Unique structural attributes of the PSI-NDH supercomplex in Physcomitrium patens

. 2024 Dec ; 120 (5) : 2226-2237. [epub] 20241103

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39488736

Grantová podpora
CZ.02.01.01/00/22_008/0004624 the Operational Program Johannes Amos Comenius

Cyclic electron transport around photosystem I (PSI) is essential for the protection of the photosynthetic apparatus in plants under diverse light conditions. This process is primarily mediated by Proton Gradient Regulation 5 protein/Proton Gradient Regulation 5-like photosynthetic phenotype 1 protein (PGR5/PGRL1) and NADH dehydrogenase-like complex (NDH). In angiosperms, NDH interacts with two PSI complexes through distinct monomeric antennae, LHCA5 and LHCA6, which is crucial for its higher stability under variable light conditions. This interaction represents an advanced evolutionary stage and offers limited insight into the origin of the PSI-NDH supercomplex in evolutionarily older organisms. In contrast, the moss Physcomitrium patens (Pp), which retains the lhca5 gene but lacks the lhca6, offers a glimpse into an earlier evolutionary stage of the PSI-NDH supercomplex. Here we present structural evidence of the Pp PSI-NDH supercomplex formation by single particle electron microscopy, demonstrating the unique ability of Pp to bind a single PSI in two different configurations. One configuration closely resembles the angiosperm model, whereas the other exhibits a novel PSI orientation, rotated clockwise. This structural flexibility in Pp is presumably enabled by the variable incorporation of LHCA5 within PSI and is indicative of an early evolutionary adaptation that allowed for greater diversity at the PSI-NDH interface. Our findings suggest that this variability was reduced as the structural complexity of the NDH complex increased in vascular plants, primarily angiosperms. This study not only clarifies the evolutionary development of PSI-NDH supercomplexes but also highlights the dynamic nature of the adaptive mechanisms of plant photosynthesis.

Zobrazit více v PubMed

Alboresi, A. , Caffarri, S. , Nogue, F. , Bassi, R. & Morosinotto, T. (2008) In silico and biochemical analysis of Physcomitrella patens photosynthetic antenna: identification of subunits which evolved upon land adaptation. PLoS One, 3, e2033. Available from: 10.1371/journal.pone.0002033 PubMed DOI PMC

Allen, J.F. (2002) Photosynthesis of ATP‐electrons, proton pumps, rotors, and poise. Cell, 110, 273–276. Available from: 10.1016/S0092-8674(02)00870-X PubMed DOI

Amunts, A. , Toporik, H. , Borovikova, A. & Nelson, N. (2010) Structure determination and improved model of plant photosystem I. The Journal of Biological Chemistry, 285, 3478–3486. Available from: 10.1074/jbc.M109.072645 PubMed DOI PMC

Armbruster, U. , Rühle, T. , Kreller, R. , Strotbek, C. , Zühlke, J. , Tadini, L. et al. (2013) The photosynthesis affected mutant68‐like protein evolved from a PSII assembly factor to mediate assembly of the chloroplast NAD(P)H dehydrogenase complex in Arabidopsis. Plant Cell, 25, 3926–3943. Available from: 10.1105/tpc.113.114785 PubMed DOI PMC

Basso, L. , Yamori, W. , Szabo, I. & Shikanai, T. (2020) Collaboration between NDH and KEA3 allows maximally efficient photosynthesis after a long dark adaptation. Plant Physiology, 184, 2078–2090. Available from: 10.1104/pp.20.01069 PubMed DOI PMC

Braukmann, T.W.A. , Kuzmina, M. & Stefanovic, S. (2009) Loss of all plastid ndh genes in Gnetales and conifers: extent and evolutionary significance for the seed plant phylogeny. Current Genetics, 55, 323–337. Available from: 10.1007/s00294-009-0249-7 PubMed DOI

Busch, A. , Petersen, J. , Webber‐Birungi, M.T. , Powikrowska, M. , Lassen, L.M. et al. (2013) Composition and structure of photosystem I in the moss Physcomitrella patens . Journal of Experimental Botany, 64, 2689–2699. Available from: 10.1093/jxb/ert126 PubMed DOI PMC

Cox, J. & Mann, M. (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.‐range mass accuracies and proteome‐wide protein quantification. Nature Biotechnology, 26, 1367–1372. Available from: 10.1038/nbt.1511 PubMed DOI

Cox, J. , Neuhauser, N. , Michalski, A. , Scheltema, R.A. , Olsen, J.V. & Mann, M. (2011) Andromeda: a peptide search engine integrated into the MaxQuant environment. Journal of Proteome Research, 10, 1794–1805. Available from: 10.1021/pr101065j PubMed DOI

DalCorso, G. , Pesaresi, P. , Masiero, S. , Aseeva, E. , Schünemann, D. , Finazzi, G. et al. (2008) A complex containing PGRL1 and PGR5 is involved in the switch between linear and cyclic electron flow in Arabidopsis. Cell, 132, 273–285. Available from: 10.1016/j.cell.2007.12.028 PubMed DOI

Dau, H. , Andrews, J.C. , Roelofs, T.A. , Latimer, M.J. , Liang, W. , Yachandra, V.K. et al. (1995) Structural consequences of ammonia binding to the manganese center of the photosynthetic oxygen‐evolving complex: an X‐ray absorption spectroscopy study of isotropic and oriented photosystem II particles. Biochemistry, 34, 5274–5287. Available from: 10.1021/bi00015a043 PubMed DOI

de la Rosa‐Trevín, J.M. , Quintana, A. , Del Cano, L. , Zaldívar, A. , Foche, I. et al. (2016) Scipion: a software framework toward integration, reproducibility and validation in 3D electron microscopy. Journal of Structural Biology, 195, 93–99. Available from: 10.1016/j.jsb.2016.04.010 PubMed DOI

Gao, F. , Zhao, J. , Chen, L. , Battchikova, N. , Ran, Z. , Aro, E.M. et al. (2016) The NDH‐1 L‐PSI supercomplex is important for efficient cyclic electron transport in cyanobacteria. Plant Physiology, 172, 1451–1464. Available from: 10.1104/pp.16.00585 PubMed DOI PMC

Gorski, C. , Riddle, R. , Toporik, H. , Da, Z. , Dobson, Z. , Williams, D. et al. (2022) The structure of the Physcomitrium patens photosystem I reveals a unique Lhca2 paralogue replacing Lhca4. Nature Plants, 8, 307–316. Available from: 10.1038/s41477-022-01099-w PubMed DOI

Grebe, S. , Trotta, A. , Bajwa, A.A. , Suorsa, M. , Gollan, P.J. , Jansson, S. et al. (2019) The unique photosynthetic apparatus of Pinaceae: analysis of photosynthetic complexes in Picea abies . Journal of Experimental Botany, 70, 3211–3225. Available from: 10.1093/jxb/erz127 PubMed DOI PMC

Hertle, A.P. , Blunder, T. , Wunder, T. , Pesaresi, P. , Pribil, M. , Armbruster, U. et al. (2013) PGRL1 is the elusive ferredoxin‐plastoquinone reductase in photosynthetic cyclic electron flow. Molecular Cell, 49, 511–523. Available from: 10.1016/j.molcel.2012.11.030 PubMed DOI

Ifuku, K. , Endo, T. , Shikanai, T. & Aro, E.M. (2011) Structure of the chloroplast NADH dehydrogenase‐like complex: nomenclature for nuclear‐encoded subunits. Plant & Cell Physiology, 52, 1560–1568. Available from: 10.1093/pcp/pcr098 PubMed DOI

Iwai, M. , Grob, P. , Iavarone, A.T. , Nogales, E. & Niyogi, K.K. (2018) A unique supramolecular organization of photosystem I in the moss Physcomitrella patens . Nature Plants, 4, 904–909. Available from: 10.1038/s41477-018-0271-1 PubMed DOI PMC

Iwai, M. & Yokono, M. (2017) Light‐harvesting antenna complexes in the moss Physcomitrella patens: implications for the evolutionary transition from green algae to land plants. Current Opinion in Plant Biology, 37, 94–101. Available from: 10.1016/j.pbi.2017.04.002 PubMed DOI

Iwai, M. , Yokono, M. , Kono, M. , Noguchi, K. , Akimoto, S. & Nakano, A. (2015) Light‐harvesting complex Lhcb9 confers a green alga‐type photosystem I supercomplex to the moss Physcomitrella patens . Nature Plants, 1, 14008. Available from: 10.1038/nplants.2014.8 PubMed DOI

Kato, Y. , Odahara, M. , Fukao, Y. & Shikanai, T. (2018) Stepwise evolution of supercomplex formation with photosystem I is required for stabilization of chloroplast NADH dehydrogenase‐like complex: Lhca5‐dependent supercomplex formation in Physcomitrella patens . The Plant Journal, 96, 937–948. Available from: 10.1111/tpj.14080 PubMed DOI

Kato, Y. , Odahara, M. & Shikanai, T. (2021) Evolution of an assembly factor‐based subunit contributed to a novel NDH‐PSI supercomplex formation in chloroplasts. Nature Communications, 12, 3685. Available from: 10.1038/s41467-021-24065-0 PubMed DOI PMC

Kato, Y. , Sugimoto, K. & Shikanai, T. (2018) NDH‐PSI supercomplex assembly precedes full assembly of the NDH complex in chloroplast. Plant Physiology, 176, 1728–1738. Available from: 10.1104/pp.17.01120 PubMed DOI PMC

Kono, M. & Terashima, I. (2016) Elucidation of photoprotective mechanisms of PSI against fluctuating light photoinhibition. Plant & Cell Physiology, 57, 1405–1414. Available from: 10.1093/pcp/pcw103 PubMed DOI

Kouřil, R. , Strouhal, O. , Nosek, L. , Lenobel, R. , Chamrád, I. , Boekema, E.J. et al. (2014) Structural characterization of a plant photosystem I and NAD(P)H dehydrogenase supercomplex. The Plant Journal, 77, 568–576. Available from: 10.1111/tpj.12402 PubMed DOI

Laemmli, U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685. Available from: 10.1038/227680a0 PubMed DOI

Laughlin, T.G. , Bayne, A.N. , Trempe, J.F. , Savage, D.F. & Davies, K.M. (2019) Structure of the complex I‐like molecule NDH of oxygenic photosynthesis. Nature, 566, 411–414. Available from: 10.1038/s41586-019-0921-0 PubMed DOI

Lichtenthaler, H.K. (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in Enzymology, 148, 350–382. Available from: 10.1016/0076-6879(87)48036-1 DOI

Mazor, Y. , Borovikova, A. & Nelson, N. (2015) The structure of plant photosystem I super‐complex at 2.8 Å resolution. eLife, 4, e07433. Available from: 10.7554/eLife.07433 PubMed DOI PMC

Munekage, Y. , Hojo, M. , Meurer, J. , Endo, T. , Tasaka, M. & Shikanai, T. (2002) PGR5 is involved in cyclic electron flow around photosystem I and is essential for photoprotection in Arabidopsis. Cell, 110, 361–371. Available from: 10.1016/S0092-8674(02)00867-X PubMed DOI

Niu, Y. , Matsubara, S. , Nedbal, L. & Lazár, D. (2024) Dynamics and interplay of photosynthetic regulatory processes depend on the amplitudes of oscillating light. Plant, Cell & Environment, 47, 2240–2257. Available from: 10.1111/pce.14879 PubMed DOI

Nosek, L. , Semchonok, D. , Boekema, E.J. , Ilík, P. & Kouřil, R. (2017) Structural variability of plant photosystem II megacomplexes in thylakoid membranes. The Plant Journal, 89, 104–111. Available from: 10.1111/tpj.13325 PubMed DOI

Nystedt, B. , Street, N.R. , Wetterbom, A. , Zuccolo, A. , Lin, Y.C. , Scofield, D.G. et al. (2013) The Norway spruce genome sequence and conifer genome evolution. Nature, 497, 579–584. Available from: 10.1038/nature12211 PubMed DOI

Otani, T. , Kato, Y. & Shikanai, T. (2018) Specific substitutions of light‐harvesting complex I proteins associated with photosystem I are required for supercomplex formation with chloroplast NADH dehydrogenase‐like complex. The Plant Journal, 94, 122–130. Available from: 10.1111/tpj.13846 PubMed DOI

Pan, X. , Cao, D. , Xie, F. , Xu, F. , Su, X. , Mi, H. et al. (2020) Structural basis for electron transport mechanism of complex I‐like photosynthetic NAD(P)H dehydrogenase. Nature Communications, 11, 610. Available from: 10.1038/s41467-020-14456-0 PubMed DOI PMC

Peng, L. , Fukao, Y. , Fujiwara, M. & Shikanai, T. (2012) Multistep assembly of chloroplast NADH dehydrogenase‐like subcomplex a requires several nucleus‐encoded proteins, including CRR41 and CRR42, in Arabidopsis. The Plant Cell, 24, 202–214. Available from: 10.1105/tpc.111.090597 PubMed DOI PMC

Peng, L. , Fukao, Y. , Fujiwara, M. , Takami, T. & Shikanai, T. (2009) Efficient operation of NAD(P)H dehydrogenase requires supercomplex formation with photosystem I via minor LHCI in Arabidopsis. The Plant Cell, 21, 3623–3640. Available from: 10.1105/tpc.109.068791 PubMed DOI PMC

Peng, L. & Shikanai, T. (2011) Supercomplex formation with photosystem I is required for the stabilization of the chloroplast NADH dehydrogenase‐like complex in Arabidopsis. Plant Physiology, 155, 1629–1639. Available from: 10.1104/pp.110.171264 PubMed DOI PMC

Perez‐Riverol, Y. , Bai, J. , Bandla, C. , Hewapathirana, S. , García‐Seisdedos, D. , Kamatchinathan, S. et al. (2022) The PRIDE database resources in 2022: a hub for mass spectrometry‐based proteomics evidences. Nucleic Acids Research, 50, D543–D552. Available from: 10.1093/nar/gkab1038 PubMed DOI PMC

Pinnola, A. , Alboresi, A. , Nosek, L. , Semchonok, D. , Rameez, A. , Trotta, A. et al. (2018) A LHCB9‐dependent photosystem I megacomplex induced under low light in Physcomitrella patens . Nature Plants, 4, 910–919. Available from: 10.1038/s41477-018-0270-2 PubMed DOI

Porada, P. , Lenton, T. , Pohl, A. , Weber, B. , Mander, L. , Donnadieu, Y. et al. (2016) High potential for weathering and climate effects of non‐vascular vegetation in the Late Ordovician. Nature Communications, 7, 12113. Available from: 10.1038/ncomms12113 PubMed DOI PMC

Qin, X. , Pi, X. , Wang, W. , Han, G. , Zhu, L. , Liu, M. et al. (2019) Structure of a green algal photosystem I in complex with a large number of light‐harvesting complex I subunits. Nature Plants, 5, 263–272. Available from: 10.1038/s41477-019-0379-y PubMed DOI

Rensing, S.A. , Lang, D. , Zimmer, A.D. , Terry, A. , Salamov, A. , Shapiro, H. et al. (2008) The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science, 319, 64–69. Available from: 10.1126/science.1150646 PubMed DOI

Reski, R. & Abel, W.O. (1985) Induction of budding on chloronemata and caulonemata of the moss, Physcomitrella patens, using isopentenyladenine. Planta, 165, 354–358. PubMed

Schuller, J.M. , Birrell, J.A. , Tanaka, H. , Konuma, T. , Wulfhorst, H. , Cox, N. et al. (2019) Structural adaptations of photosynthetic complex I enable ferredoxin‐dependent electron transfer. Science, 363, 257–260. Available from: 10.1126/science.aau3613 PubMed DOI

Shaw, A.J. , Szövényi, P. & Shaw, B. (2011) Bryophyte diversity and evolution: windows into the early evolution of land plants. American Journal of Botany, 98, 352–369. Available from: 10.3732/ajb.1000316 PubMed DOI

Shen, L. , Tang, K. , Wang, W. , Wang, C. , Wu, H. , Mao, Z. et al. (2022) Architecture of the chloroplast PSI‐NDH supercomplex in Hordeum vulgare . Nature, 601, 649–654. Available from: 10.1038/s41586-021-04277-6 PubMed DOI

Shikanai, T. (2016) Chloroplast NDH: a different enzyme with a structure similar to that of respiratory NADH dehydrogenase. Biochimica et Biophysica Acta (BBA) ‐ Bioenergetics, 1857, 1015–1022. Available from: 10.1016/j.bbabio.2015.10.013 PubMed DOI

Shikanai, T. (2020) Chapter 6—Regulation of photosynthesis by cyclic electron transport around photosystem I. In: Hisabori, T. (Ed.) Advances in botanical research, Vol. 96. Cambridge: Academic Press, pp. 177–204. Available from: 10.1016/bs.abr.2020.07.005 DOI

Stejskal, K. , Potěšil, D. & Zdráhal, Z. (2013) Suppression of peptide sample losses in autosampler vials. Journal of Proteome Research, 12, 3057–3062. Available from: 10.1021/pr400183v PubMed DOI

Storti, M. , Puggioni, M.P. , Segalla, A. , Morosinotto, T. & Alboresi, A. (2020) The chloroplast NADH dehydrogenase‐like complex influences the photosynthetic activity of the moss Physcomitrella patens . Journal of Experimental Botany, 71, 5538–5548. Available from: 10.1093/jxb/eraa274 PubMed DOI

Su, X. , Cao, D. , Pan, X. , Shi, L. , Liu, Z. , Dall'Osto, L. et al. (2022) Supramolecular assembly of chloroplast NADH dehydrogenase‐like complex with photosystem I from Arabidopsis thaliana . Molecular Plant, 15, 454–467. Available from: 10.1016/j.molp.2022.01.020 PubMed DOI

Suga, M. , Ozawa, S.I. , Yoshida‐Motomura, K. , Akita, F. , Miyazaki, N. & Takahashi, Y. (2019) Structure of the green algal photosystem I supercomplex with a decameric light‐harvesting complex I. Nature Plants, 5, 626–636. Available from: 10.1038/s41477-019-0438-4 PubMed DOI

Sugimoto, K. , Okegawa, Y. , Tohri, A. , Long, T.A. , Covert, S.F. , Hisabori, T. et al. (2013) A single amino acid alteration in PGR5 confers resistance to antimycin A in cyclic electron transport around PSI. Plant & Cell Physiology, 54, 1525–1534. Available from: 10.1093/pcp/pct098 PubMed DOI

Sun, H. , Shang, H. , Pan, X. & Li, M. (2023) Structural insights into the assembly and energy transfer of the Lhcb9‐dependent photosystem I from moss Physcomitrium patens . Nature Plants, 9, 1347–1358. Available from: 10.1038/s41477-023-01463-4 PubMed DOI

Tagawa, K. , Tsujimoto, H.Y. & Arnon, D.I. (1963) Role of chloroplast ferredoxin in the energy conversion process of photosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 49, 567–752. Available from: 10.1073/pnas.49.4.567 PubMed DOI PMC

Ueda, M. , Kuniyoshi, T. , Yamamoto, H. , Sugimoto, K. , Ishizaki, K. , Kohchi, T. et al. (2012) Composition and physiological function of the chloroplast NADH dehydrogenase‐like complex in Marchantia polymorpha . The Plant Journal, 72, 683–693. Available from: 10.1111/j.1365-313X.2012.05115.x PubMed DOI

Wittig, I. , Karas, M. & Schägger, H. (2007) High resolution clear native electrophoresis for in‐gel functional assays and fluorescence studies of membrane protein complexes. Molecular & Cellular Proteomics, 6, 1215–1225. Available from: 10.1074/mcp.M700076-MCP200 PubMed DOI

Yamamoto, H. , Fan, X. , Sugimoto, K. , Fukao, Y. , Peng, L. & Shikanai, T. (2016) CHLORORESPIRATORY REDUCTION 9 is a novel factor required for formation of subcomplex A of the chloroplast NADH dehydrogenase‐like complex. Plant & Cell Physiology, 57, 2122–2132. Available from: 10.1093/pcp/pcw130 PubMed DOI

Yamamoto, H. , Sato, N. & Shikanai, T. (2021) Critical role of NdhA in the incorporation of the peripheral arm into the membrane‐embedded part of the chloroplast NADH dehydrogenase‐like complex. Plant & Cell Physiology, 62, 1131–1145. Available from: 10.1093/pcp/pcaa143 PubMed DOI

Yamori, W. , Makino, A. & Shikanai, T. (2016) A physiological role of cyclic electron transport around photosystem I in sustaining photosynthesis under fluctuating light in rice. Scientific Reports, 6, 20147. Available from: 10.1038/srep20147 PubMed DOI PMC

Yamori, W. , Sakata, N. , Suzuki, Y. , Shikanai, T. & Makino, A. (2011) Cyclic electron flow around photosystem I via chloroplast NAD(P)H dehydrogenase (NDH) complex performs a significant physiological role during photosynthesis and plant growth at low temperature in rice. The Plant Journal, 68, 966–976. Available from: 10.1111/j.1365-313X.2011.04747.x PubMed DOI

Yamori, W. , Shikanai, T. & Makino, A. (2015) Photosystem I cyclic electron flow via chloroplast NADH dehydrogenase‐like complex performs a physiological role for photosynthesis at low light. Scientific Reports, 5, 13908. Available from: 10.1038/srep13908 PubMed DOI PMC

Yan, Q. , Zhao, L. , Wang, W. , Pi, X. , Han, G. , Wang, J. et al. (2021) Antenna arrangement and energy‐transfer pathways of PSI‐LHCI from the moss Physcomitrella patens . Cell Discovery, 7, 10. Available from: 10.1038/s41421-021-00242-9 PubMed DOI PMC

Zhang, S. , Tang, K. , Yan, Q. , Li, X. , Shen, L. , Wang, W. et al. (2023) Structural insights into a unique PSI–LHCI–LHCII–Lhcb9 supercomplex from moss Physcomitrium patens . Nature Plants, 9, 832–846. Available from: 10.1038/s41477-023-01401-4 PubMed DOI

Zhang, Z. , Zhao, L.‐S. & Liu, L.‐N. (2021) Characterizing the supercomplex association of photosynthetic complexes in cyanobacteria. Royal Society Open Science, 8, 202142. Available from: 10.1098/rsos.202142 PubMed DOI PMC

Zimmer, A.D. , Lang, D. , Buchta, K. , Rombauts, S. , Nishiyama, T. , Hasebe, M. et al. (2013) Reannotation and extended community resources for the genome of the non‐seed plant Physcomitrella patens provide insights into the evolution of plant gene structures and functions. BMC Genomics, 14, 498. Available from: 10.1186/1471-2164-14-498 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...