Pure Camphor and a Thujone-Camphor Mixture as Eco-Friendly Antifeedants against Larvae and Adults of the Colorado Potato Beetle

. 2022 Dec 19 ; 11 (24) : . [epub] 20221219

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36559699

Grantová podpora
451-03-68/2022-14/200007 Ministry of Science, Technological Development and Innovation of the Republic of Serbia

The Colorado potato beetle (CPB) is a serious pest of economically important Solanaceae species. The use of essential oil compounds in pest management has been proposed as an alternative to harmful chemical insecticides that disturb human health and ecosystem functioning. We examined the antifeedant activity of three concentrations (0.125%, 0.25% and 0.5%) of pure camphor and a thujone-camphor mixture against 3rd instar larvae and adults. Their efficacy was evaluated according to the degree of leaf damage and avoidance of treated leaves by the CPB. Treatment of potato leaves significantly reduced leaf damage compared to the control. Leaf protection increased at higher concentrations of the examined compounds. Camphor was more effective against larvae and the thujone-camphor mixture was more effective against adults. Additionally, adults moved faster towards the control leaf disc in the two-choice olfactometer assay if an alternative disc was treated with a thujone-camphor mixture, whereas larvae responded similarly to the two potential repellents. However, after contact with the leaf disc treated with the highest compound concentration, the larvae escaped faster from the thujone-camphor mixture than from pure camphor. In conclusion, both examined compounds are promising eco-friendly antifeedants, but their efficacy depends on the developmental stage of the beetle, compound type and applied concentration.

Zobrazit více v PubMed

Metcalf R.L. Changing role of insecticides in crop protection. Ann. Rev. Entomol. 1980;25:219–256. doi: 10.1146/annurev.en.25.010180.001251. DOI

Aktar W., Sengupta D., Chowdhury A. Impact of pesticides use in agriculture: Their benefits and hazards. Interdiscip. Toxicol. 2009;2:1–12. doi: 10.2478/v10102-009-0001-7. PubMed DOI PMC

Tudi M., Daniel Ruan H., Wang L., Lyu J., Sadler R., Connell D., Chu C., Phung D.T. Agriculture development, pesticide application and its impact on the environment. Int. J. Environ. Res. Public Health. 2021;18:1112. doi: 10.3390/ijerph18031112. PubMed DOI PMC

Metcalf R.L. Insect resistance to insecticides. Pestic. Sci. 1989;26:333–358. doi: 10.1002/ps.2780260403. DOI

Bass C., Denholm I., Williamson M.S., Nauen R. The global status of insect resistance to neonicotinoid insecticides. Pestic. Biochem. Phys. 2015;121:78–87. doi: 10.1016/j.pestbp.2015.04.004. PubMed DOI

Dudareva N., Negre F., Nagegowda D.A., Orlova I. Plant volatiles: Recent advances and future perspectives. Crit. Rev. Plant Sci. 2006;25:417–440. doi: 10.1080/07352680600899973. DOI

Isman M.B. Pesticides based on plant essential oils: Phytochemical and practical considerations. In: Jeliazkov (Zheljazkov) V.D., Cantrell C.L., editors. Medicinal and Aromatic Crops: Production, Phytochemistry, and Utilization. Volume 1218. American Chemical Society; Washington, DC, USA: 2016. pp. 13–26.

Pavela R. History, presence and perspective of using plant extracts as commercial botanical insecticides and farm products for protection against insects—A review. Plant Prot. Sci. 2016;52:229–241.

Spochacz M., Chowański S., Walkowiak-Nowicka K., Szymczak M., Adamski Z. Plant-derived substances used against beetles–pests of stored crops and food–and their mode of action: A review. Compr. Rev. Food Sci. Food Saf. 2018;17:1339–1366. doi: 10.1111/1541-4337.12377. PubMed DOI

Ebadollahi A., Ziaee M., Palla F. Essential oils extracted from different species of the Lamiaceae plant family as prospective bioagents against several detrimental pests. Molecules. 2020;25:1556. doi: 10.3390/molecules25071556. PubMed DOI PMC

Abdelgaleil S.A.M., Gad H.A., Ramadan G.R., El-Bakry A.M., El-Sabrout A.M. Monoterpenes: Chemistry, insecticidal activity against stored product insects and modes of action—A review. Int. J. Pest Manag. 2021:1–23. doi: 10.1080/09670874.2021.1982067. DOI

Chaudhari A.K., Singh V.K., Kedia A., Das S., Dubey N.K. Essential oils and their bioactive compounds as eco-friendly novel green pesticides for management of storage insect pests: Prospects and retrospects. Environ. Sci. Pollut. Res. 2021;28:18918–18940. doi: 10.1007/s11356-021-12841-w. PubMed DOI

Iqbal T., Ahmed N., Shahjeer K., Ahmed S., Al-Mutairi K.A., Khater H.F., Ali R.F. Botanical insecticides and their potential as anti-insect/pests: Are they successful against insects and pests? In: El-Shafie H.A.F., editor. Global Decline of Insects. IntechOpen; London, UK: 2022. DOI

Hummelbrunner L.A., Isman M.B. Acute, sublethal, antifeedant, and synergistic effects of monoterpenoid essential oil compounds on the tobacco cutworm, Spodoptera litura (Lep., Noctuidae) J. Agric. Food Chem. 2001;49:715–720. doi: 10.1021/jf000749t. PubMed DOI

Singh R., Koul O., Rup P.J., Jindal J. Toxicity of some essential oil constituents and their binary mixtures against Chilo partellus (Lepidoptera: Pyralidae) Int. J. Trop. Insect Sci. 2009;29:93–101. doi: 10.1017/S1742758409990087. DOI

Jiang Z.L., Akhtar Y., Zhang X., Bradbury R., Isman M.B. Insecticidal and feeding deterrent activities of essential oils in the cabbage looper, Trichoplusia ni (Lepidoptera: Noctuidae) J. Appl. Entomol. 2012;136:191–202. doi: 10.1111/j.1439-0418.2010.01587.x. DOI

Gonzales Correa Y.D.C., Faroni L.R., Haddi K., Oliveira E.E., Pereira E.J.G. Locomotory and physiological responses induced by clove and cinnamon essential oils in the maize weevil Sitophilus zeamais. Pestic. Biochem. Phys. 2015;125:31–37. doi: 10.1016/j.pestbp.2015.06.005. PubMed DOI

Pavela R., Maggi F., Petrelli R., Cappellacci L., Buccioni M., Palmieri A., Canale A., Benelli G. Outstanding insecticidal activity and sublethal effects of Carlina acaulis root essential oil on the housefly, Musca domestica, with insights on its toxicity on human cells. Food Chem. Toxicol. 2020;136:111037. doi: 10.1016/j.fct.2019.111037. PubMed DOI

Lazarević J., Jevremović S., Kostić I., Kostić M., Vuleta A., Manitašević Jovanović S., Šešlija Jovanović D. Toxic, oviposition deterrent and oxidative stress effects of Thymus vulgaris essential oil against Acanthoscelides obtectus. Insects. 2020;11:563. doi: 10.3390/insects11090563. PubMed DOI PMC

Lazarević J., Jevremović S., Kostić I., Vuleta A., Manitašević Jovanović S., Kostić M., Šešlija Jovanović D. Assessment of sex-specific toxicity and physiological responses to thymol in a common bean pest Acanthoscelides obtectus Say. Front. Physiol. 2022;13:842314. doi: 10.3389/fphys.2022.842314. PubMed DOI PMC

Pavela R., Benelli G. Essential oils as ecofriendly biopesticides? Challenges and constraints. Trends Plant Sci. 2016;21:1000–1007. doi: 10.1016/j.tplants.2016.10.005. PubMed DOI

Gross A.D., Coats J.R. Can green chemistry provide effective repellents? In: Debboun M., Frances S.P., Strickman D.A., editors. Insect Repellents Handbook. CRC Press; Boca Raton, FL, USA: 2015. pp. 75–90.

Isman M.B. Commercial development of plant essential oils and their constituents as active ingredients in bioinsecticides. Phytochem. Rev. 2020;19:235–241. doi: 10.1007/s11101-019-09653-9. DOI

Slansky F., Jr. Effect of the lichen chemicals atranorin and vulpinic acid upon feeding and growth of larvae of the yellow-striped armyworm, Spodoptera ornithogalli. Environ. Entomol. 1979;8:865–868. doi: 10.1093/ee/8.5.865. DOI

Schröder R., Hilker M. The relevance of background odor in resource location by insects: A behavioral approach. AIBS Bull. 2008;58:308–316. doi: 10.1641/B580406. DOI

Deletre E., Schatz B., Bourguet D., Chandre F., Williams L., Ratnadass A., Martin T. Prospects for repellent in pest control: Current developments and future challenges. Chemoecology. 2016;26:127–142. doi: 10.1007/s00049-016-0214-0. DOI

Nerio L.S., Olivero-Verbel J., Stashenko E. Repellent activity of essential oils: A review. Bioresour. Technol. 2010;101:372–378. doi: 10.1016/j.biortech.2009.07.048. PubMed DOI

Kłyś M., Malejky N., Nowak-Chmura M. The repellent effect of plants and their active substances against the beetle storage pests. J. Stored Prod. Res. 2017;74:66–77. doi: 10.1016/j.jspr.2017.10.006. DOI

Warthen J.D., Morgan E.D. Insect feeding deterrents. In: Morgan E.D., editor. CRC Handbook of Natural Pesticides. 1st ed. CRC Press; Boca Raton, FL, USA: 1990. pp. 23–134.

Norris D.M. Repellents. In: Morgan E.D., editor. CRC Handbook of Natural Pesticides. 1st ed. CRC Press; Boca Raton, FL, USA: 1990. pp. 135–149.

Alyokhin A., Udalov M., Benkovskaya G. The Colorado potato beetle. In: Alyokhin A., editor. Insect Pests of Potato. 1st ed. Associated Press; Oxford, UK: 2012. pp. 11–29.

Alyokhin A., Baker M., Mota-Sanchez D., Dively G., Grafius E. Colorado potato beetle resistance to insecticides. Am. J. Potato Res. 2008;85:395–413. doi: 10.1007/s12230-008-9052-0. DOI

Chatterjee D., Kundu A. Push pull strategy of integrated pest management. Just Agric. 2022;9:1–6.

Visser J.H., Van Straten S., Maarse H. Isolation and identification of volatiles in the foliage of potato, Solanum tuberosum, a host plant of the Colorado beetle, Leptinotarsa decemlineata. J. Chem. Ecol. 1979;5:13–25. doi: 10.1007/BF00987684. DOI

Panasiuk O. Response of Colorado potato beetles, Leptinotarsa decemlineata (Say), to volatile components of tansy, Tanacetum vulgare. J. Chem. Ecol. 1984;10:1325–1333. doi: 10.1007/BF00988114. PubMed DOI

Schearer W.R. Components of oil of tansy (Tanacetum vulgare) that repel Colorado potato beetles (Leptinotarsa decemlineata) J. Nat. Prod. 1984;47:964–969. doi: 10.1021/np50036a009. DOI

Thiery D., Visser J.H. Masking of host plant odour in the olfactory orientation of the Colorado potato beetle. Entomol. Exp. Appl. 1986;41:165–172. doi: 10.1111/j.1570-7458.1986.tb00524.x. DOI

Bolter C.J., Dicke M., Van Loon J.J., Visser J.H., Posthumus M.A. Attraction of Colorado potato beetle to herbivore-damaged plants during herbivory and after its termination. J. Chem. Ecol. 1997;23:1003–1023. doi: 10.1023/B:JOEC.0000006385.70652.5e. DOI

Dickens J.C. Orientation of Colorado potato beetle to natural and synthetic blends of volatiles emitted by potato plants. Agric. For. Entomol. 2000;2:167–172. doi: 10.1046/j.1461-9563.2000.00065.x. DOI

Kostić M., Dražic S., Popović Z., Stanković S., Sivčev I., Živanović T. Developmental and feeding alternations in Leptinotarsa decemlineata Say. (Coleoptera: Chrysomelidae) caused by Salvia officinalis L. (Lamiaceae) essential oil. Biotechnol. Biotechnol. Equip. 2007;21:426–430. doi: 10.1080/13102818.2007.10817488. DOI

Sablon L., Dickens J.C., Haubruge É., Verheggen F.J. Chemical ecology of the Colorado potato beetle, Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae), and potential for alternative control methods. Insects. 2012;4:31–54. doi: 10.3390/insects4010031. PubMed DOI PMC

Göldel B., Lemic D., Bažok R. Alternatives to synthetic insecticides in the control of the colorado potato beetle (Leptinotarsa decemlineata Say) and their environmental benefits. Agriculture. 2020;10:611. doi: 10.3390/agriculture10120611. DOI

Szczepanik M., Grabarczyk M., Olejniczak T., Paruch E., Wawrzenczyk C., Szczepaniak E. Effect of terpenoid lactones and azadirachtin on food consumption and growth rate of colorado potato beetle larvae, Leptinotarsa decemlineata Say. J. Plant Prot. Res. 2000;40:193–197.

González-Coloma A., Guadaño A., Tonn C.E., Sosa M.E. Antifeedant/insecticidal terpenes from Asteraceae and Labiatae species native to Argentinean semi-arid lands. Z. Naturforsch. C. 2005;60:855–861. doi: 10.1515/znc-2005-11-1207. PubMed DOI

Gökçe A., Isaacs R., Whalon M.E. Behavioural response of Colorado potato beetle (Leptinotarsa decemlineata) larvae to selected plant extracts. Pest Manag. Sci. 2006;62:1052–1057. doi: 10.1002/ps.1271. PubMed DOI

Saroukolai A.T., Nouri-Ganbalani G., Hadian J., Rafiee-Dastjerdi H. Antifeedant activity and toxicity of some plant essential oils to Colorado potato beetle, Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae) Plant Protect. Sci. 2014;50:207–216. doi: 10.17221/9/2014-PPS. DOI

Ortiz de Elguea-Culebras G., Sánchez-Vioque R., Berruga M.I., Herraiz-Peñalver D., Santana-Méridas O. Antifeedant effects of common terpenes from Mediterranean aromatic plants on Leptinotarsa decemlineata. J. Soil Sci. Plant Nutr. 2017;17:475–485. doi: 10.4067/S0718-95162017005000034. DOI

Rusin M., Gospodarek J. The effect of water extracts from Origanum vulgare L. on feeding of Leptinotarsa decemlineata Say. J. Res. Appl. Agric. Eng. 2018;63:82–85.

Lazarević J., Kostić I., Milanović S., Šešlija Jovanović D., Krnjajić S., Ćalić D., Stanković S., Kostić M. Repellent activity of Tanacetum parthenium (L.) and Tanacetum vulgare (L.) essential oils against Leptinotarsa decemlineata (Say) Bull. Entomol. Res. 2021;111:190–199. doi: 10.1017/S0007485320000504. PubMed DOI

Herrera J.M., Zunino M.P., Dambolena J.S., Pizzolitto R.P., Gañan N.A., Lucini E.I., Zygadlo J.A. Terpene ketones as natural insecticides against Sitophilus zeamais. Ind. Crop. Prod. 2015;70:435–442. doi: 10.1016/j.indcrop.2015.03.074. DOI

Pragadheesh V.S., Saroj A., Yadav A., Chanotiya C.S., Alam M., Samad A. Chemical characterization and antifungal activity of Cinnamomum camphora essential oil. Ind. Crop. Prod. 2013;49:628–633. doi: 10.1016/j.indcrop.2013.06.023. DOI

Purkayastha J., Nath S.C. Composition of the camphor-rich essential oil of Ocimum basilicum L. native to Northeast India. J. Essent. Oil Res. 2006;18:332–334. doi: 10.1080/10412905.2006.9699104. DOI

Sefidkon F., Jalili A., Mirhaji T. Essential oil composition of three Artemisia spp. from Iran. Flavour Fragr. J. 2002;17:150–152. doi: 10.1002/ffj.1063. DOI

Tabanca N., Özek T., Baser K.H.C., Vural M. Composition of the essential oil of Achillea sieheana Stapf and the enantiomeric distribution of camphor. J. Essent. Oil Res. 2004;16:180–181. doi: 10.1080/10412905.2004.9698689. DOI

Izadi Z., Esna-Ashari M., Piri K., Davoodi P. Chemical composition and antimicrobial activity of feverfew (Tanacetum parthenium) essential oil. Int. J. Agric. Biol. 2010;12:759–763.

Tzakou O., Bazos I., Yannitsaros A. Essential oil composition and enantiomeric distribution of fenchone and camphor of Lavandula cariensis and L. stoechas subsp. stoechas grown in Greece. Nat. Prod. Commun. 2009;4:1103–1106. doi: 10.1177/1934578X0900400818. PubMed DOI

Nguyen H.T., Németh Z.É. Sources of variability of wormwood (Artemisia absinthium L.) essential oil. J. Appl. Res. Med. Aromat. Plants. 2016;3:143–150. doi: 10.1016/j.jarmap.2016.07.005. DOI

Gören N., Demirci B., Başer K.H.C. Composition of the essential oils of Tanacetum spp. from Turkey. Flavour Fragr. J. 2001;16:191–194. doi: 10.1002/ffj.976. DOI

Rohloff J., Mordal R., Dragland S. Chemotypical variation of tansy (Tanacetum vulgare L.) from 40 different locations in Norway. J. Agric. Food Chem. 2004;52:1742–1748. doi: 10.1021/jf0352430. PubMed DOI

Radulović N.S., Genčić M.S., Stojanović N.M., Randjelović P.J., Stojanović-Radić Z.Z., Stojiljković N.I. Toxic essential oils. Part V: Behaviour modulating and toxic properties of thujones and thujone-containing essential oils of Salvia officinalis L., Artemisia absinthium L., Thuja occidentalis L. and Tanacetum vulgare L. Food Chem. Toxicol. 2017;105:355–369. doi: 10.1016/j.fct.2017.04.044. PubMed DOI

Mengi N., Garg S.N., Agarwal S.K., Mathela C.S. The occurrence of β-thujone and a new p-menthane derivative in Senecio chrysanthemoides leaf oil. J. Essent. Oil Res. 1995;7:511–514. doi: 10.1080/10412905.1995.9698575. DOI

Raal A., Orav A., Arak E. Composition of the essential oil of Salvia officinalis L. from various European countries. Nat. Prod. Res. 2007;21:406–411. doi: 10.1080/14786410500528478. PubMed DOI

Obeng-Ofori D., Reichmuth C.H., Bekele A.J., Hassanali A. Toxicity and protectant potential of camphor, a major component of essential oil of Ocimum kilimandscharicum, against four stored product beetles. Int. J. Pest Manag. 1998;44:203–209. doi: 10.1080/096708798228112. DOI

Kéïta S.M., Vincent C., Schmidt J.P., Thor Arnason J. Insecticidal effects of Thuja occidentalis (Cupressaceae) essential oil on Callosobruchus maculatus [Coleoptera: Bruchidae] Can. J. Plant Sci. 2001;81:173–177. doi: 10.4141/P00-059. DOI

Jang Y.S., Yang Y.C., Choi D.S., Ahn Y.J. Vapor phase toxicity of marjoram oil compounds and their related monoterpenoids to Blattella germanica (Orthoptera: Blattellidae) J. Agric. Food Chem. 2005;53:7892–7898. doi: 10.1021/jf051127g. PubMed DOI

Kembro J.M., Marin R.H., Zygadlo J.A., Gleiser R.M. Effects of the essential oils of Lippia turbinata and Lippia polystachya (Verbenaceae) on the temporal pattern of locomotion of the mosquito Culex quinquefasciatus (Diptera: Culicidae) larvae. Parasitol. Res. 2009;104:1119–1127. doi: 10.1007/s00436-008-1296-6. PubMed DOI

Bailen M., Julio L.F., Diaz C.E., Sanz J., Martínez-Díaz R.A., Cabrera R., Burillo J., Gonzalez-Coloma A. Chemical composition and biological effects of essential oils from Artemisia absinthium L. cultivated under different environmental conditions. Ind. Crop. Prod. 2013;49:102–107. doi: 10.1016/j.indcrop.2013.04.055. DOI

Herrera J.M., Zunino M.P., Massuh Y., Pizzollito R.P., Dambolena J.S., Gañan N.A., Zygadlo J.A. Fumigant toxicity from five essential oils rich in ketones against Sitophilus zeamais (Motschulsky) Agriscientia. 2014;31:35–41. doi: 10.31047/1668.298x.v31.n1.9839. DOI

Kim K.H., Yi C.G., Ahn Y.J., Kim S.I., Lee S.G., Kim J.R. Fumigant toxicity of basil oil compounds and related compounds to Thrips palmi and Orius strigicollis. Pest Manag. Sci. 2015;71:1292–1296. doi: 10.1002/ps.3925. PubMed DOI

Pizzolitto R.P., Herrera J.M., Zaio Y.P., Dambolena J.S., Zunino M.P., Gallucci M.N., Zygadlo J.A. Bioactivities of ketones terpenes: Antifungal effect on F. verticillioides and repellents to control insect fungal vector, S. zeamais. Microorganisms. 2015;3:851–865. doi: 10.3390/microorganisms3040851. PubMed DOI PMC

Srinivasan R., Natarajan D., Shivakumar M.S., Vinuchakkaravarthy T., Velmurugan D. Bioassay guided isolation of mosquito larvicidal compound from acetone leaf extract of Elaeagnus indica Servett Bull and its in-silico study. Ind. Crop. Prod. 2015;76:394–401. doi: 10.1016/j.indcrop.2015.07.032. DOI

Tampe J., Parra L., Huaiquil K., Mutis A., Quiroz A. Repellent effect and metabolite volatile profile of the essential oil of Achillea millefolium against Aegorhinus nodipennis (Hope) (Coleoptera: Curculionidae) Neotrop. Entomol. 2015;44:279–285. doi: 10.1007/s13744-015-0278-5. PubMed DOI

Guo S., Geng Z., Zhang W., Liang J., Wang C., Deng Z., Du S. The chemical composition of essential oils from Cinnamomum camphora and their insecticidal activity against the stored product pests. Int. J. Mol. Sci. 2016;17:1836. doi: 10.3390/ijms17111836. PubMed DOI PMC

Kanda D., Kaur S., Koul O. Effect of keto-compounds from essential oils on the growth and reproductive performance of Tribolium castaneum (Herbst) Biopestic Int. 2016;12:119–125.

Ali A.M., Ibrahim A.M. Castor and camphor essential oils alter hemocyte populations and induce biochemical changes in larvae of Spodoptera littoralis (Boisduval) (Lepidoptera: Noctuidae) J. Asia-Pac. Entomol. 2018;21:631–637. doi: 10.1016/j.aspen.2018.04.005. DOI

Chen Z.Y., Guo S.S., Cao J.Q., Pang X., Geng Z.F., Wang Y., Zhang Z., Du S.S. Insecticidal and repellent activity of essential oil from Amomum villosum Lour. and its main compounds against two stored-product insects. Int. J. Food Prop. 2018;21:2265–2275. doi: 10.1080/10942912.2018.1508158. DOI

Chen Z., Liu F., Liu N. Neuronal responses of antennal olfactory sensilla to insect chemical repellents in the yellow fever mosquito, Aedes aegypti. J. Chem. Ecol. 2018;44:1120–1126. doi: 10.1007/s10886-018-1022-5. PubMed DOI

El-Minshawy A.M., Abdelgaleil S.A., Gadelhak G.G., Al-Eryan M.A., Rabab R.A. Effects of monoterpenes on mortality, growth, fecundity, and ovarian development of Bactrocera zonata (Saunders)(Diptera: Tephritidae) Environ. Sci. Pollut. Res. 2018;25:15671–15679. doi: 10.1007/s11356-018-1780-1. PubMed DOI

Koutsaviti A., Antonopoulou V., Vlassi A., Antonatos S., Michaelakis A., Papachristos D.P., Tzakou O. Chemical composition and fumigant activity of essential oils from six plant families against Sitophilus oryzae (Col: Curculionidae) J. Pest Sci. 2018;91:873–886. doi: 10.1007/s10340-017-0934-0. DOI

Wróblewska-Kurdyk A., Gniłka R., Dancewicz K., Grudniewska A., Wawrzeńczyk C., Gabryś B. β-thujone and its derivatives modify the probing behavior of the peach potato aphid. Molecules. 2019;24:1847. doi: 10.3390/molecules24101847. PubMed DOI PMC

Xie F., Rizvi S.A.H., Zeng X. Fumigant toxicity and biochemical properties of (α+ β) thujone and 1, 8-cineole derived from Seriphidium brevifolium volatile oil against the red imported fire ant Solenopsis invicta (Hymenoptera: Formicidae) Rev. Bras. Farmacogn. 2020;29:720–727. doi: 10.1016/j.bjp.2019.04.013. DOI

Magierowicz K., Górska-Drabik E., Sempruch C. The effect of Tanacetum vulgare essential oil and its main components on some ecological and physiological parameters of Acrobasis advenella (Zinck.)(Lepidoptera: Pyralidae) Pestic. Biochem. Physiol. 2020;162:105–112. doi: 10.1016/j.pestbp.2019.09.008. PubMed DOI

Rizvi S.A.H., Ling S., Zeng X. Seriphidium brevifolium essential oil: A novel alternative to synthetic insecticides against the dengue vector Aedes albopictus. Environ. Sci. Pollut. Res. 2020;27:31863–31871. doi: 10.1007/s11356-020-09108-1. PubMed DOI

Wang Q., Xu P., Sanchez S., Duran P., Andreazza F., Isaacs R., Dong K. Behavioral and physiological responses of Drosophila melanogaster and D. suzukii to volatiles from plant essential oils. Pest Manag. Sci. 2021;77:3698–3705. doi: 10.1002/ps.6282. PubMed DOI

Dehliz A., Lakhdari W., Mlik R., Chahbar N., Acheuk F., Mekhadmi N.E., Benyahia I., Fethallah R., Hammi H., Mohammed B., et al. Chemical composition and bioactivity of essential oil against the green peach aphid (Myzus persicae) Org. Agric. 2022;12:411–418. doi: 10.1007/s13165-022-00398-y. DOI

Adeyemi M.M., Mohammed M. Prospect of antifeedant secondary metabolites as post harvest material. Int. J. Innov. Res. Sci. Eng. Technol. 2014;3:8701–8708.

Tak J.H., Isman M.B. Acaricidal and repellent activity of plant essential oil-derived terpenes and the effect of binary mixtures against Tetranychus urticae Koch (Acari: Tetranychidae) Ind. Crop. Prod. 2017;108:786–792. doi: 10.1016/j.indcrop.2017.08.003. DOI

Zaio Y.P., Gatti G., Ponce A.A., Saavedra Larralde N.A., Martinez M.J., Zunino M.P., Zygadlo J.A. Cinnamaldehyde and related phenylpropanoids, natural repellents, and insecticides against Sitophilus zeamais (Motsch.). A chemical structure-bioactivity relationship. J. Sci. Food Agric. 2018;98:5822–5831. doi: 10.1002/jsfa.9132. PubMed DOI

González-Coloma A., Martin-Benito D., Mohamed N., Garcia-Vallejo M.C., Soria A.C. Antifeedant effects and chemical composition of essential oils from different populations of Lavandula luisieri L. Biochem. Syst. Ecol. 2006;34:609–616. doi: 10.1016/j.bse.2006.02.006. DOI

Tong F., Coats J.R. Effects of monoterpenoid insecticides on [3H]-TBOB binding in house fly GABA receptor and 36Cl− uptake in American cockroach ventral nerve cord. Pestic. Biochem. Physiol. 2010;98:317–324. doi: 10.1016/j.pestbp.2010.07.003. DOI

Zhang F., Liu Y., Li X., Zhang Y., Cheng D., Guo W., Tursun A. Sequence analysis and gene expression profiling of odorant binding proteins in the Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae) Acta Entomol. Sin. 2019;62:428–441.

Knaden M., Strutz A., Ahsan J., Sachse S., Hansson B.S. Spatial representation of odorant valence in an insect brain. Cell Rep. 2012;1:392–399. doi: 10.1016/j.celrep.2012.03.002. PubMed DOI

Kostić B.M., Kostić M.I., Marković L.T., Jevdjović D.R., Stanković R.S., Todorović N.G., Nedić M.N. Disruption of Attractant Properties of Potato Foliage on Leptinotarsa decemlineata Say by the Use of Salvia officinalis L. Essential Oil; Proceedings of the Seventh Conference on Medicinal and Aromatic Plants of Southeast European Countries; Subotica, Serbia. 27–31 May 2012.

Pavela R., Sajfrtová M., Sovová H., Karban J., Bárnet M. The effects of extracts obtained by supercritical fluid extraction and traditional extraction techniques on larvae Leptinotarsa decemlineata Say. J. Essent. Oil Res. 2009;21:367–373. doi: 10.1080/10412905.2009.9700194. DOI

Gökçe A., Isaacs R., Whalon M.E. Dose–response relationships for the antifeedant effects of Humulus lupulus extracts against larvae and adults of the Colorado potato beetle. Pest Manag. Sci. 2012;68:476–481. doi: 10.1002/ps.2299. PubMed DOI

Abdelgaleil S.A., Abou-Taleb H.K., Al-Nagar N., Shawir M.S. Antifeedant, growth regulatory and biochemical effects of terpenes and phenylpropenes on Spodoptera littoralis Boisduval. Int. J. Trop. Insect Sci. 2020;40:423–433. doi: 10.1007/s42690-019-00093-8. DOI

Góngora C.E., Tapias J., Jaramillo J., Medina R., Gonzalez S., Casanova H., Ortiz A., Benavides P. Evaluation of terpene-volatile compounds repellent to the coffee berry borer, Hypothenemus hampei (Ferrari)(Coleoptera: Curculionidae) J. Chem. Ecol. 2020;46:881–890. doi: 10.1007/s10886-020-01202-5. PubMed DOI

Valcárcel F., Olmeda A.S., González M.G., Andrés M.F., Navarro-Rocha J., González-Coloma A. Acaricidal and insect antifeedant effects of essential oils from selected aromatic plants and their main components. Front. Agron. 2021;3:662802. doi: 10.3389/fagro.2021.662802. DOI

Nararak J., Di Giorgio C., Thanispong K., Sukkanon C., Sanguanpong U., Mahiou-Leddet V., Ollivier E., Chareonviriyaphap T., Manguin S. Behavioral avoidance and biological safety of vetiver oil and its constituents against Aedes aegypti (L.), Aedes albopictus (Skuse) and Culex quinquefasciatus Say. Curr. Res. Insect Sci. 2022;2:100044. doi: 10.1016/j.cris.2022.100044. PubMed DOI PMC

Hough-Goldstein J.A. Antifeedant effects of common herbs on the Colorado potato beetle (Coleoptera: Chrysomelidae) Environ. Entomol. 1990;19:234–238. doi: 10.1093/ee/19.2.234. DOI

Pavela R. Antifeedant activity of plant extracts on Leptinotarsa decemlineata Say. and Spodoptera littoralis Bois. larvae. Ind. Crop. Prod. 2010;32:213–219. doi: 10.1016/j.indcrop.2010.04.010. DOI

Zabel A., Manojlovic B., Rajkovic S., Stankovic S., Kostic M. Effect of neem extract on Lymantria dispar L.(Lepidoptera: Lymantriidae) and Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae) J. Pest Sci. 2002;75:19–25. doi: 10.1046/j.1439-0280.2002.02006.x. DOI

Rusin M., Gospodarek J., Biniaś B. The effect of water extracts from Artemisia absinthium L. on feeding of Leptinotarsa decemlineata Say larvae. J. Res. Appl. Agric. Eng. 2015;60:80–83.

Rusin M., Gospodarek J., Biniaś B. The effect of water extract from wild thyme on Colorado potato beetle feeding. J. Ecol. Eng. 2016;17:197–202. doi: 10.12911/22998993/64559. DOI

Kostić M.B., Stanković S., Ristić M.S., Jevđović R., Rajković S. Effect of essential oils of the genus Tanacetum on attractiveness of potato leaf mass for the adults of Colorado beetle. Lek. Sirovine. 2003;23:69–82. (In Serbian)

Rojht H., Košir I.J., Trdan S. Chemical analysis of three herbal extracts and observation of their activity against adults of Acanthoscelides obtectus and Leptinotarsa decemlineata using a video tracking system. J. Plant Dis. Prot. 2012;119:59–67. doi: 10.1007/BF03356421. DOI

Creed C., Mollhagen A., Mollhagen N., Pszczolkowski M.A. Artemisia arborescens “Powis Castle” extracts and α-thujone prevent fruit infestation by codling moth neonates. Pharm. Biol. 2015;53:1458–1464. doi: 10.3109/13880209.2014.985796. PubMed DOI

Alfaro R.I., Pierce H.D., Borden J.H., Oehlschlager A.C. Insect feeding and oviposition deterrents from western red cedar foliage. J. Chem. Ecol. 1981;7:39–48. doi: 10.1007/BF00988634. PubMed DOI

Vosshall L.B., Stocker R.F. Molecular architecture of smell and taste in Drosophila. Annu. Rev. Neurosci. 2007;30:505–533. doi: 10.1146/annurev.neuro.30.051606.094306. PubMed DOI

Kalsi M., Palli S.R. Transcription factor cap n collar C regulates multiple cytochrome P450 genes conferring adaptation to potato plant allelochemicals and resistance to imidacloprid in Leptinotarsa decemlineata (Say) Insect Biochem. Mol. Biol. 2017;83:1–12. doi: 10.1016/j.ibmb.2017.02.002. PubMed DOI

Szczepanik M., Szumny A., Wawrzeńczyk C. The Effect of α-methylenelactone group on the feeding deterrent activity of natural and synthetic alkenes against Colorado potato beetle, Leptinotarsa decemlineata Say. Pol. J. Environ. Stud. 2009;18:1107–1112.

Liu Y.B., Alford A.R., Bentley M.D. A study on mode of antifeedant effects of epilimonol against Leptinotarsa decemlineata. Entomol. Exp. Appl. 1991;60:13–18. doi: 10.1111/j.1570-7458.1991.tb01517.x. DOI

Bozhüyük A.U., Kordali Ş. Investigation of the toxicity of ethanol extracts obtained from six different Satureja L. species on Colorado Potato Beetle, Leptinotarsa decemlineata (Say, 1824), (Coleoptera: Chrysomelidae) Anatol. J. Bot. 2019;3:69–79. doi: 10.30616/ajb.623827. DOI

Kordali S., Kesdek M., Cakir A. Toxicity of monoterpenes against larvae and adults of Colorado potato beetle, Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae) Ind. Crop. Prod. 2007;26:278–297. doi: 10.1016/j.indcrop.2007.03.009. DOI

Isman M.B. Botanical insecticides in the twenty-first century—Fulfilling their promise? Annu. Rev. Entomol. 2020;65:233–249. doi: 10.1146/annurev-ento-011019-025010. PubMed DOI

Zuccarini P. Camphor: Risks and benefits of a widely used natural product. J. Appl. Sci. Environ. Manag. 2009;13:69–74. doi: 10.4314/jasem.v13i2.55317. DOI

Pelkonen O., Abass K., Wiesner J. Thujone and thujone-containing herbal medicinal and botanical products: Toxicological assessment. Regul. Toxicol. Pharmacol. 2013;65:100–107. doi: 10.1016/j.yrtph.2012.11.002. PubMed DOI

Yim E.C., Kim H.J., Kim S.J. Acute toxicity assessment of camphor in biopesticides by using Daphnia magna and Danio rerio. Environ. Health Toxicol. 2014;29:e2014008. doi: 10.5620/eht.2014.29.e2014008. PubMed DOI PMC

Skuhrovec J., Douda O., Zouhar M., Maňasová M., Božik M., Klouček P. Insecticidal and behavioral effect of microparticles of Pimpinella anisum essential oil on larvae of Leptinotarsa decemlineata (Coleoptera: Chrysomelidae) J. Econ. Entomol. 2020;113:255–262. doi: 10.1093/jee/toz279. PubMed DOI

Melanie M., Miranti M., Kasmara H., Malini D.M., Husodo T., Panatarani C., Joni I.M., Hermawan W. Nanotechnology-based bioactive antifeedant for plant protection. Nanomaterials. 2022;12:630. doi: 10.3390/nano12040630. PubMed DOI PMC

Kostić M., Dražić S., Stanković S. The influence of sage essential oil on some insects. J. Sci. Agric. Res./Arh. Poljopr. Nauk. 2007;68:33–45. (In Serbian)

Boiteau G., LeBlanc J.P.R. Colorado Potato Beetle Life Stages. Agriculture Canada Publication 1878/E; Ottawa, ON, Canada: 1992.

López-Olguín J., de la Torre M.C., Ortego F., Castañera P., Rodríguez B. Structure-activity relationships of natural and synthetic neoclerodane diterpenes from Teucrium against Colorado potato beetle larvae. Phytochemistry. 1999;50:749–753. doi: 10.1016/S0031-9422(98)00642-6. DOI

von Ende C.N. Repeated-measures analysis: Growth and other time-dependent measures. In: Scheiner S.M., Gurevich J., editors. Design and Analysis of Ecological Experiments. 2nd ed. Oxford University Press; New York, NY, USA: 2001. pp. 134–157.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...