Ultrafast energy relaxation in single light-harvesting complexes
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
PubMed
26903650
PubMed Central
PMC4801264
DOI
10.1073/pnas.1522265113
PII: 1522265113
Knihovny.cz E-zdroje
- Klíčová slova
- LH2, photosynthesis, single-molecule spectroscopy, ultrafast spectroscopy,
- MeSH
- bakteriochlorofyly chemie účinky záření MeSH
- čas MeSH
- fluorescenční spektrometrie metody MeSH
- konfokální mikroskopie MeSH
- lasery MeSH
- neparametrická statistika MeSH
- normální rozdělení MeSH
- přenos energie * MeSH
- Rhodopseudomonas chemie MeSH
- světlo MeSH
- světlosběrné proteinové komplexy chemie účinky záření MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- srovnávací studie MeSH
- Názvy látek
- bakteriochlorofyly MeSH
- světlosběrné proteinové komplexy MeSH
Energy relaxation in light-harvesting complexes has been extensively studied by various ultrafast spectroscopic techniques, the fastest processes being in the sub-100-fs range. At the same time, much slower dynamics have been observed in individual complexes by single-molecule fluorescence spectroscopy (SMS). In this work, we use a pump-probe-type SMS technique to observe the ultrafast energy relaxation in single light-harvesting complexes LH2 of purple bacteria. After excitation at 800 nm, the measured relaxation time distribution of multiple complexes has a peak at 95 fs and is asymmetric, with a tail at slower relaxation times. When tuning the excitation wavelength, the distribution changes in both its shape and position. The observed behavior agrees with what is to be expected from the LH2 excited states structure. As we show by a Redfield theory calculation of the relaxation times, the distribution shape corresponds to the expected effect of Gaussian disorder of the pigment transition energies. By repeatedly measuring few individual complexes for minutes, we find that complexes sample the relaxation time distribution on a timescale of seconds. Furthermore, by comparing the distribution from a single long-lived complex with the whole ensemble, we demonstrate that, regarding the relaxation times, the ensemble can be considered ergodic. Our findings thus agree with the commonly used notion of an ensemble of identical LH2 complexes experiencing slow random fluctuations.
Zobrazit více v PubMed
Harel E, Engel GS. Quantum coherence spectroscopy reveals complex dynamics in bacterial light-harvesting complex 2 (LH2) Proc Natl Acad Sci USA. 2012;109(3):706–711. PubMed PMC
Maiuri M, et al. Ultra-broadband 2D electronic spectroscopy of carotenoid-bacteriochlorophyll interactions in the LH1 complex of a purple bacterium. J Chem Phys. 2015;142(21):212433. PubMed
Brixner T, et al. Two-dimensional spectroscopy of electronic couplings in photosynthesis. Nature. 2005;434(7033):625–628. PubMed
Engel GS, et al. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature. 2007;446(7137):782–786. PubMed
Schlau-Cohen GS, et al. Pathways of energy flow in LHCII from two-dimensional electronic spectroscopy. J Phys Chem B. 2009;113(46):15352–15363. PubMed
Mančal T, Valkunas L. Exciton dynamics in photosynthetic complexes: Excitation by coherent and incoherent light. New J Phys. 2010;12:65044.
Brinks D, et al. Ultrafast dynamics of single molecules. Chem Soc Rev. 2014;43(8):2476–2491. PubMed
van Dijk EM, et al. Single-molecule pump-probe detection resolves ultrafast pathways in individual and coupled quantum systems. Phys Rev Lett. 2005;94(7):078302. PubMed
van Dijk EM, Hernando J, García-Parajó MF, van Hulst NF. Single-molecule pump-probe experiments reveal variations in ultrafast energy redistribution. J Chem Phys. 2005;123(6):64703. PubMed
Hernando J, et al. Effect of disorder on ultrafast exciton dynamics probed by single molecule spectroscopy. Phys Rev Lett. 2006;97(21):216403. PubMed
Hildner R, Brinks D, Nieder JB, Cogdell RJ, van Hulst NF. Quantum coherent energy transfer over varying pathways in single light-harvesting complexes. Science. 2013;340(6139):1448–1451. PubMed
Sundström V, Pullerits T, van Grondelle R. Photosynthetic light-harvesting: Reconciling dynamics and structure of purple bacterial LH2 reveals function of photosynthetic unit. J Phys Chem B. 1999;103(13):2327–2346.
Bergström H, Sundström V, van Grondelle R, Gillbro T, Cogdell RJ. Energy transfer dynamics of isolated B800-850 and B800-820 pigment-protein complexes of Rhodobacter sphaeroides and Rhodopseudomonas acidophila. Biochim Biophys Acta Bioenerg. 1988;936:90–98.
Hess S, et al. Femtosecond energy transfer within the LH2 peripheral antenna of the photosynthetic purple bacteria Rhodobacter sphaeroides and Rhodopseudomonas palustris LL. Chem Phys Lett. 1993;216:247–257.
Jimenez R, Dikshit SN, Bradforth SE, Fleming GR. Electronic excitation transfer in the LH2 complex of Rhodobacter sphaeroides. J Phys Chem. 1996;100(16):6825–6834.
Wendling M, et al. Low-intensity pump-probe measurements on the B800 band of Rhodospirillum molischianum. Biophys J. 2003;84(1):440–449. PubMed PMC
Novoderezhkin VI, Wendling M, van Grondelle R. Intra- and interband transfers in the B800–B850 antenna of Rhodospirillum molischianum: Redfield theory modeling of polarized pump–probe kinetics. J Phys Chem B. 2003;107(41):11534–11548.
Zigmantas D, et al. Two-dimensional electronic spectroscopy of the B800–B820 light-harvesting complex. Proc Natl Acad Sci USA. 2006;103(34):12672–12677. PubMed PMC
Fidler AF, Singh VP, Long PD, Dahlberg PD, Engel GS. Dynamic localization of electronic excitation in photosynthetic complexes revealed with chiral two-dimensional spectroscopy. Nat Commun. 2014;5:3286. PubMed PMC
van Oijen AM, Ketelaars M, Köhler J, Aartsma TJ, Schmidt J. Spectroscopy of individual light-harvesting 2 complexes of Rhodopseudomonas acidophila: Diagonal disorder, intercomplex heterogeneity, spectral diffusion, and energy transfer in the B800 band. Biophys J. 2000;78(3):1570–1577. PubMed PMC
Rutkauskas D, Novoderezkhin V, Cogdell RJ, van Grondelle R. Fluorescence spectral fluctuations of single LH2 complexes from Rhodopseudomonas acidophila strain 10050. Biochemistry. 2004;43(15):4431–4438. PubMed
Baier J, Richter MF, Cogdell RJ, Oellerich S, Köhler J. Determination of the spectral diffusion kernel of a protein by single-molecule spectroscopy. Phys Rev Lett. 2008;100(1):018108. PubMed
Schlau-Cohen GS, Wang Q, Southall J, Cogdell RJ, Moerner WE. Single-molecule spectroscopy reveals photosynthetic LH2 complexes switch between emissive states. Proc Natl Acad Sci USA. 2013;110(27):10899–10903. PubMed PMC
Rutkauskas D, et al. Spectral trends in the fluorescence of single bacterial light-harvesting complexes: Experiments and modified Redfield simulations. Biophys J. 2006;90(7):2475–2485. PubMed PMC
De Caro C, Visschers RW, van Grondelle R, Voelker S. Inter- and intraband energy transfer in LH2-antenna complexes of purple bacteria. A fluorescence line-narrowing and hole-burning study. J Phys Chem. 1994;98(41):10584–10590.
van Grondelle R, Hunter CN, Bakker JGC, Kramer HJM. Size and structure of antenna complexes of photosynthetic bacteria as studied by singlet-singlet quenching of the bacteriochlorophyll fluorescence yield. Biochim Biophys Acta Bioenerg. 1983;723:30–36.
Ma Y, Cogdell RJ, Gillbro T. Energy transfer and exciton annihilation in the B800–850 antenna complex of the photosynthetic purple bacterium Rhodopseudomonas acidophila (strain 10050). A femtosecond transient absorption study. J Phys Chem B. 1997;101(6):1087–1095.
Blankenship RE. Molecular Mechanisms of Photosynthesis. Blackwell Science; Oxford: 2002.
Kasha M. Characterization of electronic transitions in complex molecules. Discuss Faraday Soc. 1950;9:14–19.
Krüger TPJ, Novoderezhkin VI, Ilioaia C, van Grondelle R. Fluorescence spectral dynamics of single LHCII trimers. Biophys J. 2010;98(12):3093–3101. PubMed PMC
Krüger TPJ, Wientjes E, Croce R, van Grondelle R. Conformational switching explains the intrinsic multifunctionality of plant light-harvesting complexes. Proc Natl Acad Sci USA. 2011;108(33):13516–13521. PubMed PMC
Diels JC, Fontaine JJ, McMichael IC, Simoni F. Control and measurement of ultrashort pulse shapes (in amplitude and phase) with femtosecond accuracy. Appl Opt. 1985;24(9):1270–1282. PubMed
Guild JB, Xu C, Webb WW. Measurement of group delay dispersion of high numerical aperture objective lenses using two-photon excited fluorescence. Appl Opt. 1997;36(1):397–401. PubMed
Swoboda M, et al. Enzymatic oxygen scavenging for photostability without pH drop in single-molecule experiments. ACS Nano. 2012;6(7):6364–6369. PubMed PMC
Loudon R. The Quantum Theory of Light. 3rd Ed. Oxford Univ Press; New York: 2001. pp. 68–72.