A LHCB9-dependent photosystem I megacomplex induced under low light in Physcomitrella patens
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30374091
DOI
10.1038/s41477-018-0270-2
PII: 10.1038/s41477-018-0270-2
Knihovny.cz E-zdroje
- MeSH
- elektronová mikroskopie MeSH
- fotosystém I - proteinový komplex metabolismus účinky záření ultrastruktura MeSH
- fotosystém II - proteinový komplex metabolismus MeSH
- mechy metabolismus účinky záření MeSH
- proteomika MeSH
- světlo MeSH
- světlosběrné proteinové komplexy metabolismus účinky záření ultrastruktura MeSH
- tylakoidy metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fotosystém I - proteinový komplex MeSH
- fotosystém II - proteinový komplex MeSH
- světlosběrné proteinové komplexy MeSH
Photosystem I of the moss Physcomitrella patens has special properties, including the capacity to undergo non-photochemical fluorescence quenching. We studied the organization of photosystem I under different light and carbon supply conditions in wild-type moss and in moss with the lhcb9 (light-harvesting complex) knockout genotype, which lacks an antenna protein endowed with red-shifted absorption forms. Wild-type moss, when grown on sugars and in low light, accumulated LHCB9 proteins and a large form of the photosystem I supercomplex, which, besides the canonical four LHCI subunits, included a LHCII trimer and four additional LHC monomers. The lhcb9 knockout produced an angiosperm-like photosystem I supercomplex with four LHCI subunits irrespective of the growth conditions. Growth in the presence of sublethal concentrations of electron transport inhibitors that caused oxidation or reduction of the plastoquinone pool prevented or promoted, respectively, the accumulation of LHCB9 and the formation of the photosystem I megacomplex. We suggest that LHCB9 is a key subunit regulating the antenna size of photosystem I and the ability to avoid the over-reduction of plastoquinone: this condition is potentially dangerous in the shaded and sunfleck-rich environment typical of mosses, whose plastoquinone pool is reduced by both photosystem II and the oxidation of sugar substrates.
Department of Biology and Biotechnology 'L Spallanzani' University of Pavia Pavia Italy
Department of Biotechnology University of Verona Verona Italy
Molecular Plant Biology Department of Biochemistry University of Turku Turku Finland
Citace poskytuje Crossref.org
Unique structural attributes of the PSI-NDH supercomplex in Physcomitrium patens
A kaleidoscope of photosynthetic antenna proteins and their emerging roles
Revealing the architecture of the photosynthetic apparatus in the diatom Thalassiosira pseudonana
PSI of the Colonial Alga Botryococcus braunii Has an Unusually Large Antenna Size