Dynamics and interplay of photosynthetic regulatory processes depend on the amplitudes of oscillating light
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000827
European Regional Development Fund
101046451
HORIZON EUROPE Framework Programme
03SF0576A
Federal Ministry of Education and Research of Germany
PubMed
38482712
DOI
10.1111/pce.14879
Knihovny.cz E-zdroje
- Klíčová slova
- alternative electron transports, cyclic electron transport, fluctuating light, rapidly reversible nonphotochemical quenching, regulation,
- MeSH
- Arabidopsis * fyziologie genetika účinky záření metabolismus MeSH
- ferredoxiny metabolismus MeSH
- fotosyntetické reakční centrum - proteinové komplexy metabolismus genetika MeSH
- fotosyntéza * fyziologie účinky záření MeSH
- fotosystém I - proteinový komplex * metabolismus MeSH
- fotosystém II - proteinový komplex * metabolismus MeSH
- membránové proteiny * MeSH
- mutace MeSH
- oxidace-redukce MeSH
- plastocyanin metabolismus MeSH
- proteiny huseníčku * metabolismus genetika MeSH
- světlo * MeSH
- transport elektronů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ferredoxiny MeSH
- fotosyntetické reakční centrum - proteinové komplexy MeSH
- fotosystém I - proteinový komplex * MeSH
- fotosystém II - proteinový komplex * MeSH
- membránové proteiny * MeSH
- PGR5 protein, Arabidopsis MeSH Prohlížeč
- PGRL1 protein, Arabidopsis MeSH Prohlížeč
- plastocyanin MeSH
- proteiny huseníčku * MeSH
Plants have evolved multiple regulatory mechanisms to cope with natural light fluctuations. The interplay between these mechanisms leads presumably to the resilience of plants in diverse light patterns. We investigated the energy-dependent nonphotochemical quenching (qE) and cyclic electron transports (CET) in light that oscillated with a 60-s period with three different amplitudes. The photosystem I (PSI) and photosystem II (PSII) function-related quantum yields and redox changes of plastocyanin and ferredoxin were measured in Arabidopsis thaliana wild types and mutants with partial defects in qE or CET. The decrease in quantum yield of qE due to the lack of either PsbS- or violaxanthin de-epoxidase was compensated by an increase in the quantum yield of the constitutive nonphotochemical quenching. The mutant lacking NAD(P)H dehydrogenase (NDH)-like-dependent CET had a transient significant PSI acceptor side limitation during the light rising phase under high amplitude of light oscillations. The mutant lacking PGR5/PGRL1-CET restricted electron flows and failed to induce effective photosynthesis control, regardless of oscillation amplitudes. This suggests that PGR5/PGRL1-CET is important for the regulation of PSI function in various amplitudes of light oscillation, while NDH-like-CET acts' as a safety valve under fluctuating light with high amplitude. The results also bespeak interplays among multiple photosynthetic regulatory mechanisms.
Zobrazit více v PubMed
Allahverdiyeva, Y., Suorsa, M., Tikkanen, M. & Aro, E.‐M. (2015) Photoprotection of photosystems in fluctuating light intensities. Journal of Experimental Botany, 66(9), 2427–2436. Available from: https://doi.org/10.1093/jxb/eru463
Alter, P., Dreissen, A., Luo, F.L. & Matsubara, S. (2012) Acclimatory responses of Arabidopsis to fluctuating light environment: comparison of different sunfleck regimes and accessions. Photosynthesis Research, 113(1–3), 221–237. Available from: https://doi.org/10.1007/s11120-012-9757-2
Ananyev, G. & Dismukes, G.C. (2005) How fast can photosystem II split water? Kinetic performance at high and low frequencies. Photosynthesis Research, 84(1–3), 355–365. Available from: https://doi.org/10.1007/s11120-004-7081-1
Avenson, T.J., Cruz, J.A., Kanazawa, A. & Kramer, D.M. (2005) Regulating the proton budget of higher plant photosynthesis. Proceedings of the National Academy of Sciences USA, 102(27), 9709–9713. Available from https://doi.org/10.1073/pnas.0503952102
Barker, D.H., Logan, B.A., III, W.W.A. & Demmig‐Adams, B. (1997) The response of xanthophyll cycle‐dependent energy dissipation in Alocasia brisbanensis to sunflecks in a subtropical rainforest Funct. Plant Biology, 24(1), 27–33. Available from: https://doi.org/10.1071/PP96059
Bottin, H. & Mathis, P. (1985) Interaction of plastocyanin with the photosystem I reaction center: a kinetic study by flash absorption spectroscopy. Biochemistry, 24(23), 6453–6460. Available from: https://doi.org/10.1021/bi00344a022
Chazdon, R.L. & Pearcy, R.W. (1991) The importance of sunflecks for forest understory plants. Bioscience, 41(11), 760–766. Available from: https://doi.org/10.2307/1311725
Caliandro, R., Nagel, K.A., Kastenholz, B., Bassi, R., Li, Z., Niyogi, K.K. et al. (2013) Effects of altered α‐ and β‐branch carotenoid biosynthesis on photoprotection and whole‐plant acclimation of Arabidopsis to photo‐oxidative stress. Plant, Cell & Environment, 36(2), 438–453. Available from: https://doi.org/10.1111/j.1365-3040.2012.02586.x
Crofts, A.R.andWraight, C.A. (1983) The electrochemical domain of photosynthesis. Biochimica et Biophysica Acta (BBA)—Reviews on Bioenergetics, 726(3), 149–185. Available from: https://doi.org/10.1016/0304-4173(83)90004-6
Cruz, J.A., Savage, L.J., Zegarac, R., Hall, C.C., Satoh‐Cruz, M., Davis, G.A. et al. (2016) Dynamic environmental photosynthetic imaging reveals emergent phenotypes. Cell Systems, 2(6), 365–377. Available from: https://doi.org/10.1016/j.cels.2016.06.001
DalCorso, G., Pesaresi, P., Masiero, S., Aseeva, E., Schünemann, D., Finazzi, G. et al. (2008) A complex containing PGRL1 and PGR5 is involved in the switch between linear and cyclic electron flow in Arabidopsis. Cell, 132(2), 273–285. Available from: https://doi.org/10.1016/j.cell.2007.12.028
Degen, G.E., Jackson, P.J., Proctor, M.S., Zoulias, N., Casson, S.A. & Johnson, M.P. (2023) High cyclic electron transfer via the PGR5 pathway in the absence of photosynthetic control. Plant Physiology, 192(1), 370–386. Available from: https://doi.org/10.1093/plphys/kiad084
Demmig‐Adams, B. (1990) Carotenoids and photoprotection in plants: a role for the xanthophyll zeaxanthin. Biochimica et Biophysica Acta (BBA)—Bioenergetics, 1020(1), 1–24. Available from: https://doi.org/10.1016/0005-2728(90)90088-L
Demmig‐Adams, B., Garab, G., Adams, W. & Govindjee, U. (2014) Non‐photochemical quenching and energy dissipation in plants, algae and cyanobacteria preface. Netherlands: Springer.
Durand, M. & Robson, T.M. (2023) Fields of a thousand shimmers: canopy architecture determines high‐frequency light fluctuations. New Phytologist, 238(5), 2000–2015. Available from: https://doi.org/10.1111/nph.18822
Duysens, L.N.M. & Sweers, H.E. (1963) Mechanism of the two photochemical reactions in algaeas studied by means of fluorescence In: Japanese society of plant physiologists (Ed.). Studies on microalgae and photosynthetic bacteria Tokyo: University of Tokyo Press. pp. 353–372.
Ferimazova, N., Küpper, H., Nedbal, L. & Trtílek, M. (2002) New insights into photosynthetic oscillations revealed by two‐dimensional microscopic measurements of chlorophyll fluorescence kinetics in intact leaves and isolated protoplasts. Photochemistry and Photobiology, 76(5), 501–508. Available from: https://doi.org/10.1562/0031-8655(2002)0760501NIIPOR2.0.CO2
Garab, G., Magyar, M., Sipka, G. & Lambrev, P.H. (2023) New foundations for the physical mechanism of variable chlorophyll a fluorescence. Quantum efficiency versus the light‐adapted state of photosystem II. Journal of Experimental Botany, 74(18), 5458–5471. Available from: https://doi.org/10.1093/jxb/erad252
Gilmore, A.M. (1997) Mechanistic aspects of xanthophyll cycle‐dependent photoprotection in higher plant chloroplasts and leaves. Physiologia Plantarum, 99(1), 197–209. Available from: https://doi.org/10.1034/j.1399-3054.1997.990127.x
Gjindali, A., Herrmann, H.A., Schwartz, J.‐M., Johnson, G.N. & Calzadilla, P.I. (2021) A holistic approach to study photosynthetic acclimation responses of plants to fluctuating light. Frontiers in Plant Science, 12, 668512. Available from: https://doi.org/10.3389/fpls.2021.668512
Han, J., Chang, C.Y.Y., Gu, L., Zhang, Y., Meeker, E.W., Magney, T.S. et al. (2022) The physiological basis for estimating photosynthesis from Chla fluorescence. New Phytologist, 234(4), 1206–1219. Available from: https://doi.org/10.1111/nph.18045
Hashimoto, M., Endo, T., Peltier, G., Tasaka, M. & Shikanai, T. (2003) A nucleus‐encoded factor, CRR2, is essential for the expression of chloroplast ndhB in Arabidopsis. The Plant Journal, 36(4), 541–549. Available from: https://doi.org/10.1046/j.1365-313X.2003.01900.x
Hertle, A.P., Blunder, T., Wunder, T., Pesaresi, P., Pribil, M., Armbruster, U. et al. (2013) PGRL1 is the elusive ferredoxin‐plastoquinone reductase in photosynthetic cyclic electron flow. Molecular Cell, 49(3), 511–523. Available from: https://doi.org/10.1016/J.MOLCEL.2012.11.030
Holzwarth, A.R., Miloslavina, Y., Nilkens, M. & Jahns, P. (2009) Identification of two quenching sites active in the regulation of photosynthetic light‐harvesting studied by time‐resolved fluorescence. Chemical Physics Letters, 483(4–6), 262–267. Available from: https://doi.org/10.1016/j.cplett.2009.10.085
Huang, W., Zhang, S.‐B. & Cao, K.‐F. (2011) Cyclic electron flow plays an important role in photoprotection of tropical trees illuminated at temporal chilling temperature. Plant and Cell Physiology, 52(2), 297–305. Available from: https://doi.org/10.1093/pcp/pcq166
Ikeuchi, M., Uebayashi, N., Sato, F. & Endo, T. (2014) Physiological functions of PsbS‐dependent and PsbS‐independent NPQ under naturally fluctuating light conditions. Plant and Cell Physiology, 55(7), 1286–1295. Available from: https://doi.org/10.1093/pcp/pcu069
Jahns, P. & Holzwarth, A.R. (2012) The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. Biochimica et Biophysica Acta (BBA)—Bioenergetics, 1817(1), 182–193. Available from: https://doi.org/10.1016/j.bbabio.2011.04.012
Johnson, G.N. (2011) Physiology of PSI cyclic electron transport in higher plants. Biochimica et Biophysica Acta (BBA)—Bioenergetics, 1807(3), 384–389. Available from: https://doi.org/10.1016/j.bbabio.2010.11.009
Johnson, G.N., Cardol, P., Minagawa, J. & Finazzi, G. (2014) Regulation of electron transport in photosynthesis. In: Theg, S.M. & Wollman, F.‐A. (Eds.) Plastid biology. New York: Springer, pp. 437–464. Available from: https://doi.org/10.1007/978-1-4939-1136-3_16
Joliot, P. & Joliot, A. (2005) Quantification of cyclic and linear flows in plants. Proceedings of the National Academy of Sciences of the United States of America, 102(13), 4913–4918. Available from: https://doi.org/10.1073/pnas.0501268102
Kaiser, E., Morales, A. & Harbinson, J. (2018) Fluctuating light takes crop photosynthesis on a rollercoaster ride. Plant Physiology, 176(2), 977–989. Available from: https://doi.org/10.1104/pp.17.01250
Kawashima, R., Sato, R., Harada, K. & Masuda, S. (2017) Relative contributions of PGR5‐ and NDH‐dependent photosystem I cyclic electron flow in the generation of a proton gradient in Arabidopsis chloroplasts. Planta, 246(5), 1045–1050. Available from: https://doi.org/10.1007/s00425-017-2761-1
Klughammer, C. & Schreiber, U. (2016) Deconvolution of ferredoxin, plastocyanin, and P700 transmittance changes in intact leaves with a new type of kinetic LED array spectrophotometer. Photosynthesis Research, 128(2), 195–214. Available from: https://doi.org/10.1007/s11120-016-0219-0
Kono, M., Noguchi, K. & Terashima, I. (2014) Roles of the cyclic electron flow around PSI (CEF‐PSI) and O2‐dependent alternative pathways in regulation of the photosynthetic electron flow in short‐term fluctuating light in Arabidopsis thaliana. Plant and Cell Physiology, 55(5), 990–1004. Available from: https://doi.org/10.1093/pcp/pcu033
Kono, M. & Terashima, I. (2014) Long‐term and short‐term responses of the photosynthetic electron transport to fluctuating light. Journal of Photochemistry and Photobiology, B: Biology, 137, 89–99. Available from: https://doi.org/10.1016/j.jphotobiol.2014.02.016
Kono, M. & Terashima, I. (2016) Elucidation of photoprotective mechanisms of PSI against fluctuating light photoinhibition. Plant & Cell Physiology, 57(7), 1405–1414. Available from: https://doi.org/10.1093/pcp/pcw103
Kouřil, R., Strouhal, O., Nosek, L., Lenobel, R., Chamrád, I., Boekema, E.J. et al. (2014) Structural characterization of a plant photosystem I and NAD(P)H dehydrogenase supercomplex. The Plant Journal, 77(4), 568–576. Available from: https://doi.org/10.1111/tpj.12402
Kromdijk, J., Głowacka, K., Leonelli, L., Gabilly, S.T., Iwai, M., Niyogi, K.K. et al. (2016) Improving photosynthesis and crop productivity by accelerating recovery from photoprotection. Science, 354(6314), 857–861. Available from: https://doi.org/10.1126/science.aai8878
Külheim, C., Ågren, J. & Jansson, S. (2002) Rapid regulation of light harvesting and plant fitness in the field. Science, 297(5578), 91–93. Available from: https://doi.org/10.1126/science.1072359
Külheim, C. & Jansson, S. (2005) What leads to reduced fitness in non‐photochemical quenching mutants? Physiologia Plantarum, 125(2), 202–211. Available from: https://doi.org/10.1111/j.1399-3054.2005.00547.x
Laisk, A. & Oja, V. (2020) Variable fluorescence of closed photochemical reaction centers. Photosynthesis Research, 143(3), 335–346. Available from: https://doi.org/10.1007/s11120-020-00712-3
Laughlin, T.G., Savage, D.F. & Davies, K.M. (2020) Recent advances on the structure and function of NDH‐1: the complex I of oxygenic photosynthesis. Biochimica et Biophysica Acta (BBA)—Bioenergetics, 1861(11), 148254. Available from:https://doi.org/10.1016/J.BBABIO.2020.148254
Lazár, D. (2015) Parameters of photosynthetic energy partitioning. Journal of Plant Physiology, 175, 131–147. Available from: https://doi.org/10.1016/j.jplph.2014.10.021
Lazár, D., Kaňa, R., Klinkovský, T. & Nauš, J. (2005) Experimental and theoretical study on high temperature induced changes in chlorophyll a fluorescence oscillations in barley leaves upon 2 % CO2. Photosynthetica, 43(1), 13–27. Available from: https://doi.org/10.1007/s11099-005-3027-x
Lazár, D., Niu, Y. & Nedbal, L. (2022) Insights on the regulation of photosynthesis in pea leaves exposed to oscillating light. Journal of Experimental Botany, 73(18), 6380–6393. Available from: https://doi.org/10.1093/jxb/erac283
Li, X.P., Björkman, O., Shih, C., Grossman, A.R., Rosenquist, M., Jansson, S. et al. (2000) A pigment‐binding protein essential for regulation of photosynthetic light harvesting. Nature, 403(6768), 391–395. Available from: https://doi.org/10.1038/35000131
Li, X.‐P., Müller‐Moulé, P., Gilmore, A.M. & Niyogi, K.K. (2002) PsbS‐dependent enhancement of feedback de‐excitation protects photosystem II from photoinhibition. Proceedings of the National Academy of Sciences of the United States of America, 99(23), 15222–15227. Available from: https://doi.org/10.1073/pnas.232447699
Ma, M., Liu, Y., Bai, C., Yang, Y., Sun, Z., Liu, X. et al. (2021) The physiological functionality of PGR5/PGRL1‐dependent cyclic electron transport in sustaining photosynthesis. Frontiers of Plant Science, 12, 702196. Available from: https://doi.org/10.3389/fpls.2021.702196
Ma, M., Liu, Y., Bai, C. & Yong, J.W.H. (2021) The significance of chloroplast NAD(P)H dehydrogenase complex and its dependent cyclic electron transport in photosynthesis. Frontiers of Plant Science, 12, 661863.
Magyar, M., Sipka, G., Kovács, L., Ughy, B., Zhu, Q., Han, G. et al. (2018) Rate‐limiting steps in the dark‐to‐light transition of photosystem II—revealed by chlorophyll‐a fluorescence induction. Scientific Reports, 8(1), 2755. Available from: https://doi.org/10.1038/s41598-018-21195-2
Miyake, C., Miyata, M., Shinzaki, Y. & Tomizawa, K. (2005) CO2 response of cyclic electron flow around PSI (CEF‐PSI) in tobacco leaves—relative electron fluxes through PSI and PSII determine the magnitude of non‐photochemical quenching (NPQ) of chl fluorescence. Plant and Cell Physiology, 46(4), 629–637. Available from: https://doi.org/10.1093/pcp/pci067
Morales, A. & Kaiser, E. (2020) Photosynthetic acclimation to fluctuating irradiance in plants. Frontiers in Plant Science, 11, 268. Available from: https://doi.org/10.3389/FPLS.2020.00268/BIBTEX
Müller, P., Li, X.‐P. & Niyogi, K.K. (2001) Non‐photochemical quenching. A response to excess light energy. Plant Physiology, 125(4), 1558–1566. Available from: https://doi.org/10.1104/pp.125.4.1558
Munekage, Y., Hashimoto, M., Miyake, C., Tomizawa, K.I., Endo, T., Tasaka, M. et al. (2004) Cyclic electron flow around photosystem I is essential for photosynthesis. Nature, 429(6991), 579–582. Available from: https://doi.org/10.1038/nature02598
Munekage, Y., Hojo, M., Meurer, J., Endo, T., Tasaka, M. & Shikanai, T. (2002) PGR5 is involved in cyclic electron flow around photosystem I and is essential for photoprotection in Arabidopsis. Cell, 110(3), 361–371. Available from: https://doi.org/10.1016/S0092-8674(02)00867-X
Nakano, H., Yamamoto, H. & Shikanai, T. (2019) Contribution of NDH‐dependent cyclic electron transport around photosystem I to the generation of proton motive force in the weak mutant allele of pgr5. Biochimica et Biophysica Acta (BBA)—Bioenergetics, 1860(5), 369–374. Available from: https://doi.org/10.1016/j.bbabio.2019.03.003
Nedbal, L. & Březina, V. (2002) Complex metabolic oscillations in plants forced by harmonic irradiance. Biophysical Journal, 83(4), 2180–2189. Available from: https://doi.org/10.1016/S0006-3495(02)73978-7
Nedbal, L., Březina, ě, Adamec, F., Štys, D., Oja, V., Laisk, A. et al. (2003) Negative feedback regulation is responsible for the non‐linear modulation of photosynthetic activity in plants and cyanobacteria exposed to a dynamic light environment. Biochimica et Biophysica Acta (BBA)—Bioenergetics, 1607(1), 5–17. Available from: https://doi.org/10.1016/j.bbabio.2003.08.005
Nedbal, L., Březina, V., Červený, J. & Trtílek, M. (2005) Photosynthesis in dynamic light: systems biology of unconventional chlorophyll fluorescence transients in Synechocystis sp. PCC 6803. Photosynthesis Research, 84(1–3), 99–106. Available from: https://doi.org/10.1007/s11120-004-6428-y
Nedbal, L. & Lazár, D. (2021) Photosynthesis dynamics and regulation sensed in the frequency domain. Plant Physiology, 187(2), 646–661. Available from: https://doi.org/10.1093/plphys/kiab317
Niedermaier, S., Schneider, T., Bahl, M.O., Matsubara, S. & Huesgen, P.F. (2020) Photoprotective acclimation of the Arabidopsis thaliana leaf proteome to fluctuating light. Frontiers in Genetics, 11, 154. Available from: https://doi.org/10.3389/fgene.2020.00154
Niu, Y., Lazár, D., Holzwarth, A.R., Kramer, D.M., Matsubara, S., Fiorani, F. et al. (2023) Plants cope with fluctuating light by frequency‐dependent non‐photochemical quenching and cyclic electron transport. New Phytologist, 239(5), 1869–1886. Available from: https://doi.org/10.1111/nph.19083
Niyogi, K.K., Grossman, A.R. & Björkman, O. (1998) Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion. The Plant Cell, 10(7), 1121–1134. Available from: https://doi.org/10.1105/tpc.10.7.1121
Oja, V. & Laisk, A. (2020) Time‐ and reduction‐dependent rise of photosystem II fluorescence during microseconds‐long inductions in leaves. Photosynthesis Research, 145(3), 209–225. Available from: https://doi.org/10.1007/s11120-020-00783-2
Okegawa, Y., Kagawa, Y., Kobayashi, Y. & Shikanai, T. (2008) Characterization of factors affecting the activity of photosystem I cyclic electron transport in chloroplasts. Plant and Cell Physiology, 49(5), 825–834. Available from: https://doi.org/10.1093/pcp/pcn055
Peltier, G., Aro, E.M. & Shikanai, T. (2016) NDH‐1 and NDH‐2 plastoquinone reductases in oxygenic photosynthesis. Annual Review of Plant Biology, 67, 55–80. Available from: https://doi.org/10.1146/annurev-arplant-043014-114752
Roach, T. & Krieger‐Liszkay, A. (2012) The role of the PsbS protein in the protection of photosystems I and II against high light in Arabidopsis thaliana. Biochimica et Biophysica Acta (BBA)—Bioenergetics, 1817(12), 2158–2165. Available from: https://doi.org/10.1016/j.bbabio.2012.09.011
Roden, J.S. & Pearcy, R.W. (1993) Effect of leaf flutter on the light environment of poplars. Oecologia, 93(2), 201–207. Available from: https://doi.org/10.1007/bf00317672
Rumberg, B. & Siggel, U. (1969) pH changes in the inner phase of the thylakoids during photosynthesis. Die Naturwissenschaften, 56(3), 130–132. Available from: https://doi.org/10.1007/BF00601025
Ruban, A.V. (2016) Nonphotochemical chlorophyll fluorescence quenching: mechanism and effectiveness in protecting plants from photodamage. Plant Physiology, 170(4), 1903–1916. Available from: https://doi.org/10.1104/pp.15.01935
Sagun, J.V., Badger, M.R., Chow, W.S. & Ghannoum, O. (2019) Cyclic electron flow and light partitioning between the two photosystems in leaves of plants with different functional types. Photosynthesis Research, 142(3), 321–334. Available from: https://doi.org/10.1007/s11120-019-00666-1
Sazanov, L.A., Burrows, P.A. & Nixon, P.J. (1998) The chloroplast Ndh complex mediates the dark reduction of the plastoquinone pool in response to heat stress in tobacco leaves. FEBS Letters, 429(1), 115–118. Available from: https://doi.org/10.1016/S0014-5793(98)00573-0
Schansker, G. (2022) Determining photosynthetic control, a probe for the balance between electron transport and Calvin‐Benson cycle activity, with the DUAL‐KLAS‐NIR. Photosynthesis Research, 153, 191–204. Available from: https://doi.org/10.1007/s11120-022-00934-7
Schansker, G., Tóth, S.Z., Kovács, L., Holzwarth, A.R. & Garab, G. (2011) Evidence for a fluorescence yield change driven by a light‐induced conformational change within photosystem II during the fast chlorophyll a fluorescence rise. Biochimica et Biophysica Acta (BBA) ‐ Bioenegetics, 1807(9), 1032–1043. Available from: https://doi.org/10.1016/j.bbabio.2011.05.022
Schneider, T., Bolger, A., Zeier, J., Preiskowski, S., Benes, V., Trenkamp, S. et al. (2019) Fluctuating light interacts with time of day and leaf development stage to reprogram gene expression. Plant Physiology, 179(4), 1632–1657. Available from: https://doi.org/10.1104/PP.18.01443
Schreiber, U. (2004) Pulse‐amplitude‐modulation (PAM) fluorometry and saturation pulse method: an overview. In: Papageorgiou, G.C. & Govindjee, G. (Eds.) Chlorophyll a fluorescence: a signature of photosynthesis. Dordrecht: Springer, pp. 279–319.
Schreiber, U. & Klughammer, C. (2016) Analysis of photosystem I donor and acceptor sides with a new type of online‐deconvoluting kinetic LED‐array spectrophotometer. Plant & Cell Physiology, 57(7), 1454–1467. Available from: https://doi.org/10.1093/pcp/pcw044
Setif, P.Q.Y. & Bottin, H. (1995) Laser flash absorption spectroscopy study of ferredoxin reduction by photosystem I: spectral and kinetic evidence for the existence of several photosystem I‐ferredoxin complexes. Biochemistry, 34(28), 9059–9070. Available from: https://doi.org/10.1021/bi00028a015
Shikanai, T. (2014) Central role of cyclic electron transport around photosystem I in the regulation of photosynthesis. Current Opinion in Biotechnology, 26, 25–30. Available from: https://doi.org/10.1016/J.COPBIO.2013.08.012
Shikanai, T. & Okegawa, Y. (2008) Regulation of photosynthesis via PSI cyclic electron transport. In: Allen, J.F., Gantt, E., Golbeck, J.H. & Osmond, B. (Eds.) Photosynthesis. Energy from the Sun. Dordrecht: Springer, pp. 981–985.
Shimakawa, G. & Miyake, C. (2018) Changing frequency of fluctuating light reveals the molecular mechanism for P700 oxidation in plant leaves. Plant Direct, 2(7), e00073. Available from: https://doi.org/10.1002/pld3.73
Siggel, U. (1976) The function of plastoquinone as electron and proton carrier in photosynthesis. Bioelectrochemistry and Bioenergetics, 3(2), 302–318. Available from: https://doi.org/10.1016/0302-4598(76)80012-8
Sipka, G., Magyar, M., Mezzetti, A., Akhtar, P., Zhu, Q., Xiao, Y. et al. (2021) Light‐adapted charge‐separated state of photosystem II: structural and functional dynamics of the closed reaction center. The Plant Cell, 33(4), 1286–1302. Available from: https://doi.org/10.1093/plcell/koab008
Smith, W.K. & Berry, Z.C. (2013) Sunflecks? Tree Physiology, 33(3), 233–237. Available from: https://doi.org/10.1093/treephys/tpt005
Steen, C.J., Morris, J.M., Short, A.H., Niyogi, K.K. & Fleming, G.R. (2020) Complex roles of PsbS and xanthophylls in the regulation of nonphotochemical quenching in Arabidopsis thaliana under fluctuating light. The Journal of Physical Chemistry B, 124(46), 10311–10325. Available from: https://doi.org/10.1021/acs.jpcb.0c06265
Stirbet, A. (2013) Excitonic connectivity between photosystem II units: what is it, and how to measure it. Photosynthesis Research, 116(2–3), 189–214. Available from: https://doi.org/10.1007/s11120-013-9863-9
Strand, D.D., Fisher, N. & Kramer, D.M. (2017) The higher plant plastid NAD(P)H dehydrogenase‐like complex (NDH) is a high efficiency proton pump that increases ATP production by cyclic electron flow. Journal of Biological Chemistry, 292(28), 11850–11860. Available from: https://doi.org/10.1074/jbc.M116.770792
Sugimoto, K., Okegawa, Y., Tohri, A., Long, T.A., Covert, S.F., Hisabori, T. et al. (2013) A single amino acid alteration in PGR5 confers resistance to antimycin A in cyclic electron transport around PSI. Plant and Cell Physiology, 54(9), 1525–1534. Available from: https://doi.org/10.1093/pcp/pct098
Suorsa, M., Grieco, M., Järvi, S., Gollan, P.J., Kangasjärvi, S., Tikkanen, M. et al. (2013) PGR5 ensures photosynthetic control to safeguard photosystem I under fluctuating light conditions. Plant Signaling & Behavior, 8(1), e22741. Available from: https://doi.org/10.4161/psb.22741
Suorsa, M., Järvi, S., Grieco, M., Nurmi, M., Pietrzykowska, M., Rantala, M. et al. (2012) PROTON GRADIENT REGULATION5 is essential for proper acclimation of Arabidopsis photosystem I to naturally and artificially fluctuating light conditions. The Plant Cell, 24(7), 2934–2948. Available from: https://doi.org/10.1105/tpc.112.097162
Sylak‐Glassman, E.J., Malnoë, A., De Re, E., Brooks, M.D., Fischer, A.L., Niyogi, K.K. et al. (2014) Distinct roles of the photosystem II protein PsbS and zeaxanthin in the regulation of light harvesting in plants revealed by fluorescence lifetime snapshots. Proceedings of the National Academy of Sciences of the United States of America, 111(49), 17498–17503. Available from: https://doi.org/10.1073/pnas.1418317111
Takagi, D., Takumi, S., Hashiguchi, M., Sejima, T. & Miyake, C. (2016) Superoxide and singlet oxygen produced within the thylakoid membranes both cause photosystem I photoinhibition. Plant Physiology, 171(3), 1626–1634. Available from: https://doi.org/10.1104/pp.16.00246
Terashima, I., Funayama, S. & Sonoike, K. (1994) The site of photoinhibition in leaves of Cucumis sativus L. at low temperatures is photosystem I, not photosystem II. Planta, 193(2), 300–306. Available from: https://doi.org/10.1007/BF00192544
Tikhonov, A.N. (2023) The cytochrome b6f complex: plastoquinol oxidation and regulation of electron transport in chloroplasts. Photosynthesis Research. Available from: https://doi.org/10.1007/s11120-023-01034-w
Tikhonov, A.N., Khomutov, G.B., Ruuge, E.K. & Blumenfeld, L.A. (1981) Electron transport control in chloroplasts; effects of photosynthetic control monitored by the intrathylakoid pH. Biochimica et Biophysica Acta (BBA)—Bioenergetics, 637(2), 321–333. Available from: https://doi.org/10.1016/0005-2728(81)90171-7
Tjus, S.E., Lindberg Møller, B. & Vibe Scheller, H. (1998) Photosystem I is an early target of photoinhibition in barley illuminated at chilling temperatures. Plant Physiology, 116(2), 755–764. Available from: https://doi.org/10.1104/pp.116.2.755
Vialet‐Chabrand, S., Matthews, J.S.A., Simkin, A.J., Raines, C.A. & Lawson, T. (2017) Importance of fluctuations in light on plant photosynthetic acclimation. Plant Physiology, 173(4), 2163–2179. Available from: https://doi.org/10.1104/pp.16.01767
Wada, S., Amako, K. & Miyake, C. (2021) Identification of a novel mutation exacerbated the PSI photoinhibition in pgr5/pgrl1 mutants; caution for overestimation of the phenotypes in Arabidopsis pgr5‐1 mutant. Cells, 10(11), 2884. Available from: https://doi.org/10.3390/cells10112884
Wang, C., Yamamoto, H. & Shikanai, T. (2015) Role of cyclic electron transport around photosystem I in regulating proton motive force. Biochimica et Biophysica Acta (BBA)—Bioenergetics, 1847(9), 931–938. Available from: https://doi.org/10.1016/j.bbabio.2014.11.013
Ware, M.A., Belgio, E. & Ruban, A.V. (2015) Comparison of the protective effectiveness of NPQ in Arabidopsis plants deficient in PsbS protein and zeaxanthin. Journal of Experimental Botany, 66(5), 1259–1270. Available from: https://doi.org/10.1093/jxb/eru477
Way, D.A. & Pearcy, R.W. (2012) Sunflecks in trees and forests: from photosynthetic physiology to global change biology. Tree Physiology, 32(9), 1066–1081. Available from: https://doi.org/10.1093/treephys/tps064
Wei, Z., Duan, F., Sun, X., Song, X. & Zhou, W. (2021) Leaf photosynthetic and anatomical insights into mechanisms of acclimation in rice in response to long‐term fluctuating light. Plant, Cell & Environment, 44(3), 747–761. Available from: https://doi.org/10.1111/pce.13954
Yamamoto, H., Peng, L., Fukao, Y. & Shikanai, T. (2011) An Src homology 3 domain‐like fold protein forms a ferredoxin binding site for the chloroplast NADH dehydrogenase‐like complex in Arabidopsis. The Plant Cell, 23(4), 1480–1493. Available from: https://doi.org/10.1105/tpc.110.080291
Yamamoto, H. & Shikanai, T. (2019) PGR5‐dependent cyclic electron flow protects photosystem I under fluctuating light at donor and acceptor sides. Plant Physiology, 179(2), 588–600. Available from: https://doi.org/10.1104/pp.18.01343
Yamori, W., Makino, A. & Shikanai, T. (2016) A physiological role of cyclic electron transport around photosystem I in sustaining photosynthesis under fluctuating light in rice. Scientific Reports, 6, 20147. Available from: https://doi.org/10.1038/srep20147
Yamori, W., Sakata, N., Suzuki, Y., Shikanai, T. & Makino, A. (2011) Cyclic electron flow around photosystem I via chloroplast NAD(P)H dehydrogenase (NDH) complex performs a significant physiological role during photosynthesis and plant growth at low temperature in rice. The Plant Journal, 68(6), 966–976. Available from: https://doi.org/10.1111/j.1365-313X.2011.04747.x
Yamori, W. & Shikanai, T. (2016) Physiological functions of cyclic electron transport around photosystem I in sustaining photosynthesis and plant growth. Annual Review of Plant Biology, 67, 81–106. Available from: https://doi.org/10.1146/annurev-arplant-043015-112002
Yamori, W., Shikanai, T. & Makino, A. (2015) Photosystem I cyclic electron flow via chloroplast NADH dehydrogenase‐like complex performs a physiological role for photosynthesis at low light. Scientific Reports, 5, 13908. Available from: https://doi.org/10.1038/srep15593
Zhou, Q., Yamamoto, H. & Shikanai, T. (2022) Distinct contribution of two cyclic electron transport pathways to P700 oxidation. Plant Physiology, 192(1), 326–341. Available from: https://doi.org/10.1093/plphys/kiac557
Unique structural attributes of the PSI-NDH supercomplex in Physcomitrium patens