Photosystem II assembly: from cyanobacteria to plants. Annu Rev Plant Biol 64: 609–635 PubMed
Nickelsen J, Zerges W (2013) Thylakoid biogenesis has joined the new era of bacterial cell biology. Front Plant Sci 4: 1–4 PubMed PMC
Nicol L, Croce R (2021) The PsbS protein and low pH are necessary and sufficient to induce quenching in the light-harvesting complex of plants LHCII. Sci Rep 11: 1–8 PubMed PMC
Nicol L, Nawrocki WJ, Croce R (2019) Disentangling the sites of non-photochemical quenching in vascular plants. Nat Plants 5: 1177–1183 PubMed PMC
Nixon PJ, Michoux F, Yu J, Boehm M, Komenda J (2010) Recent advances in understanding the assembly and repair of photosystem II. Ann Bot 106: 1–16 PubMed PMC
Van Oort B, Roy LM, Xu P, Lu Y, Karcher D, Bock R, Croce R (2018) Revisiting the role of xanthophylls in nonphotochemical quenching. J Phys Chem Lett 9: 346–352 PubMed
Öquist G, Huner NPA (2003) Photosynthesis of overwintering evergreen plants. Annu Rev Plant Biol 54: 329–355 PubMed
Ort DR, Merchant SS, Alric J, Barkan A, Blankenship RE, Bock R, Croce R, Hanson MR, Hibberd JM, Long SP, et al. (2015) Redesigning photosynthesis to sustainably meet global food and bioenergy demand. Proc Natl Acad Sci USA 112: 1–8 PubMed PMC
Owens TG (1986) Photosystem II hetrogenity in the marine diatom Phaeodactylum tricornutum. Photochem Photobiol 43: 535–544
Pan X, Cao P, Su X, Liu Z, Li M (2020) Structural analysis and comparison of light-harvesting complexes I and II. Biochim Biophys Acta-Bioenerg 1861: 148038. PubMed
Park S, Fischer AL, Li Z, Bassi R, Niyogi KK, Fleming GR (2017) Snapshot transient absorption spectroscopy of carotenoid radical cations in high-light-acclimating thylakoid membranes. J Phys Chem Lett 8: 5548–5554 PubMed
Park S, Fischer AL, Steen CJ, Iwai M, Morris JM, Walla PJ, Niyogi KK, Fleming GR (2018) Chlorophyll-carotenoid excitation energy transfer in high-light-exposed thylakoid membranes investigated by snapshot transient absorption spectroscopy. J Am Chem Soc 140: 11965–11973 PubMed
Pascal AA, Liu Z, Broess K, van Oort B, van Amerongen H, Wang C, Horton P, Robert B, Chang W, Ruban A (2005) Molecular basis of photoprotection and control of photosynthetic light-harvesting. Nature 436: 134–137 PubMed
Pawlak K, Paul S, Liu C, Reus M, Yang C, Holzwarth AR (2020) On the PsbS-induced quenching in the plant major light-harvesting complex LHCII studied in proteoliposomes. Photosynth Res 144: 195–208 PubMed
Peers G, Truong TB, Ostendorf E, Busch A, Elrad D, Grossman AR, Hippler M, Niyogi KK (2009) An ancient light-harvesting protein is critical for the regulation of algal photosynthesis. Nature 462: 518–21 PubMed
Pi X, Zhao S, Wang W, Liu D, Xu C, Han G, Kuang T, Sui SF, Shen JR (2019) The pigment-protein network of a diatom photosystem II–light-harvesting antenna supercomplex. Science 365: eaax4406 PubMed
Pietrzykowska M, Suorsa M, Semchonok DA, Tikkanen M, Boekema EJ, Aro EM, Jansson S (2014) The light-harvesting chlorophyll a/b binding proteins Lhcb1 and Lhcb2 play complementary roles during state transitions in Arabidopsis. Plant Cell 26: 3646–3660 PubMed PMC
Pinnola A, Alboresi A, Nosek L, Semchonok DA, Rameez A, Trotta A, Barozzi F, Kouřil R, Dall’Osto L, Aro EM, et al. (2018) A LHCB9-dependent photosystem I megacomplex induced under low light in Physcomitrella patens. Nat Plants 4: 910–919 PubMed
Pinnola A, Staleva-Musto H, Capaldi S, Ballottari M, Bassi R, Polívka T (2016) Electron transfer between carotenoid and chlorophyll contributes to quenching in the LHCSR1 protein from Physcomitrella patens. Biochim Biophys Acta - Bioenerg 1857: 1870–1878 PubMed
Pisareva T, Kwon J, Oh J, Kim S, Ge C, Wieslander Å, Choi JS, Norling B (2011) Model for membrane organization and protein sorting in the cyanobacterium Synechocystis sp. PCC 6803 inferred from proteomics and multivariate sequence analyses. J Proteome Res 10: 3617–3631 PubMed
Polukhina I, Fristedt R, Dinc E, Cardol P, Croce R (2016) Carbon supply and photoacclimation cross talk in the green alga Chlamydomonas reinhardtii. Plant Physiol 172: 1494–1505 PubMed PMC
Premvardhan L, Robert B, Beer A, Büchel C (2010) Pigment organization in fucoxanthin chlorophyll a/c2 proteins (FCP) based on resonance Raman spectroscopy and sequence analysis. Biochim Biophys Acta-Bioenerg 1797: 1647–1656 PubMed
Pribil M, Labs M, Leister D (2014) Structure and dynamics of thylakoids in land plants. J Exp Bot 65: 1955–1972 PubMed
Pribil M, Pesaresi P, Hertle A, Barbato R, Leister D (2010) Role of plastid protein phosphatase TAP38 in LHCII dephosphorylation and thylakoid electron flow. PLoS Biol 8: e1000288. PubMed PMC
Qin X, Pi X, Wang W, Han G, Zhu L, Liu M, Cheng L, Shen JR, Kuang T, Sui SF (2019) Structure of a green algal photosystem I in complex with a large number of light-harvesting complex I subunits. Nat Plants 5: 263–272 PubMed
Qin X, Suga M, Kuang T, Shen JR (2015) Structural basis for energy transfer pathways in the plant PSI-LHCI supercomplex. Science 348: 989–995 PubMed
Le Quiniou C, Tian L, Drop B, Wientjes E, Van Stokkum IHM, Van Oort B, Croce R (2015) PSI-LHCI of Chlamydomonas reinhardtii: Increasing the absorption cross section without losing efficiency. Biochim Biophys Acta - Bioenerg 1847: 458–467 PubMed PMC
Rakhimberdieva MG, Elanskaya IV, Vermaas WFJ, Karapetyan NV (2010) Carotenoid-triggered energy dissipation in phycobilisomes of Synechocystis sp. PCC 6803 diverts excitation away from reaction centers of both photosystems. Biochim Biophys Acta-Bioenerg 1797: 241–249 PubMed
Ranjbar Choubeh R, Bar-Eyal L, Paltiel Y, Keren N, Struik PC, van Amerongen H (2020) Photosystem II core quenching in desiccated Leptolyngbya ohadii. Photosynth Res 143: 13–18 PubMed PMC
Rast A, Schaffer M, Albert S, Wan W, Pfeffer S, Beck F, Plitzko JM, Nickelsen J, Engel BD (2019) Biogenic regions of cyanobacterial thylakoids form contact sites with the plasma membrane. Nat Plants 5: 436–446 PubMed
Röding A, Boekema E, Büchel C (2018) The structure of FCPb, a light-harvesting complex in the diatom Cyclotella meneghiniana. Photosynth Res 135: 203–211 PubMed
Ruban AV, Berera R, Ilioaia C, van Stokkum IHM, Kennis JTM, Pascal AA, van Amerongen H, Robert B, Horton P, van Grondelle R (2007) Identification of a mechanism of photoprotective energy dissipation in higher plants. Nature 450: 575–578 PubMed
Ruban AV, Johnson MP (2010) Xanthophylls as modulators of membrane protein function. Arch Biochem Biophys 504: 78–85 PubMed
Ruban AV (2016) Nonphotochemical chlorophyll fluorescence quenching: mechanism and effectiveness in protecting plants from photodamage. Plant Physiol 170: 1903–16 PubMed PMC
Ruban AV, Wilson S (2020) The mechanism of non-photochemical quenching in plants: localization and driving forces. Plant Cell Physiol 62: 1–10 PubMed
Ruiz J, Olivieri G, De Vree J, Bosma R, Willems P, Reith JH, Eppink MHM, Kleinegris DMM, Wijffels RH, Barbosa MJ (2016) Towards industrial products from microalgae. Energy Environ Sci 9: 3036–3043
Rumak I, Mazur R, Gieczewska K, Kozioł-Lipińska J, Kierdaszuk B, Michalski WP, Shiell BJ, Venema JH, Vredenberg WJ, Mostowska A, et al. (2012) Correlation between spatial (3D) structure of pea and bean thylakoid membranes and arrangement of chlorophyll-protein complexes. BMC Plant Biol 12: 1–18 PubMed PMC
Saccon F, Durchan M, Bína D, Duffy CDP, Ruban AV, Polívka T (2020a) A protein environment-modulated energy dissipation channel in LHCII antenna complex. iScience 23: 101430. PubMed PMC
Saccon F, Durchan M, Polívka T, Ruban AV. (2020b) The robustness of the terminal emitter site in major LHCII complexes controls xanthophyll function during photoprotection. Photochem Photobiol Sci 19: 1308–1318 PubMed
Saccon F, Giovagnetti V, Shukla MK, Ruban AV (2020c) Rapid regulation of photosynthetic light harvesting in the absence of minor antenna and reaction centre complexes. J Exp Bot 71: 3626–3637 PubMed PMC
Sacharz J, Giovagnetti V, Ungerer P, Mastroianni G, Ruban AV (2017) The xanthophyll cycle affects reversible interactions between PsbS and light-harvesting complex II to control non-photochemical quenching. Nat Plants 3: 16225. PubMed
Scott M, McCollum C, Vasil’ev S, Crozier C, Espie GS, Krol M, Huner NPA, Bruce D (2006) Mechanism of the down regulation of photosynthesis by blue light in the cyanobacterium Synechocystis sp. PCC 6803. Biochemistry 45: 8952–8958 PubMed
Selo TT, Zhang L, Knoppová J, Komenda J, Norling B (2016) Photosystem II assembly steps take place in the thylakoid membrane of the cyanobacterium Synechocystis sp. PCC6803. Plant Cell Physiol 57: 95–104 PubMed
Shapiguzov A, Ingelsson B, Samol I, Andres C, Kessler F, Rochaix J-D, Vener AV, Goldschmidt-Clermont M (2010) The PPH1 phosphatase is specifically involved in LHCII dephosphorylation and state transitions in Arabidopsis. Proc Natl Acad Sci USA 107: 4782–4787 PubMed PMC
Shen L, Huang Z, Chang S, Wang W, Wang J, Kuang T, Han G, Shen JR, Zhang X (2019) Structure of a C2S2M2N2-type PSII–LHCII supercomplex from the green alga Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 116: 21246–21255 PubMed PMC
Sheng X, Watanabe A, Li A, Kim E, Song C, Murata K, Song D, Minagawa J, Liu Z (2019) Structural insight into light harvesting for photosystem II in green algae. Nat Plants 5: 1320–1330 PubMed
Simkin AJ, López-Calcagno PE, Raines CA (2019) Feeding the world: Improving photosynthetic efficiency for sustainable crop production. J Exp Bot 70: 1119–1140 PubMed PMC
Slattery RA, Walker BJ, Weber APM, Ort DR (2018) The impacts of fluctuating light on crop performance. Plant Physiol 176: 990–1003 PubMed PMC
Slonimskiy YB, Slonimskiy YB, Maksimov EG, Maksimov EG, Sluchanko NN, Sluchanko NN (2020) Fluorescence recovery protein: a powerful yet underexplored regulator of photoprotection in cyanobacteria. Photochem Photobiol Sci 19: 763–775 PubMed
Son M, Pinnola A, Gordon SC, Bassi R, Schlau-Cohen GS (2020a) Observation of dissipative chlorophyll-to-carotenoid energy transfer in light-harvesting complex II in membrane nanodiscs. Nat Commun 11: 1295. PubMed PMC
Son M, Pinnola A, Schlau-Cohen GS (2020b) Zeaxanthin independence of photophysics in light-harvesting complex II in a membrane environment. Biochim Biophys Acta-Bioenerg 1861: 148115. PubMed
Steinbeck J, Ross I, Rothnagel R, Gäbelein P, Schulze S, Giles N, Ali R, Drysdale R, Sierecki E, Gambin Y, et al. (2018) Structure of a PSI–LHCI–cyt b6f supercomplex in Chlamydomonas reinhardtii promoting cyclic electron flow under anaerobic conditions. Proc Natl Acad Sci USA 115: 10517–10522 PubMed PMC
Su X, Ma J, Wei X, Cao P, Zhu D, Chang W, Liu Z, Zhang X, Li M (2017) Structure and assembly mechanism of plant C2S2M2-type PSII-LHCII supercomplex. Science 357: 815–820 PubMed
Taddei L, Chukhutsina VU, Lepetit B, Stella GR, Bassi R, van Amerongen H, Bouly JP, Jaubert M, Finazzi G, Falciatore A (2018) Dynamic changes between two LHCX-related energy quenching sites control diatom photoacclimation. Plant Physiol 177: 953–965 PubMed PMC
Tauschel HD, Drews G (1967) Thylakoidmorphogenese bei Rhodopseudomonas palustris. Arch Mikrobiol 59: 381–404 PubMed
Tian L, Nawrocki WJ, Liu X, Polukhina I, van Stokkum IHM, Croce R (2019) pH dependence, kinetics and light-harvesting regulation of nonphotochemical quenching in Chlamydomonas.Proc Natl Acad Sci USA 116: 8320–8325 PubMed PMC
Tian L, Van Stokkum IHM, Koehorst RBM, Jongerius A, Kirilovsky D, Van Amerongen H (2011) Site, rate, and mechanism of photoprotective quenching in cyanobacteria. J Am Chem Soc 133: 18304–18311 PubMed
Townsend AJ, Saccon F, Giovagnetti V, Wilson S, Ungerer P, Ruban AV (2018) The causes of altered chlorophyll fluorescence quenching induction in the Arabidopsis mutant lacking all minor antenna complexes. Biochim Biophys Acta-Bioenerg 1859: 666–675 PubMed
Turk M, Baumeister W (2020) The promise and the challenges of cryo-electron tomography. FEBS Lett 594: 3243–3261 PubMed
Tutkus M, Saccon F, Chmeliov J, Venckus O, Ciplys I, Ruban AV, Valkunas L (2019) Single-molecule microscopy studies of LHCII enriched in Vio or Zea. Biochim Biophys Acta-Bioenerg 1860: 499–507 PubMed
Umena Y, Kawakami K, Shen J-RR, Kamiya N (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473: 55. PubMed
Ünlü C, Drop B, Croce R, van Amerongen H (2014) State transitions in Chlamydomonas reinhardtii strongly modulate the functional size of photosystem II but not of photosystem I. Proc Natl Acad Sci USA 111: 3460–3465 PubMed PMC
Van Bezouwen LS, Caffarri S, Kale R, Kouřil R, Thunnissen AMWH, Oostergetel GT, Boekema EJ (2017) Subunit and chlorophyll organization of the plant photosystem II supercomplex. Nat Plants 3: 1–11 PubMed
van den Berg TE, Arshad R, Nawrocki WJ, Boekema EJ, Kouril R, Croce R (2020) PSI of the colonial alga Botryococcus braunii has an unusually large antenna size. Plant Physiol 184: 2040–2051 PubMed PMC
Vener AV (2007) Environmentally modulated phosphorylation and dynamics of proteins in photosynthetic membranes. Biochim Biophys Acta 1767: 449–457 PubMed
Vener AV, Van Kan PJM, Gal A, Andersson B, Ohad I (1995) Activation/deactivation cycle of redox-controlled thylakoid protein phosphorylation. Role of plastoquinol bound to the reduce cytochrome bf complex. J Biol Chem 270: 25225–25232 PubMed
Verhoeven A (2014) Sustained energy dissipation in winter evergreens. New Phytol 201: 57–65
Wang W, Yu L-J, Xu C, Tomizaki T, Zhao S, Umena Y, Chen X, Qin X, Xin Y, Suga M, et al. (2021) Structural basis for blue-green light harvesting and energy dissipation in diatoms. Science 363: eaav0365 PubMed
Weis BL, Schleiff E, Zerges W (2013) Protein targeting to subcellular organelles via mRNA localization. Biochim Biophys ActaMol Cell Res 1833: 260–273 PubMed
Wientjes E, Van Amerongen H, Croce R (2013) Quantum yield of charge separation in photosystem II: functional effect of changes in the antenna size upon light acclimation. J Phys Chem B 117: 11200–11208 PubMed
Wientjes E, Philippi J, Borst JW, van Amerongen H (2017) Imaging the Photosystem I/Photosystem II chlorophyll ratio inside the leaf. Biochim Biophys Acta-Bioenerg 1858: 259–265 PubMed
Wietrzynski W, Schaffer M, Tegunov D, Albert S, Kanazawa A, Plitzko JM, Baumeister W, Engel BD (2020) Charting the native architecture of Chlamydomonas thylakoid membranes with single-molecule precision. eLife 9: e53740. PubMed PMC
Wilk L, Grunwald M, Liao P-N, Walla PJ, Kuhlbrandt W (2013) Direct interaction of the major light-harvesting complex II and PsbS in nonphotochemical quenching. Proc Natl Acad Sci USA 110: 5452–5456 PubMed PMC
Wollman FA, Lemaire C (1988) Studies on kinase-controlled state transitions in Photosystem II and b6f mutants from Chlamydomonas reinhardtii which lack quinone-binding proteins. Biochim Biophys Acta-Bioenerg 933: 85–94
Wood WHJ, Barnett SFH, Flannery S, Hunter CN, Johnson MP (2019) Dynamic thylakoid stacking is regulated by LHCII phosphorylation but not its interaction with PSI. Plant Physiol 180: 2152–2166
Wood WHJ, MacGregor-Chatwin C, Barnett SFH, Mayneord GE, Huang X, Hobbs JK, Hunter CN, Johnson MP (2018) Dynamic thylakoid stacking regulates the balance between linear and cyclic photosynthetic electron transfer. Nat Plants 4: 116–127 PubMed
Xu C, Pi X, Huang Y, Han G, Chen X, Qin X, Huang G, Zhao S, Yang Y, Kuang T, et al. (2020) Structural basis for energy transfer in a huge diatom PSI-FCPI supercomplex. Nat Commun 11: 5081. PubMed PMC
Xu P, Tian L, Kloz M, Croce R (2015) Molecular insights into Zeaxanthin-dependent quenching in higher plants. Sci Rep 5: 13679. PubMed PMC
Yadav KNS, Semchonok DA, Nosek L, Kouřil R, Fucile G, Boekema EJ, Eichacker LA (2017) Supercomplexes of plant photosystem I with cytochrome b6f, light-harvesting complex II and NDH. Biochim Biophys Acta-Bioenerg 1858: 12–20 PubMed
Zak E, Norling B, Maitra R, Huang F, Andersson B, Pakrasi HB (2001) The initial steps of biogenesis of cyanobacterial photosystems occur in plasma membranes. Proc Natl Acad Sci USA 98: 13443–13448 PubMed PMC
Zhang J, Ma J, Liu D, Qin S, Sun S, Zhao J, Sui SF (2017) Structure of phycobilisome from the red alga Griffithsia pacifica. Nature 551: 57–63 PubMed