Single Molecule Spectroscopy of Monomeric LHCII: Experiment and Theory
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
267333
European Research Council - International
PubMed
27189196
PubMed Central
PMC4870570
DOI
10.1038/srep26230
PII: srep26230
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
We derive approximate equations of motion for excited state dynamics of a multilevel open quantum system weakly interacting with light to describe fluorescence-detected single molecule spectra. Based on the Frenkel exciton theory, we construct a model for the chlorophyll part of the LHCII complex of higher plants and its interaction with previously proposed excitation quencher in the form of the lutein molecule Lut 1. The resulting description is valid over a broad range of timescales relevant for single molecule spectroscopy, i.e. from ps to minutes. Validity of these equations is demonstrated by comparing simulations of ensemble and single-molecule spectra of monomeric LHCII with experiments. Using a conformational change of the LHCII protein as a switching mechanism, the intensity and spectral time traces of individual LHCII complexes are simulated, and the experimental statistical distributions are reproduced. Based on our model, it is shown that with reasonable assumptions about its interaction with chlorophylls, Lut 1 can act as an efficient fluorescence quencher in LHCII.
Zobrazit více v PubMed
Blankenship R. E. Molecular Mechanisms of Photosynthesis (Blackwell Science, 2002).
Wraight C. A. & Clayton R. K. The absolute quantum efficiency of bacteriochlorophyll photooxidation in reaction centres of Rhodopseudomonas spheroides. Biochim. Biophys. Acta - Bioenerg. 333, 246–260 (1974). PubMed
Blankenship R. E. et al. Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 332, 805–809 (2011). PubMed
van Amerongen H., van Grondelle R. & Valkunas L. Photosynthetic Excitons (World Scientific, London, 2000).
Ruban A. V., Johnson M. P. & Duffy C. D. P. The photoprotective molecular switch in the photosystem II antenna. Biochim. Biophys. Acta - Bioenerg. 1817, 167–181 (2012). PubMed
Holt N. E. et al. Carotenoid cation formation and the regulation of photosynthetic light harvesting. Science 307, 433–436 (2005). PubMed
Ruban A. V. et al. Identification of a mechanism of photoprotective energy dissipation in higher plants. Nature 450, 575–8 (2007). PubMed
Avenson T. J. et al. Zeaxanthin radical cation formation in minor light-harvesting complexes of higher plant antenna. J. Biol. Chem. 283, 3550–3558 (2008). PubMed
Bode S. et al. On the regulation of photosynthesis by excitonic interactions between carotenoids and chlorophylls. Proc. Natl. Acad. Sci. USA 106, 12311–12316 (2009). PubMed PMC
Berera R., Van Stokkum I. H. M., Kennis J. T. M., Grondelle R. V. & Dekker J. P. The light-harvesting function of carotenoids in the cyanobacterial stress-inducible IsiA complex. Chem. Phys. 373, 65–70 (2010).
Müller M. G. et al. Singlet energy dissipation in the photosystem II light-harvesting complex does not involve energy transfer to carotenoids. Chemphyschem 11, 1289–96 (2010). PubMed
Fuciman M. et al. The Role of Xanthophylls in Light-Harvesting in Green Plants: A Spectroscopic Investigation of Mutant LHCII and Lhcb Pigment-Proteins Complexes. J. Phys. Chem. B 116, 3834–49 (2012). PubMed
Staleva H. et al. Mechanism of photoprotection in the cyanobacterial ancestor of plant antenna proteins. Nat. Chem. Biol. 11 (2015). PubMed
Haarer D. & Silbey R. Hole-Burning Spectroscopy of Glasses. Phys. Today 43, 58 (1990). PubMed
Johnson S., Tang D., Jankowiak R., Hayes J. M. & Small G. J. Structure and marker mode of the primary electron donor state absorption of photosynthetic bacteria: hole-burned spectra. J. Phys. Chem. 93, 5953–5957 (1989).
Creemers T. M. H., Caro C. A. D., Visschers R. W., Grondelle R. V. & Vo S. Spectral Hole Burning and Fluorescence Line Narrowing in Subunits of the Light-Harvesting Complex LH1 of Purple Bacteria. J. Phys. Chem. B 103, 9770–9776 (1999).
Jonas D. M. Two-dimensional femtosecond spectroscopy. Annu. Rev. Phys. Chem. 54, 425–463 (2003). PubMed
Moerner W. & Kador L. Optical detection and spectroscopy of single molecules in a solid. Phys. Rev. Lett. 62, 2535–2538 (1989). PubMed
Schlau-Cohen G. S. et al. Single-Molecule Identification of Quenched and Unquenched States of LHCII. J. Phys. Chem. Lett. 6, 860–867 (2015). PubMed
Liu Z. et al. Crystal structure of spinach major light-harvesting complex at 2. 72 A resolution. Nature 428, 287–292 (2004). PubMed
Novoderezhkin V. I., Palacios M. A., van Amerongen H. & van Grondelle R. Energy-Transfer Dynamics in the LHCII Complex of Higher Plants: Modified Redfield Approach. J. Phys. Chem. B 108, 10363 (2004). PubMed
Novoderezhkin V. I., Palacios M. A., van Amerongen H. & van Grondelle R. Excitation dynamics in the LHCII complex of higher plants: modeling based on the 2.72 Angstrom crystal structure. J. Phys. Chem. B 109, 10493–504 (2005). PubMed
Novoderezhkin V., Marin A. & van Grondelle R. Intra- and inter-monomeric ttransfer in the light harvesting LHCII complex: the Redfield-Förster picture. Phys. Chem. Chem. Phys. 13, 17093 (2011). PubMed
Krüger T. P. J., Novoderezhkin V. I., Ilioaia C. & van Grondelle R. Fluorescence spectral dynamics of single LHCII trimers. Biophys. J. 98, 3093–101 (2010). PubMed PMC
Tietz C. et al. Single molecule spectroscopy on the light-harvesting complex II of higher plants. Biophys. J. 81, 556–62 (2001). PubMed PMC
Krüger T. P. J., Ilioaia C., Valkunas L. & van Grondelle R. Fluorescence intermittency from the main plant light-harvesting complex: sensitivity to the local environment. J. Phys. Chem. B 115, 5083–95 (2011). PubMed
Krüger T. P. J. et al. Controlled disorder in plant light-harvesting complex II explains its photoprotective role. Biophys. J. 2669–76 (2012). PubMed PMC
Krüger T. P. J., Ilioaia C. & van Grondelle R. Fluorescence intermittency from the main plant light-harvesting complex: resolving shifts between intensity levels. J. Phys. Chem. B 115, 5071–82 (2011). PubMed
Malý P., Gruber M. J., Cogdell R. J., Mančal T. & van Grondelle R. Ultrafast energy relaxation in single light-harvesting complexes. Proc. Natl. Acad. Sci. USA 113, 2934–39 (2016). PubMed PMC
May V. & Kühn O. Charge and Energy Transfer Dynamics in Molecular Systems (Wiley-VCH, 2011).
Valkunas L., Abramavicius D. & Mančal T. Molecular Excitation Dynamics and Relaxation (Wiley-VCH, 2013).
Ishizaki A. & Fleming G. R. Unified treatment of quantum coherent and incoherent hopping dynamics in electronic energy transfer: reduced hierarchy equation approach. J. Chem. Phys. 130, 234111 (2009). PubMed
Hein B., Kreisbeck C., Kramer T. & Rodríguez M. Modelling of oscillations in two-dimensional echo-spectra of the Fenna-Matthews-Olson complex. New J. Phys. 14, 023018 (2012).
Wilkins D. M. & Dattani N. S. Why quantum coherence is not important in the Fenna-Matthews-Olsen Complex. J. Chem. Theory Comput. 14, 3411–19 (2015). PubMed
Prior J., Chin A. W., Huelga S. F. & Plenio M. B. Efficient simulation of strong system-environment interactions. Phys. Rev. Lett. 105, 1–4 (2010). PubMed
Shi Q. & Geva E. A semiclassical generalized quantum master equation for an arbitrary system-bath coupling. J. Chem. Phys. 120, 12063 (2004). PubMed
Stockburger J. T. & Grabert H. Exact c-number representation of non-Markovian quantum dissipation. Phys. Rev. Lett. 88, 170407 (2002). PubMed
Xu R. X., Cui P., Li X. Q., Mo Y. & Yan Y. Exact quantum master equation via the calculus on path integrals. J. Chem. Phys. 122, 041103 (2005). PubMed
Huo P., Bonella S., Chen L. & Coker D. F. Linearized approximations for condensed phase non-adiabatic dynamics: Multi-layered baths and Brownian dynamics implementation. Chem. Phys. 370, 87–97 (2010).
Schröter M. et al. Exciton-vibrational coupling in the dynamics and spectroscopy of Frenkel excitons in molecular aggregates. Phys. Rep. 567, 1–78 (2015).
Fain B. Irreversibilities in Quantum Mechanics (Kluer Acadenic Publishers, Dorderecht, 2000).
Jiang X.-P. & Brumer P. Creation and dynamics of molecular states prepared with coherent vs partially coherent pulsed light. J. Chem. Phys. 94, 5833 (1991).
Mančal T. & Valkunas L. Exciton dynamics in photosynthetic complexes: Excitation by coherent and incoherent light. New J. Phys. 12, 1–12 (2010).
Brumer P. & Shapiro M. Molecular response in one-photon absorption via natural thermal light vs. pulsed laser excitation. Proc. Natl. Acad. Sci. USA 109, 19575–8 (2012). PubMed PMC
Chenu A., Malý P. & Mančal T. Dynamic coherence in excitonic molecular complexes under various excitation conditions. Chem. Phys. 439, 100–110 (2014).
Mančal T. & Šanda F. Quantum master equations for non-linear optical response of molecular systems. Chem. Phys. Lett. 530, 140–144 (2012).
Olšina J. & Mančal T. Parametric projection operator technique for second order non-linear response. Chem. Phys. 404, 103–115 (2012).
Mukamel S. Principles of nonlinear spectroscopy (Oxford University Press, Oxford, 1995).
Page C. H. Instantaneous Power Spectra. J. Appl. Phys. 23, 103 (1952).
Jean J. M., Chan C. K., Fleming G. R. & Owens T. G. Excitation Transport and Trapping on Spectrally Disordered Lattices. Biophys. J. 56, 1203–1215 (1989). PubMed PMC
Pullerits T. & Freiberg A. Kinetic model of primary energy transfer and trapping in photosynthetic membranes. Biophys. J. 63, 879–896 (1992). PubMed PMC
Peterman E. J. G., Pullerits T., Van Grondelle R. & Van Amerongen H. Electron-phonon coupling and vibronic fine structure of light-harvesting complex II of green plants: Temperature dependent absorption and high-resolution fluorescence spectroscopy. J. Phys. Chem. B 101, 4448–4457 (1997).
Nordlund T. M. & Knox W. H. Lifetime of Fluorescence from Light-Harvesting Chlorophyll a/b proteins. Biophys. J. 36, 193–201 (1981). PubMed PMC
Schodel R., Irrgang K. D., Voigt J. & Renger G. Rate of carotenoid triplet formation in solubilized light-harvesting complex II (LHCII) from spinach. Biophys. J. 75, 3143–53 (1998). PubMed PMC
Duffy C. D. P. et al. Modeling of fluorescence quenching by lutein in the plant light-harvesting complex LHCII. J. Phys. Chem. B 117, 10974–86 (2013). PubMed
Polívka T., Zigmantas D. & Sundström V. Carotenoid S1 State in a Recombinant Light-Harvesting Complex of Photosystem II. Biochemistry 41, 439 (2002). PubMed
Valkunas L., Chmeliov J., Krüger T. P. J., Ilioaia C. & van Grondelle R. How Photosynthetic Proteins Switch. J. Phys. Chem. Lett. 3, 2779–2784 (2012).
Chmeliov J., Valkunas L., Krüger T. P. J., Ilioaia C. & van Grondelle R. Fluorescence blinking of single major light-harvesting complexes. New J. Phys. 15, 85007 (2013).
Chmeliov J. et al. An ‘all pigment’ model of excitation quenching in LHCII. Phys. Chem. Chem. Phys. 17, 15857–67 (2015). PubMed
Barkai E., Brown F. L. H., Orrit M. & Yang H. (eds.) Theory and Evaluation of Single-Molecule Signals (World Scientific, 2008).
Van Roon H., Van Breemen J. F. L., De Weerd F. L., Dekker J. P. & Boekema E. J. Solubilization of green plant thylakoid membranes with n-dodecyl-a, D-maltoside. Implications for the structural organization of the Photosystem II, Photosystem I, ATP synthase and cytochrome b6f complexes. Photosynth. Res. 64, 155–166 (2000). PubMed
Nussberger S. et al. Spectroscopic characterization of three different monomeric forms of the main chlorophyll a/b binding protein from chloroplast membranes. Biochemistry 33, 14775–14783 (1994). PubMed